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ABSTRACT 
 
 
Accounting for subgrid scale effects in climate modeling is crucial for accurate 
representation of surface energy fluxes and moisture indicators on the grid scale. Existing 
Soil-Vegetation-Atmosphere Transfer (SVAT) models most often do not adequately 
account for subgrid scale effects. Although the effects of spatial variability on estimation of 
surface energy fluxes are well established, the representation and analysis of subgrid scale 
variability has been an issue of considerable debate. The main controversy comes from the 
fact that assumptions based on different parameterization approaches for the same physical 
process, can lead to very different results.  
To contribute to this debate, a solution is formulated in this work for which upscaling laws 
are derived to map the mean and standard deviation of some given heterogeneous land 
surface parameters (at the subgrid scale) to their corresponding effective parameter (at the 
grid scale). This is subject to the condition that the relative change in output response (e.g. 
surface energy fluxes and moisture indicators) between the aggregated (subgrid scale) 
output and the effective parameter output (grid scale) is less than 10% (i.e. scale invariant).  
A numerical experimentation was set up using inverse-SVAT modeling to estimate optimal 
effective parameters which adequately yield scale invariant outputs for surface temperature, 
incoming solar radiation, Bowen ratio, evaporative fraction, sensible and latent heat fluxes. 
The tunable effective parameters of interest are surface albedo, surface emissivity, 
roughness length, minimum stomatal resistance, leave area index, vapor pressure deficit 
factor, solar insolation factor and Clapp-Hornberger soil parameter, b. In this numerical 
experimentation, a validated public domain 1D SVAT model, the OSU LSM (Oregon State 
University Land Surface Model), is coupled to an existing advanced nonlinear Parameter 
Estimation Tool (PEST). The SVAT model is driven by 1998 observation forcing data (4 
days subset, January 1- 4) from the Meyer’s measurement site in Champaign, Illinois. Initial 
parameter estimates obtained from existing parameter aggregation methods are used to 
drive the parameter estimation process. The parameters of interest are iteratively adjusted 
until the difference between the observation and the model-generated output is below some 
tolerance value. The setup is extended to the full 3D mesoscale case by coupling the Penn 
State University Mesoscale Model MM5 (which includes the same SVAT model as lower 
boundary) to PEST. MM5 was applied in one-way nesting mode to five domains within the 
Volta Basin for the duration December 2 – 5, 1998. 
Upscaling laws were developed for both the 1D SVAT case and the fully 3D coupled MM5 
model system, that map the mean and standard deviation of the distributed land surface 
parameters at the subgrid scale to their corresponding effective parameter at the grid scale. 
For the stand-alone SVAT mode, both linear and parabolic upscaling laws were obtained 
for the roughness length. The parabolic upscaling law fitted best for the remaining land 
surface parameters, except surface albedo and emissivity, which were best fitted with linear 
upscaling laws. For the full 3D mode, linear upscaling laws were obtained for surface 
albedo and emissivity as in the 1D SVAT mode, whereas, parabolic upscaling laws were 
obtained for the remaining land surface parameters. The performance of the proposed 
method was verified by comparing the results obtained from this work to that of other 
existing methods. More importantly, simple aggregation rules of harmonic, geometric and 
arithmetic means gave comparable results at small subgrid scale variability. However, at 
higher levels of heterogeneity, the proposed method gives better results compared to the 
other methods. The geometric mean values approximate very well to the values obtained 
from the proposed method. 



 

Upscaling von Landoberflächenparametern durch inverse SVAT- 
Modellierung 
 
ZUSAMMENFASSUNG 
 
 
Die Berücksichtigung der Wirkung subskaliger Prozesse in der Klimamodellierung ist 
entscheidend für die genaue Darstellung der Energieflüsse an der Erdoberfläche und den 
Feuchteindikatoren im skaligen Bereich. Bestehende SVAT(Boden-Vegetation-
Atmosphären-Transfer)-Modelle berücksichtigen die Effekte im subskaligen Bereich 
nicht ausreichend. Obwohl die Auswirkungen der räumlichen Variabilität bei der 
Abschätzung von Energieflüssen an der Erdoberfläche unzweifelhaft sind, bleiben die 
Darstellung und die Analyse der subksaligen Variabilität noch Inhalt von Diskussionen. 
Der wesentliche Diskussionspunkt hierbei ist die Tatsache, dass Annahmen, welche auf 
verschiedenen Methoden der Parameterisierung für einen identischen physikalischen 
Prozess beruhen, zu äußerst verschiedenen Ergebnissen führen können.  
Um einen Beitrag für diese Diskussion zu leisten, wird in dieser Arbeit folgende Lösung 
entworfen: Es werden Gesetzmäßigkeiten für das Upscaling abgeleitet, um das 
arithmetische Mittel sowie die Standardabweichung von gegebenen Parametern der 
Landoberfläche (im subskaligen Bereich) auf deren entsprechende effektive Parameter 
(im skaligen Bereich) abzubilden. Dies unterliegt der Bedingung, dass der relative 
Unterschied im Ergebnis (beispielsweise Energieflüsse an der Erdoberfläche und 
Feuchteindikatoren) zwischen dem des gesamten subskaligen Outputs und dem Output 
der effektiven Parameter im skaligen Bereich weniger als zehn Prozent beträgt (d.h. 
invariant in Bezug auf den Maßstab).  
Unter Verwendung eines SVAT-Modells zur inversen Modellierung wird ein Versuch 
unternommen, die optimalen effektiven Parameter zu berechnen. Diese Parameter 
führen zu maßstabsinvarianten Ergebnissen für die Oberflächentemperatur, die 
einfallende Solarstrahlung, das Bowen-Verhältnis, den Anteil der Verdunstung, den 
fühlbaren und den latenten Wärmestrom. Folgende effektive Parameter können 
angepasst werden: Die Albedo und das Emissionsvermögen der Erdoberfläche, die 
Rauhigkeitslänge, der minimale Stomata-Widerstand, der Blattflächenindex (LAI), der 
Sättigungsdampfdruckdefizitfaktor, die Solarstrahlung und der Clapp-Hornberger-
Parameter b. In diesem numerischen Versuch wird das validierte, lizenzfreie 
eindimensionale SVAT-Modell OSU LSM (Oregon State University Land Surface 
Modell) mit dem erweiterten nicht linearen Tool zur Schätzung von Parametern PEST 
(Parameter-Estimation) gekoppelt. Das SVAT-Modell wird von Beobachtungsdaten aus 
dem Jahr 1998 (vier ausgewählte Tage, 1. bis 4. Januar) des Meyer-Meßgeländes in 
Champaign, Illinois angetrieben. Um den Vorgang der Schätzung der Parameter zu 
ermöglichen, werden initiale Parameterwerte, welche von bereits vorhandenen 
Verfahren der Parameter-Schätzung übernommen werden, verwendet. Die gewünschten 
Parameter werden solange schrittweise angepasst, bis der Unterschied zwischen dem 
beobachteten und dem vom Modell erzeugten Ergebnisses unterhalb eines bestimmten 
Toleranzwertes liegt. Der Aufbau wird zu einem komplett dreidimensionalen, 
mesoskaligen Prozess erweitert, indem das mesoskalige Modell der Penn State 
University MM5, welches das gleiche SVAT-Modell wie das subskalige Modell 
beinhaltet, mit PEST gekoppelt wird. MM5 wird im Verfahren eines Ein-Wege-



 

Nestings für fünf Domains innerhalb des Volta-Beckens im Zeitraum vom 2. bis 5. 
Dezember des Jahres 1998 angewandt.  
Gesetzmäßigkeiten für das Upscaling werden sowohl für das eindimensionale SVAT-
Modell sowie für das gekoppelte dreidimensionale MM5 entwickelt. Letzteres Modell 
bildet die mittlere- und die Standardabweichung der auf der Erdoberfläche verteilten 
Parameter im subskaligen Bereich auf deren entsprechende effektive Parameter im 
skaligen Bereich ab. Für das stand-alone SVAT-Modell werden sowohl lineare als auch 
parabolische Gesetzmäßigkeiten des Upscalings für die Rauhigkeitslänge ermittelt. Die 
parabolische Gesetzmäßigkeit des Upscalings liefert das beste Ergebnis für die 
verbleibenden Parameter der Erdoberfläche mit Ausnahmen der Albedo und des 
Emissionsvermögens, welche beide mit der linearen Gesetzmäßigkeit für das 
Upscalings optimal angepasst werden. Bei der komplett dreidimensionalen Methode 
werden die Regeln des linearen Upscalings für die Albedo und des Emissionsvermögen 
auf dieselbe Art und Weise ermittelt wie in der eindimensionalen SVAT-Methode. 
Zudem werden parabolische Gesetzmäßigkeiten für das Upscaling für die verbleibenden 
Parameter der Erdoberfläche ermittelt. Die Güte der ermittelten Methode wird 
überprüft, indem die in dieser Arbeit ermittelten Ergebnisse mit denen anderer bereits 
bestehender Methoden verglichen werden. Von größerer Bedeutung ist die Tatsache, 
dass einfache Regeln für die Zusammenfassung von harmonischem, geometrischem und 
arithmetrischem Mittel vergleichbare Ergebnisse bei einer kleinen subskaligen 
Variabilität liefern. Bei einer ausgeprägteren Heterogenität jedoch erbringt die 
vorgeschlagene Methode bessere Ergebnisse als andere Methoden. Das geometrische 
Mittel entspricht in hohem Maße den Werten der vorgeschlagenen Methode.  
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1 INTRODUCTION 

 

1.1 Background 

Over 70% of the population in West Africa depends primarily on rainfed agriculture for 

its livelihood. Moreover, the main source of power for socio-economic development is 

hydro-based and depends heavily on availability of rainfall and its distribution. 

Therefore, water resources are the life-blood of the economies of West African 

countries, and changes in amount and distribution of rainfall can significantly impact 

socio-economic activities in the region. 

In an attempt to address the problem of efficient utilization of the scarce water 

resources in the Volta Basin of West Africa, the German government and its partner 

countries within the Volta Basin (Ghana & Burkina Faso) have set up a 

multidisciplinary research project on Global Change in the Hydrological Cycle, called 

the GLOWA-Volta project. The principal objective of the project is to develop a 

scientifically sound decision support system for the assessment, sustainable use and 

development of water resources in the Volta Basin. 

A critical component of this multidisciplinary research involves regional 

climate modeling of the Volta Basin to identify and characterize the dynamics of the 

energy and hydrological cycles in the Basin. However, the location of the Volta Basin 

in the tropics, coupled with the complex nature of the landuse characteristics of the 

region demands a new approach for representing the relevant physics in climate models 

to accurately account for subgrid scale heterogeneity effects.  

As the GLOWA-Volta project is multi-disciplinary in nature, the different 

subprojects made up of different disciplines must be optimally integrated across 

different scales to ensure the harmonious functioning of the project as a whole. The 

issue of scaling land surface characteristics is therefore a critical issue for scientific 

enquiry.  
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1.2 Motivation 

Ongoing intensification of agriculture in West Africa has led to changes in land surface 

and subsurface characteristics, which directly affect evapotranspiration rates. If these 

changed evapotranspiration rates in turn affect regional precipitation patterns, rainfed 

and irrigated agriculture in West Africa may face changed boundary conditions because 

of the complex feedback mechanisms between the surface and atmosphere. The 

investigation of these feedback effects requires the application of regional climate 

models that accurately account for soil and vegetation states through SVAT schemes.  

The land surface characteristics of the Volta Basin is characterized by mosaics 

of small patches made up of agricultural fields, fallows, villages and forest (savannah 

mosaic). The surface heterogeneity introduced by the composing surface elements of the 

savannah mosaic lead to complicated conditions affecting both local and regional 

climates. Depending on the horizontal scale of these surface heterogeneities, the 

planetary boundary layer (PBL) could be affected, and in effect, influence the regional 

climatic conditions. Three scales of surface heterogeneity have been identified and, 

depending on the horizontal scale, they can be classified as microscale or organized 

heterogeneity, mesoscale or disorganized heterogeneity, and macroscale or large scale 

heterogeneity respectively (Shuttleworth, 1988; Raupach, 1991; Mahrt, 2000). 

For the microscale heterogeneity, the surface changes are disorganized at 

scales less than 10 km (Shuttleworth, 1988) such that the atmospheric boundary layer 

responds to only the composite structure. The influence of the local advection on the 

surface flux profiles becomes appreciable and a characteristic height called the blending 

height can be found where the fluxes are close to its surface values (Claussen and 

Klassen, 1992; Klassen and Claussen, 1995; Mahrt, 2000). For the mesoscale or 

organized heterogeneity, the atmospheric boundary layer responds independently over 

each patch of the surface and occurs on scales greater than 10 km (André et al., 1986; 

Chehbouni et al., 1995; Raupach, 1991). The blending height extends sufficiently high 

such that no level exists where the Monin-Obukhov similarity theory is applicable for 

estimating surface fluxes close to the surface value. In the case of the macroscale 

heterogeneity, the boundary layer establishes equilibrium with the local surface type, 

and the entire boundary layer is controlled by the local surface structure. At low wind 

speeds, macroscale heterogeneity can occur at the mesoscale scale length(Mahrt, 2000). 
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Regional climate models use landuse data in resolutions of 10-100 km because 

of the limitation of computing resources required for fine resolution runs over the 

domain of interest. However, information on land surface parameters is usually 

available at much finer resolution such that their implementation in the coarse 

resolution climate models do not properly account for the subgrid scale effects 

associated with the surface heterogeneity. More importantly, the scales at which most of 

these subgrid scale processes occur are far too fine to be captured by the coarse scale 

resolution at which climate runs are undertaken.  

Although the relevance of parameterizing subgrid scale processes in climate 

modeling is well established, the question of how to represent and analyze the effects of 

spatial variability on the scaling of land surface parameterization has been an issue of 

great controversy. The main contention comes from the fact that assumptions related to 

different parameterization for the same physical process often lead to different 

inferences. As a result, several studies based on different approaches have recently 

focused on how to fully represent and parameterize this land surface heterogeneity so as 

to enhance model efficiency and accuracy. Therefore, a fundamental and not yet 

satisfactorily solved problem in hydrological research is how subgrid scale variability 

can be accounted for at coarse resolutions. 

 

1.3 Objectives 

The main objective of this work is to derive effective soil and vegetation parameters to 

account for subgrid scale variability in 1D SVAT and full 3D regional climate models. 

The specific objectives of this research are:  

• To undertake sensitivity analysis of SVAT model parameters with 

respect to surface energy fluxes (latent and sensible heat fluxes) and 

moisture indicators (Bowen ratio and evaporative fraction) to identify 

sensitive SVAT parameters. 

• To develop a parameter estimation environment for SVAT models 

(stand-alone and full 3D). 

• To identify suitable objective functions for the estimation of selected 

soil and vegetation parameters. 
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• To derive upscaling laws (an equivalent for lookup tables) for soil and 

vegetation parameters in SVAT models, with particular emphasis on 

the Volta Basin.  

• To compare the developed method to existing aggregation/upscaling 

schemes. 

• To investigate differences between derived effective parameters for 

SVAT models in stand-alone mode (1D) and fully 3D mode. 

• To investigate the uniqueness of the estimated parameters. 

 

1.4 Problem definition 

The problem of representing subgrid scale effects can be formulated in several ways, 

based on the nature of the solution strategy adopted (Chehbouni et al., 1995; Hu et al., 

1999; Shuttleworth et al., 1999). For this study, the subgrid scale problem is posed as an 

inverse problem and considered ill-posed.  

The subgrid scale problem is posed as follows: 

• Given a distributed heterogeneous land surface (characterized by land 

surface parameters of mean pµ  and standard deviation pσ ) at the 

subgrid scale, can we find an effective parameter effp  at the grid scale 

such that the relative change in output response (e.g. surface energy 

fluxes and moisture indicators) is less than 10% (Hu et al., 1997)? 

• If such an effective parameter effp  exists, can we find a functional 

relation that maps the mean pµ  and standard deviation pσ  of the 

distributed land surface parameters at the subgrid scale to their 

corresponding effective parameter effp at the gridscale?  

The first question addresses the problem of scale invariance in that it seeks an 

effective parameter for which the surface energy fluxes would be accurately partitioned. 

The second problem seeks an upscaling law that would enable the estimation of the 

effective parameter at the grid scale based on the mean and standard deviation of the 

distributed subgrid scale parameters. The problem is generally of highly nonlinear 

nature.  
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1.5 Overview 

In this work, the estimation of optimal effective land surface parameters through inverse 

modeling is adopted. The subgrid scale effects are accounted for by the upscaling of 

land surface parameters through inverse-SVAT modeling. The solution strategy is based 

on the premise that solutions of existing methods are sub-optimal and hence parameter 

estimates obtained from these techniques can be used as initial parameters for driving 

the parameter estimation process. In effect, if good initial parameter estimates can be 

found such that they are within the neighborhood of the true solution, it is possible to 

iteratively adjust these parameters for the solution to converge to the optimal solution.  

As the inverse problem is ill-posed, it is transformed into an almost well-posed 

problem via an approximate technique. Using prior information about the subgrid scale 

processes as a regularization constraint, the parameter estimation process is constrained 

to converge to the true solution. An exact algebraic solution does not exist, hence an 

approximate numerical solution using the Gauss-Levenberg-Marquardt algorithm is 

adopted. 

To realize this, the SVAT model (OSU LSM) (Ek and Mahrt, 1991) was 

coupled to the nonlinear parameter estimation tool PEST (Doherty, 2002), which is able 

to iteratively adjust the SVAT parameters such that scale invariant outputs of heat 

fluxes are achieved. The SVAT model was driven by 1998 observation forcing data (4 

days subset, January, 1- 4) obtained from the Meyer measurement site in Champaign 

(Meyers & Ek, 1999), which is characterized by the vegetation type “groundcover only” 

and soil type “silty loam”. A Monte Carlo random number generator was used to 

provide parameter inputs to the SVAT model. Initial parameter estimates derived from 

approximate methods of Hu et al. (1999) and related methods were used to initialize the 

nonlinear parameter estimation process. To verify, if the proposed method was 

independent of atmospheric forcing, extended runs ranging from 1 to 30 days were 

undertaken, and the results obtained do not differ significantly from the usual 4 day 

episode runs used in this exercise. 

The experiment was extended to cover the full 3D mesoscale meteorological 

model MM5 to account for the lateral interactions between adjacent cells. The MM5 

runs are initialized and run with National Center for Environmental Predictions (NCEP) 

reanalysis data. A one-way nested approach was applied for five domains, where the 
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outer boundaries provide boundary conditions to drive the inner domain. Here, an area 

in the Volta Basin (West Africa) was chosen for the investigations (4 days subset 

December, 2 - 5 1998). 

The thesis provides a simple and effective method for accounting for the 

subgrid scale effects through inverse-SVAT modeling. Beyond accounting for subgrid 

scale effects, it also provides a framework for the automatic calibration of distributed 

models. 

 

1.6 Organization of the thesis 

The earlier sections of this chapter gave a brief outline of the thesis. The remaining 

chapters provide the conceptual and technical details applied in this thesis for the 

solution of the subgrid scale heterogeneity problem.  

In Chapter 2, a detailed literature review of existing methodologies is given. 

The nature of the planetary boundary layer processes and their parameterization is 

presented. Other relevant information for the conceptual design of the upscaling method 

and its numerical implementation is also discussed.  

Chapter 3 gives a brief description of the theoretical formulation of the models 

used in this study. The theoretical formulation of the upscaling of land surface 

parameters as an inverse-SVAT problem and its approximate solution is discussed. The 

theoretical formulation of SVAT modeling as a forward problem is also discussed. 

A sensitivity analysis of surface energy fluxes and moisture indicators with 

respect to key vegetation parameters is given in Chapter 4. The analysis covers the 

whole Volta Basin. The result of the sensitivity analysis provides relevant information 

on critical land surface parameters and hence helps to improve the parameter estimation 

process.  

Chapter 5 gives a detailed description of the upscaling methodology. It uses 

the theoretical formulations outlined in chapters 2 and 3 to develop a solution strategy 

for addressing the problem of subgrid scale effects as an inverse problem.  

Chapter 6 gives a description of the numerical implementation of the proposed 

upscaling method developed in Chapter 5. A numerical experimentation is carried out to 

access the performance of the model with other existing techniques. The generation of 

the distributed land surface parameters by a Monte Carlo simulation and its coupling to 
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both the 1D SVAT and 3D SVAT (MM5) models is discussed. Initialization and 

coupling of PEST to the 1D SVAT model and its extension to the fully coupled 3D 

SVAT model (MM5) are also discussed. 

A detailed analysis of the results of the numerical experimentation presented 

in chapter 6 is discussed in Chapter 7. This includes the representation of the various 

forms of upscaling laws for the coupled 1D SVAT-PEST (stand-alone), where lateral 

interactions between adjacent cells are ignored, and its extension to the fully coupled 3D 

SVAT-PEST (MM5; accounting for full interaction between adjacent cells). A unified 

framework for assessing the performance of the proposed method and other existing 

techniques is presented. Pertinent issues related to the enhancement of the performance 

of the inverse-SVAT modeling process are also discussed. 

In Chapter 8, a summary and conclusion of the thesis is presented followed by 

an outlook for future research. 
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2 LITERATURE SURVEY 

 

2.1 General survey of existing strategies for representing subgrid scale effects 

The parameterization of subgrid scale processes in climate modeling has generated a 

great deal of controversy over the years. This has come about mainly because there is no 

unified theory from which subgrid scale heterogeneity can be modeled. As a result, 

several studies based on different approaches have recently focused on how to fully 

represent and parameterize the land surface heterogeneity so as to enhance model 

efficiency and accuracy. 

Some methods propose the increase of the resolution of model grid at the 

ground surface, break the domain into finer subgrids and then estimate surface energy 

fluxes at the subgrid scale (e.g. Dickenson et al.,1989; Hu et al., 1997; Koster and 

Suarez,1992). Dickenson et al. (1989) used General Circulation Model (GCM) 

horizontal boundary conditions to drive a Regional Circulation Model (RCM) and 

observed that intragrid topography and land surface properties strongly influence the 

distribution of precipitation at the mesoscale. They also observed that a nested GCM-

RCM model produces more realistic results than the original GCM. Other studies 

(Koster and Suarez, 1992) assume weak lateral interactions between subgrids such that 

each subgrid interacts independently with the atmosphere, making it possible to apply 

the same atmospheric forcing to all subgrids within the grid. The land surface model is 

applied to each subgrid to estimate surface energy fluxes, humidity, temperature and 

other variables of interest. The grid output is then obtained by a weighted average of the 

relevant variables of interest over all subgrids in the domain. 

Another approach that has attracted much attention is the use of effective 

roughness length to account for the effect of surface heterogeneity. One very popular 

approach is the blending height concept developed by Wieringa (1986). He reasoned 

that at a certain characteristic height above a heterogeneous surface, the atmospheric 

flow does not depend on the characteristics of the underlying heterogeneous surface. 

Hence it is possible to derive an effective parameter for the heterogeneous surface. 

Several studies (Mason 1988; Wood and Claussen 1990; Grotzner et al., 1996) have 

used this concept to estimate the horizontal scale length of surface heterogeneity. The 

limitation of this model is that it is only applicable to small-scale heterogeneity and 
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requires a stable lower atmosphere. Grotzner et al. (1996) argue that when the scale of 

heterogeneity becomes large and the lower atmosphere is unstable, the blending height 

lies beyond the convective layer, and hence the similarity law for the flux estimation 

would not be applicable. It has been shown recently that there is no general approach to 

defining effective land surface parameters (McNaughton, 1994; Lhomme et al., 1994; 

Shuttleworth et al., 1999). 

The energy matching method is a form of energy conservation approach where 

the terms in the energy balance equation at the grid scale are matched to the area-

weighted sum of the corresponding terms at the subgrid scale (Braden, 1995; Chehbouni 

et al., 1995; Hu et al., 1999; Lhomme, 1992; Raupach, 1991). Using appropriate physics 

assumptions, a set of relationships are derived between the grid scale and subgrid scale 

parameters.  

The problem with the energy matching method is that most versions use crude 

assumptions in minimizing the residual errors associated with the difference between 

the grid scale and subgrid scale terms. Hu et al. (1999), argue that the linearization of 

the surface energy balance equation can lead to energy partitioning problems for the 

available energy (difference between net radiation flux and ground heat flux), sensible 

and latent heat fluxes. For instance, the use of the linearized Stefan-Boltzmann equation 

and vapor pressure dependence on temperature has been found to be problematic in 

some cases. Lhomme et al. (1994) observed that three different aggregated surface 

temperatures can be derived depending on whether available energy, sensible or latent 

heat flux is preserved. Additionally, effective parameters derived from schemes based 

on these crude physics assumptions can lead to parameters with no physical meaning 

(Braden, 1995). 

Several statistical approaches have also being proposed for representing 

subgrid scale effects. In these statistical formulations, land surface processes are 

characterized by relevant statistical measures of heterogeneity. A common example is 

the statistical-dynamic approach in which statistical probability distributions are used to 

characterize the subgrid scale spatial heterogeneity of certain variables of interest from 

which probability density functions for an aggregated response are derived (Entekhabi 

and Eagleson, 1989; Famiglietti and Wood, 1991). Several variations of the statistical 

dynamic approach exist. Collins and Avissar (1994) used a derivative of the statistical-
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dynamic approach that incorporates the Fourier Amplitude Sensitivity Test (FAST) to 

identify critical parameters that influence surface flux heterogeneity. This technique is 

attractive, because it eliminates the computational burden introduced by representing 

the covariances between the various PDFs used in the normal statistical-dynamic 

approach. 

Mixed conclusions have been made by different researchers. Whereas Wood 

and Lakshmi (1993) found the latent heat flux not to be particularly sensitive, Li and 

Avissar (1994) found the land surface characteristics to be important for the grid level 

sensible and latent heat fluxes. Hu et al. (1997), and Li and Avissar (1994) established 

that in general the latent heat flux is the most sensitive, whereas the radiative flux from 

the surface is the least sensitive to spatial variability. The problem with this approach is 

that the probability distribution functions for the parameters are very difficult to 

formulate, mostly due to lack of data. Also, most experiments involve statistical 

simulations (e.g. Monte Carlo runs) that require multiple model runs (over a million 

runs) and intensive CPU utilization.   

Shuttleworth (Chehbouni et al., 1995) suggest that an appropriate aggregation 

scheme would be to define the effective area-average value of a land surface parameter 

as the weighted average of the subgrid scale parameters through the function containing 

the parameter that most succinctly expresses its relation with the associated surface flux. 

Chehbouni (1995) argues that such an approach may not satisfy the energy conservation 

law. Additionally, it can lead to different results for the same physical parameter 

depending on which energy flux is applied. 

Scale invariance methods determine the effect of land surface heterogeneity on 

the surface and other state variables by using scale invariant land surface 

parameterization. An effective parameter is estimated such that the percentage change in 

a given output response is less than some tolerance (often 10%). Another approach is to 

estimate an effective parameter such that output response obtained at a local or point 

scale is applicable at a larger scale. Hu et al. (1997) developed an analytical scheme for 

analyzing scale-invariance of atmospheric variables using distributed maps and Taylor 

series expansion of the relevant physical functions. They deduced that there are two 

conditions under which a scale-invariant assumption would be applicable: (i) If the 

parameters are homogeneous over the grid, and (ii) if the map is a linear combination of 
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inputs and parameters. They observed that correlation between the drag coefficients for 

heat and moisture, and also temperature and humidity, can lead to appreciable errors. 

Analysis from the FIFE experiment (Sellers et al., 1992; Hall, 1992) show that land 

surface energy fluxes are almost scale invariant. 

The approach chosen in this work for resolving the controversy surrounding 

the representation of subgrid scale effects is the optimal parameter estimation method 

through inverse-SVAT modeling. This approach involves the minimization of the sum 

of the objective function (e.g. square of the error between some observation and model 

output) by iteratively adjusting model parameters until the minimum of the objective 

function is obtained. Although this approach shows much promise, the formulation of 

the inverse problem and its solution is not trivial. A major reason for this is the fact that 

in an attempt to represent in detail the mechanisms governing the interactions between 

soil, vegetation and the atmosphere, current physically-based land surface schemes have 

become increasingly complex, resulting in the specification of a large number of 

parameters. Even the simple patch scale SVAT model still permits too many degrees of 

freedom in terms of fitting model predictions or data validation. The result is high 

parameter correlations and singular covariance matrices, a condition that makes the 

parameter estimation process a very formidable task. The success of this method is 

based primarily on the formulation of the inverse problem and the closeness of the 

initial parameter estimates to the true solution. Existing methods use either trial and 

error or Monte Carlo methods to obtain initial parameter estimates to drive the 

parameter estimation process. This approach is, however, a very expensive exercise as 

the model has to be run several times (mostly over a million times) to derive a good 

initial parameter set.   

The main objective of this chapter is to review existing aggregation schemes 

that have relevance to this thesis. A brief review of the general problem of 

parameterizing the planetary boundary layer in climate models and types of land surface 

surface heterogeneity are also discussed. Basic principles for developing methods of 

particular interest to this work are discussed in detail in section 2.3. 
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2.2 General problem of parameterizing the Planetary Boundary Layer (PBL) 

Numerical climate simulations are performed by the numerical integration of the 

governing equations of atmospheric motions using finite difference approximation 

methods. Application of the finite difference approximations to discrete volumes 

constituting the earth’s geometry implying only processes occurring at scales larger than 

twice the grid length can be captured by the grid-point model. However, due to practical 

limitations on computing resources, the model length (in the case of a GCM) cannot be 

reduced far below 100 km (Tiedtke, 2001) because it would be very expensive 

computationally.  But subgrid scale processes occurring at scales far less than 100 km 

are responsible for the transport of a considerable amount of moisture, sensible heat and 

momentum into the PBL by turbulent and convective motions.   

To account for subgrid scale effects in climate models, the statistical 

contributions of the various (unresolved) subgrid scale processes are expressed in terms 

of the large-scale (mean) flow. More importantly, many of the subgrid scale processes 

are too complicated to the extent that derivation of parameterization from first principle 

is not practicable. For this reason, empirical relationships are derived from experimental 

data using the similarity theory.  

In general, a realistic representation of the PBL in climate models is crucial because: 

• The large-scale budgets of heat, momentum and moisture are 

considerably affected by the surface fluxes on time scales of a few 

days. 

• The model variables in the boundary layer are important products, 

because they serve as input and verification for atmospheric wave 

models, air pollution models and climate models. 

• The boundary layer interacts with other processes and greatly 

influences their dynamics, e.g. soil moisture, clouds and convection. 

The relevance of surface fluxes can be further illustrated by the recycling time 

of different quantities on the basis of typical values of surface fluxes as given in Table 

2.1. 
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Table 2.1: Global energy budget (order of magnitude estimates) 
Budget Total Surface flux Recycling time 

Water 7x107 Jm-2 80 Wm-2 10 days 

Internal + potential 

energy 

4x109 Jm-2  

(0.5% available) 

30 Wm-2 8 days  

Kinetic energy 2x106 Jms-2 2 Wm-2 10 days 

Momentum 2x105 kgms-1  0.1 Nm-2 25 days (Eckman spin 

down time 4 days ) 
Courtesy ECMWF Met. Training course lecture series, 2001. 
 

A detailed discussion on the parameterization of subgrid scale processes can 

be found in Avissar (1992), Beljaars (2001), Mahrt (2000), Peixoto and Oort (1992), 

Tiedtke (1984) and Viterbo (1996). 

 

2.2.1 Description of the PBL  

The discussion presented in this section closely follows Bastiaanssen (1995) and 

Beljaars et al. (2001). The PBL constitutes the lower part of the atmosphere where the 

influence of land surface flux densities on atmospheric motion is felt. In this layer, the 

coriolis force, which determines the rotation of the earth, is negligible compared to the 

influence of the land surface processes. The atmospheric flow in the PBL is 

characterized by turbulence generated by wind shear and thermal convection. Figure 2.1 

shows a hybrid PBL for a dry, well-mixed ideal case consisting of different sub-layers. 
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Figure 2.1: Schematic representation of the hybrid Planetary Boundary Layer (PBL) 
into sub-layers with typical heights. Source: Bastiaanssen (1995). 

 

A roughness sub-layer lies above the land surface. It consists of elements with 

variable surface roughness including canopy-like structures and other rough surfaces. 

The turbulent surface layer is the lowest part of the PBL constituting 10% of the PBL 

height (Holtslag and Nieustadt, 1986). In this region, the Monin-Obukhov (1954) 

similarity theory is applicable. Studies by Holtslag (1984) using Cabauw (Netherlands) 

data show that the Monin-Obukhov similarity is valid up to a height of about 100 m. In 

the mixed layer, potential temperature and humidity vary almost constant with height. 

The top of the PBL is limited by the free atmosphere. The region where the laminar 

process of the free atmosphere interacts with the turbulent eddies (mixing processes of 

air parcels) leaving the PBL is called the entrainment layer.  

The maximum spatial variability in sensible and latent heat fluxes over 

composite terrains are found close to the land surface in the turbulent surface layer. The 

vertical transport of fluxes of heat, momentum and vapor exhibit spatial non-uniformity 

resulting in horizontal advection. At some critical height, called the blending height, the 

momentum flux becomes almost independent of the influence of the surface 

heterogeneities (Wieringa, 1986). It is assumed that below this height, the wind profiles 

primarily respond to local roughness elements. More importantly, multiple blending 

heights at different levels and horizontal scales may arise under the appropriate 
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conditions (Arain et al., 1997; Chehbouni et al., 1995; Hu et al., 1999; Mahrt, 2000). 

The blending height concept constitutes a very powerful tool for establishing scaling 

relationships for the momentum flux density (Claussen, 1990;Mason, 1988; Wieringa, 

1986).  

Following Mason (1988), the relation for the blending height and surface 

conditions can be represented as 

x

2
*

blend L
U
uz ⎟

⎠
⎞

⎜
⎝
⎛=         2. 1 

where xL is the characteristic length scale for horizontal distances between 

obstacles and *u  and U are the friction velocity and average wind speed at the blending 

height respectively. A detailed description of the blending height approach will be 

presented in section 2.3.  

 

2.3 Detail review of selected land surface parameter upscaling approaches 

A detailed description of some selected land surface parameter upscaling approaches 

that have relevance to this work is presented below. These are: 1) the blending height 

method, 2) the energy matching method, 3) the simple averaging method, and 4) the 

inverse modeling method. The three main types of land surface heterogeneities (i.e. 

microscale, mesoscale and macroscale) defined based on the blending height concept 

are briefly described. 

 

2.3.1 The blending height approach 

Horizontal scales of surface heterogeneity 

Section 2.2 gave a brief description of the blending height concept in relation to the 

PBL. It is one of the key theories required for a better understanding of land surface 

heterogeneity. For this reason, the blending height assumptions are invoked in almost 

all land surface parameter aggregation schemes in formulating the relevant parameter 

aggregation relations. Several formulations of the blending height approach exist 

(Claussen , 1990; Mahrt, 2000; Mason, 1988; Schmid and Bünzli, 1995; Wieringa, 

1986; Wood and Mason, 1991). Following Mahrt (2000), it is assumed to be the height 

where the influence of surface heterogeneity gradually decreases below some threshold 

value. It has been shown to increase linearly with horizontal scale of the surface 
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heterogeneity (see equation 2.1) so that the influence of larger scale surface features 

extends farther into the boundary layer (Marht, 2000; Wood and Mason, 1991). Figure 

2.2 shows the planetary boundary layer and the different scaling regimes of surface 

heterogeneity. Below the blending height, the turbulence may not be in equilibrium with 

the local vertical gradient, in which case the Monin-Obukhov similarity theory (MOST) 

is not applicable. MOST can be successfully applied to heights above the blending 

height, if the blending height is low compared to the boundary layer depth (Mahrt, 

2000). This is a basic requirement that ensures that the flux immediately above the 

blending height is close to the spatially-averaged value and that the boundary-layer 

depth does not influence the flux-gradient relationship. 
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Figure 2.2: Scaling regimes based on the blending height concept (lower main part) and 
convective boundary layer scaling (upper part). Courtesy Mahrt (2000). 

 

The formulation of the blending height approach described above is based on a 

shear-driven mixing where the transport of momentum is localized and diffused. 

However, in the convective boundary layer, large boundary layer eddies can transport 
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surface information on time scales of few tens of minutes to the top of the deep 

boundary layer, making the blending height concept invalid. For this scenario, Raupach 

and Finningan (1995) derived expressions for the influence of surface heterogeneity on 

the basic time scales of the convective boundary layer. A basic conclusion from the 

analysis is that the horizontal influence of the surface heterogeneity is modulated by the 

large convective boundary layer eddies to the point that it does not affect the bulk of the 

boundary layer. An elegant description of the boundary layer convective scaling is also 

given in Mahrt (2000). 

Additionally, the thermodynamic processes in the PBL can induce a thermal 

scaling length depending on its influence on the stability of the PBL. The horizontal 

scale length of surface heterogeneity has been found to decrease with increasing 

instability (Mahrt, 2000). However, when the surface heating is appreciable, this weak 

dependence on instability becomes irrelevant and leads to underestimation of instability, 

and a more explicit formulation of stability dependence is required. A thermal blending 

height based on a linearized thermodynamic budget has been developed by Wood and 

Mason (1991).  

In general, three horizontal scales of surface heterogeneity can be defined as 

discussed previously: 

• The blending height based on local diffusive mixing by shear-generated 

turbulence, which is applicable in near neutral or stable conditions. 

• The thermal blending height based on the buoyancy modification of the 

turbulence. 

• The boundary layer convective scaling, which describes the extent of nonlocal 

bulk mixing due to buoyancy-driven eddies on the scale of the boundary layer.  

 

These three length scales give an estimate of the minimum horizontal scale of 

surface heterogeneity that significantly influences the flow at a given height or, in the 

case of the thermal blending height, the entire boundary layer. Additionally, they are all 

proportional to the wind speed and inversely proportional to some measure of the 

strength of the prevailing turbulence. 
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Scale regimes based on the blending height concept 

Following the arguments advanced in formulating the different horizontal length scales 

(section 2.3.1), different scaling regimes are possible depending on the organization of 

the planetary boundary layer processes. Following Mahrt (2000), three main scaling 

regimes have been identified: 1) microscale or disorganized heterogeneity, 2) mesoscale 

or organized heterogeneity and 3) macroscale heterogeneity.  

Disorganized or microscale heterogeneity occurs when the length scales of 

surface heterogeneity is small enough (<10 km) for the PBL to respond only to the 

composite surface structure. In this case, the scale of surface heterogeneity is smaller 

than the integral mixing length (Chehbouni et al., 1995). The blending height based on 

local diffusive mixing by shear-generated turbulence, as discussed in section 2.3.1, is 

applicable and valid under near neutral or stable conditions.  It is assumed that it is a 

necessary condition for the Monin-Obukhov similarity theory to be applicable (Mahrt, 

2000). 

These arguments form the basis of many surface flux and parameter 

aggregation methods. For instance, they can be used to assess the suitability of the 

energy matching, mosaic or flux aggregation approach to partition subgrid surfaces in 

numerical models (Avissar and Pileke, 1989; Chehbouni et al., 1995; Hu et al., 1997; 

Hu et al., 1999; Mahrt, 1996).  Taylor (1987) applied this approach for momentum 

transfer over heterogeneous surfaces to estimate the effective roughness length. In his 

approach, each grid is divided into subgrids representing different land surface types, 

while the variables at the first model level (presumably in the surface layer) are assumed 

equal to their grid-averaged values and unaffected by subgrid scale heterogeneity. Mahrt 

(2000) argues that such an assumption can only be valid as a rough approximation if the 

blending height is below the first model level, which in turn must be below the top of 

the surface layer. Such arguments break down for large scales of surface heterogeneity 

(> 10 km) or higher blending heights.  

Mesoscale or organized heterogeneity occurs where the PBL behaves 

independently over each patch of the surface (> 10 km). This occurs when the surface 

heterogeneity extends upward to a significant fraction of the boundary layer depth 

(region C of Figure 2.2), and where there is no longer a model level above the blending 

height where the flux-gradient relationship depends on the ratio of vertical height to the 
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Monin-Obukhov length alone. More importantly, the flow immediately above the 

blending height is too high so that the spatially-averaged flux is very different from the 

surface value. The similarity theory is not applicable in the entire PBL. Several 

controversies have resulted from the failure of the similarity theory to provide a uniform 

framework for analyzing the scales of surface heterogeneity (Chehbouni et al., 1995; Hu 

et al. 1997; Mahrt, 2000). Up till now, no rigorous treatment of organized heterogeneity 

exists, but recent studies have shown varying successes in addressing the issue (Pielke, 

1997).  

In the macroscale or large scale heterogeneity, the local features control the 

entire boundary layer. A blending height can be found where the boundary layer 

establishes equilibrium with the local land surface and the similarity theory is 

applicable. This scenario is illustrated in region D of Figure 2.2. 

 

2.3.2 The energy matching method 

General formulation of the energy matching method 

A brief survey of the energy matching method was given in section 2.1. The objective 

of this approach is to find functional relationships for land surface parameters such that 

the aggregation of surface fluxes at the subgrid scale match that of the effective 

parameter at gridscale. This is subject to the condition that the residual errors associated 

with the matching process are minimal. In this formulation, the flux-resistance model 

for surface heat fluxes (sensible (H), latent (λE), and net radiation (Rn)) are given 

respectively as  
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where 

=sG Ground heat flux (Wm-2)  

=σ Stefan-Boltzmann constant (Wm-2K-4) 

=sR Downward shortwave (Wm-2) 

=lR Downward longwave (Wm-2) 

=sT Surface temperature (K) 

=aT Air temperature (K) 

=H Sensible heat flux (Wm-2) 

=Eλ Latent heat flux (Wm-2) 

=α Surface albedo [-] 

=sε Surface emissivity [-]  

=pc Specific heat capacity (Jg-1K-1) 

=ar Surface roughness length (m) 

=sr Stomatal resistance (sm-1) 

=e Vapour pressure (mb) 

=*e Saturated vapour pressure (mb)  

 

The grid is divided into i subgrids, each assumed to be homogeneous with 

respect to land surface characteristics. Aggregated (area-weighted) subgrid output 

responses (denoted by superscript D) are obtained as 
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The associated surface energy balance is given by 
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where ia  is the fractional area weight of the thi − subgrid. 

For the lumped or effective parameter output response (denoted by 

superscript L ), the corresponding surface energy fluxes are given as  

a

aspL

r
TTc

H
)( −

=
ρ

         2. 12 

( )
sa

as
*

pL

rr
)T(e)T(ec

E
+

−
=
ρ

λ         2. 13 

s
L
s GG =           2. 14 

s
L RR )1( α−=          2. 15 

ls
L
down RR ε=           2. 16 

4
ss

L
up TR σε=           2. 17 

Similarly, the energy balance should be valid over the grid (lumped parameter) giving 
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A set of land surface parameters is obtained via some physics assumptions that 

would conserve energy and partition the energy fluxes within reasonable accuracy.  

 

The method of Hu et al. (1999): Use of nonlinearized (complete) energy terms 

Hu et al. (1999) used the above energy matching technique to derive effective 

parameters for estimating grid scale fluxes. Their approach provides forcing-

independent effective parameters similar to those obtained from the proposed method 

described in Chapter 5 of this thesis. More importantly, a comparison between the 

proposed method and that of Hu et al. (1999) is presented in Chapter 6.  

For their approach, Hu et al. (1999) obtained effective parameter estimates 

through the minimization of the objective function  
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by taking derivatives of 2χ with respect to sG ,α , sr , ar , sT , sε and setting the derivatives 

to zero. This gives the following energy conservation relations: 
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The above relations (Equations 2.20 – 2.25) represent the law of conservation 

of energy fluxes and are equivalent to the following:  
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The following aggregation schemes are obtained as estimates of the effective 

parameters and output response of interest: 
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These aggregation rules, although elegant, are not suitable for SVAT models 

in forecasting schemes due to their dependence on forcing data. To obtain forcing-

independent effective parameters, assumptions similar to those applied in the blending 

height approach are invoked (Hu et al., 1999). It is further assumed that the surface 

forcing is not too heterogeneous such that 
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Incorporating these simplifying assumptions yields the following:  
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The crude simplification assumptions of equation 2.38 are made without the 

provision for error corrections, because they are to formulate without forcing 

information or additional information. This results in the overestimation of surface heat 

fluxes at higher levels of surface heterogeneity (Hu et al., 1999). A better method is, 

therefore, sought for in this thesis. 

  

Approaches based on the linearization of the thermodynamic terms 

Chehbouni et al. (1995) used similar arguments to derive effective land surface 

parameters. In their formulation, they respectively linearized the saturated vapor 

pressure and surface temperature relations  
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where s and aD are the respective slope of the saturated vapor pressure curve and vapor 

pressure deficit at air temperature. The results of Chehbouni et al. (1995) are 

summarized below as: 
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where oγ  is the psychometric constant. 

In addition to equations 2.47 to 2.52, Chehbouni et al. (1995) obtained 

equivalent relations of equations 2.28, 2.30 and 2.34 obtained by Hu et al. (1999). The 

linearization assumptions made on the thermodynamic equations can lead to 

inconsistent results as discussed in section 2.2 (Hu et al., 1997; Hu et al., 1999). Also, 

too many parameters need to be specified to derive other parameters. Lhomme (1992) 

observed errors in the order of 30% with this approach. 

Other energy matching techniques use the latent heat fluxes obtained from the 

combination equations to derive effective parameters (Arain et al., 1999; Nakaegawa et 

al., 2001; Shuttleworth et al., 1997; Shuttleworth et al., 1999).  Most of these methods 

provide parameters with either no physical meaning or require surface information in 

their formulation (Braden, 1995). More importantly, they are not suitable for SVAT 

models in forecasting models where surface variables are to be predicted. 
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2.3.3 Simple averaging methods 

The simple averaging methods provide valuable initial parameter estimates for iterative 

procedures such as the proposed method discussed in Chapter 5 of this thesis. Research 

on the use of simple averaging techniques has been the topic of many enquiries on land 

surface parameter aggregation (Arain et al., 1993; Blyth et al., 1993; Mohanty et al., 

2002). More importantly, most parameter aggregation schemes simplify to simple 

aggregation schemes (Chehbouni et al., 1995; Hu et al., 1999). Mohanty et al. (2002) 

used simple averaging methods (arithmetic, harmonic and geometric means) to 

investigate the effective and average hydraulic properties of the footprints of a remote 

sensor consisting of soils of different textures. They found that simple averaging 

methods can give good results. Arain et al. (1996) and Blyth et al. (1993) applied simple 

averaging techniques (arithmetic and harmonic means) to study the effective parameters 

of some selected vegetation parameters using measured data.  They found the results to 

be very promising at low scale surface heterogeneity. Lhomme (1992) observed errors 

of the order of 186% of the sensible heat fluxes with this approach. 

The limitation of this method is that its derivation is purely from statistical 

arguments with no physics assumptions of the problem. A lot of innovation is required 

for identifying which of the simple averaging methods is appropriate for a given land 

surface parameter. However, this method provides a quick and easy way for obtaining 

effective parameters.  More importantly, it serves as an excellent means for obtaining 

good initial parameter estimates for driving the parameter estimation process of iterative 

methods, such as the Inverse-SVAT method studied in this research. A discussion on 

simple averaging schemes is given in Chapter 7, including a comparison with the 

proposed method.  

 

2.3.4 Inverse modeling approach 

The use of optimal parameter estimation techniques in estimating system parameters has 

gained much acceptance in many branches of geosciences over the years. However, 

their application has not been extensively explored in the estimation of effective land 

surface parameters. Quite recently, the approach has been applied successfully for the 

estimation of 1D SVAT model parameters (Gupta et al., 1999).  
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Inverse modeling is a form of regression analysis where an attempt is made to 

minimize the difference between two quantities by iteratively adjusting a tunable 

parameter in one of the quantities. The formulation is similar to the energy matching 

method of section 2.3.2 (see equation 2.19) where an objective function is minimized. 

In the forward problem, the parameters are prescribed and the state variables are 

computed based on the model parameters. In inverse modeling, the state variables are 

known or given and the parameters which gave rise to the state variables are solved for. 

The upscaling of land surface parameters can be posed as an inverse problem 

where the aggregated distributed output from the subgrids represent the observation or 

prescribed state variables. The system parameters that gave rise to these observations 

are then solved for by iteratively adjusting the SVAT model parameters of interest. 

Omer et al. (2000) applied a multicriteria parameter estimation methodology 

to study the impact of field-calibrated vegetation parameters on GCM output. Gupta 

(1999) applied this methodology to the calibration of a land surface model, where he 

described a framework for the application of multi-criteria theory to the calibration of a 

conceptual, physically-based model. Because most inverse problems are ill-posed,  

usually no exact algebraic solution exists and hence an approximate solution consisting 

of the optimal parameter set that best satisfies the objective function is considered the 

best solution. It is quite simple to implement even in multi-parameter and highly 

complex environment where automatic calibration of distributed models is required. Its 

main strength is that it is model-independent and hence does not make crude physics 

assumptions about the model except for prior knowledge about the systems dynamics 

which is crucial for its operation. 

An emerging thinking in optimal parameter estimation is the concept of 

equifinality (Aronica  et al., 1998; Beven, 2000; Diekkrüger, 2003; Lamb et al., 1998). 

Equifinality is the concept where more than one model or set of parameters is assumed 

to give an equivalent good fit. The idea is to give up the notion that only one optimal 

parameter set or model can fit a given problem and then instead build a probabilistic 

framework for the predicted value. To this end, a procedure is required that uses the 

concept of equifinality to derive the collection of equiprobable optimal parameter sets or 

models. One of such attempts is the generalized likelihood uncertainty estimation 

(GLUE) procedure, which consists of steps involving the generation of likelihood 
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surfaces over parameter spaces to produce uncertainty estimates in the predicted model 

response. To realize this, multiple runs are made with a Monte Carlo simulation of 

selected parameter set. A selection criteria is then designed to reject all models or 

parameter sets that do not meet a minimum selection criteria for the goodness of fit. The 

parameter sets that meet the minimum criteria are assigned higher probabilities.  

 

Table 2.2: Selected schemes for deriving parameter estimates relevant to this thesis. 
Land surface parameter Formulation of effective 

parameter 
Dependence of surface 
flux on parameter 

Leaf Area Index (LAI) 
∑
=

=
n

i
ieff LAI

n
LAI

1

1  
Linear effect of radiation 
and evaporation (Arain 
et al., 1996). 

Minimum stomatal 
resistance (Rcmin) 

1.

∑
=

=
n

i
ieff cminR

n
cminR

1

1  

2.

∑
=

=
n

i ieff RcminnRcmin 1

111  

1. Linear effect of 
evaporation (Arain et al., 
1996). 
2. Reciprocal effect of 
evaporation (Arain et al., 
1996). 

Surface albedo (α) 
∑
=

=
n

i
ieff n 1

1 αα  
Linear effect of radiation 
(Chehbouni et al., 1995 
and Hu et al., 1999). 

Surface emissivity (ε ) 
∑
=

=
n

i
ieff n 1

1 εε  
Linear effect of radiation 
(Chehbouni et al., 1995 
and Hu et al., 1999). 

Roughness length (zo) ∑
=

=
n

i ioeff,o ,znz 1

111  
Reciprocal effect of 
sensible and latent heat 
fluxes (Chehbouni et al., 
1995 and Hu et al., 
1999). 

Vapor pressure deficit 
factor (Hs) ∑

=

=
n

i
ieff Hs

n
Hs

1

1  
Linear effect of 
evaporation (personal 
deduction). 

Plant insolation factor 
(Rgl) 1. ∑

=

=
n

i
ieff Rgl

n
Rgl

1

1  

2. ∑
=

=
n

i ieff RglnRgl 1

111  

1. Linear effect of 
evaporation (personal 
deduction). 
2.Reciprocal effect of 
evaporation (personal 
deduction). 

 

 

The main limitation of an inverse problem solution is that it requires a good set 

of initial parameter estimates to start the parameter estimation process, which can be 
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very difficult to obtain when the model is highly nonlinear. More importantly, with its 

gradient-based variants, it requires that the objective function be continuously 

differentiable on the parameters of interest. Also, correlation of parameters can be a 

formidable problem when the covariance matrix is nearly singular. The existence of 

multiple local minima in the parameter space can pose a major problem for the location 

of the global minimum. However, these problems can be minimized with relevant prior 

information about the systems dynamics, which allow the use of regularization 

constraints to guide the parameter search process towards the optimal solution. 

 

2.3.5 Concluding remarks 

A number of alternative methods have been considered for deriving effective land 

surface parameters. Research studies have shown that there is no unique procedure for 

defining effective parameters (Lhomme et al., 1994; McNaughton, 1994). There is, 

therefore, a general consensus that averaging schemes should be designed to serve 

specific purposes. For this reason, the motivation for the thesis is focused on the 

development of an efficient model-independent approach in which the problematic 

crude physics assumptions invoked in most models reviewed in this chapter are 

avoided.  

The proposed inverse-SVAT method presented in this work provides a model-

independent framework from which any SVAT model can be optimized by iteratively 

adjusting the SVAT model parameters of interest. The parameter estimates deduced 

from the surveyed methods that have relevance to this research are summarized in Table 

2.2.  

In conclusion, a review of the planetary boundary layer and its 

parameterization has been outlined.  Additionally, a concise discussion on the 

fundamental concepts used in developing existing aggregation schemes has been 

presented, outlining their relative strengths and weaknesses. These ideas present a 

theoretical framework from which the proposed upscaling methodology is developed in 

Chapter 5. Comparison of the proposed methods to selected existing methods is 

presented in Chapter 7 for accessing the performance of the proposed method. The next 

chapter gives a theoretical formulation of the models and related ideas used in this 

work.  



Theory and model description of the inverse-SVAT method 

29 

3 THEORY AND MODEL DESCRIPTION OF THE INVERSE-SVAT 

METHOD 

 

3.1 Introduction 

The relevance of the accurate representation of the surface energy budget for the 

simulation of atmospheric flow over various temporal and spatial scales was discussed 

in Chapter 2. The diurnal variations in the thermal structure and the depth of the 

atmospheric boundary layer, depends strongly on the exchange of the sensible and latent 

heat fluxes with the underlying surfaces.  

More importantly, characterizing the spatial and temporal variability in land 

surface processes over regional scales is a difficult task and considerable effort has been 

put into deriving appropriate models to deal with this challenge. One approach to 

determine land surface fluxes at a variety of scales is through the application of Soil-

Vegetation-Atmosphere-Transfer (SVAT) models. A land surface parameterization 

model (LSM) or SVAT model, consists of an algorithm for determining the exchanges 

of energy, mass and momentum between the atmosphere and the land surface. These 

exchanges are complex functions of a number of processes (physical, chemical and 

biological) that have a range of temporal and spatial scales. The number and variety of 

models available to achieve this is substantial, but all require the specification of 

numerous land surface parameters.  

Because there is no unified approach in representing land surface processes, 

the various SVAT models adopt different parameterization schemes. Depending on their 

simplifications, land surface schemes in today's atmospheric models exhibit a wide 

range of complexity from classic "bucket" models (e.g., Manabe 1969) to detailed soil-

vegetation-atmosphere transfer schemes (SVATs) (e.g., Dickinson et al., 1993; Sellers 

et al., 1996). A subset of SVATs takes into account the sub-grid scale variations of 

surface characteristics and/or atmospheric conditions (e.g. Avissar, 1992; Famiglietti 

and Wood, 1995; Entekhabi and Eagleson, 1989) to deal with the usually nonlinear 

relationships among the surface processes/variables. Third generation of SVATs 

combine the physical processes with the biophysical exchanges needed to represent 

photosynthesis, respiration and, in some schemes, decay (e.g. Xiao et al., 1998; Tian et 

al., 1999). 
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Several methods exist for determining SVAT model parameters (e.g. remote 

sensing methods and field measurements) as discussed in Chapter 2. The use of inverse 

methods in determining SVAT model parameters has gained much popularity in recent 

times, because it provides a model-independent environment where any SVAT model 

can be optimized based on its physics parameterization. More importantly, it provides 

an excellent environment for automatic calibration and coupling of distributed models 

of any complexity (Doherty, 2002; Gupta et al., 1999, and Omer et al., 2000).   

In this chapter, the theory of the inverse-SVAT method is presented. Figure 

3.1 gives the schematic diagram of the inverse-SVAT method presented in this chapter. 

The theory of the SVAT model is presented following Chen and Dudhia (2001), and EK 

and Mahrt (1991). The formulation of the inverse-SVAT problem and its solution is 

presented following Sun (1994), Cooley and Naff (1990), and Doherty (2002). Because 

synthetic SVAT model parameters are used to mimic real-life heterogeneous land 

surface parameters, a brief discussion on the Monte Carlo random number generator for 

normally-distributed fields is presented following Press et al. (1992).        

 

 Inverse-SVAT Method 

SVAT Model Inverse Model Monte Carlo Model
 

 

Figure 3.1: Schematic diagram of the Inverse-SVAT Method 
 

 

3.2 The SVAT model 

The SVAT model used in this thesis is the three-layer version of the soil-canopy model 

developed at the Oregon State University (Chen and Dudhia, 2001; Ek and Mahrt, 1991; 

Mahrt and Pan, 1984; Meyers, 2002; Pan and Mahrt, 1987). The model has four 

prognostic variables: soil temperature, volumetric soil water content, canopy water 
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content and equivalent snow depth. Since snow was not considered in this study, 

formulation for snow processes would not be discussed but will be mentioned when 

appropriate. The following subsections give a detailed discussion of the SVAT model.  

 

3.2.1 The boundary layer model 

The formulation of the governing equations for climate dynamics is well established 

(Brutsaert, W., 1982; Stull, R. B., 1988; Oke, T. R., 1978). Following Ek and Mahrt 

(1991), the tendencies for the 1D climate scheme due to the turbulent mixing of 

potential temperature (θ ), specific humidity ( q ) and the horizontal components of the 

wind (   ,h vor  u and V ) are given by the set of prognostic equations:   
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where z is the vertical distance from the surface, w is the vertical wind component, 

mK and hK are the eddy diffusivities for momentum and heat, respectively. The counter 

gradient correction term ( θγ ) for potential temperature in equation 3.2 is defined 

following parameterization of Troen and Mahrt (1986). The 3D representation for 

equations 3.1 to 3.3 can be found in Brutsaert (1982), Dudhia et al. (2000), Oke (1978) 

and Stull (1988). 

 

3.2.2 The surface layer model 

The surface fluxes are parameterized following Mahrt (1987) for the stable case; the 

unstable case follows Lois et al. (1982), with modification by Holtslag and Beljaars  

(1989). The fluxes of momentum, heat and moisture are formulated as 

om* VCu =2           3.4 

)(CH osh θθ −=          3.5 

)qq(CE osq −=λ          3.6 
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where mC (ms-1), qC (ms-1) and hC (ms-1) are the surface exchange coefficients for 

momentum, moisture and heat, respectively. qC and hC are assumed equal. hC and mC  are 

defined to incorporate the wind speed factor. oV  is the wind speed (ms-1) evaluated at 

the first model level above the surface. The potential temperature, oθ (K), and specific 

humidity oq  are taken at the first model level above the surface, while the surface 

potential temperature sθ (K) and the specific humidity sq are obtained from the surface. 

H and Eλ are defined to be positive upwards. 

The exchange co-efficients depend nonlinearly on a set of surface parameters 

and are defined by 

2
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where k is the nondimensional von Karman constant (0.40). R (estimated as 1.0) is the 

ratio of the drag co-efficient for momentum and heat in the neutral limit computed 

following Businger et al. (1971) with modification by Holtslag and Beljaars (1989). RiB 

is the bulk Richardson’s number, which defines the stability of the atmosphere. zom is 

the roughness length for momentum. It gives a measure of the vertical turbulence that 

occurs when the wind flows over a rough surface. It is one of the key parameters 

responsible for momentum transfer from the surface into the PBL. zoh is the roughness 

length for heat/moisture and gives a measure of the resistance to heat and moisture 

transfer from the surface into the PBL. zoh is often prescribed in SVAT models as one-

tenth of zom. 

 

1F and 2F are the respective component stability functions of the exchange co-efficients 

for momentum and heat and are parameterized as  
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where a is a constant equal to 1.0. The above formulations show the extent of 

nonlinearity that exists between the surface roughness elements and the surface energy 

fluxes. As zom and zoh are the critical surface parameters that determine the distribution 

of turbulent energy fluxes, their accurate estimation and parameterization in SVAT 

models is crucial for the accurate prediction of the earth’s climate system. More 

importantly, they are the primary agents responsible for the types of surface 

heterogeneity discussed in Chapter 2. 

A compact representation of the surface energy fluxes is the flux-resistance 

formulation, where the exchange co-efficients, qC  and hC , are expressed in terms of the 

aerodynamic resistance, ar , as 

a
qh r

1CC ==           3.11 

The above relation allows the surface energy fluxes to be written in an 

electrical resistance form (using Ohm’s law analogy). Surface fluxes from different 

subgrids can be then be subjected to a form of electrical resistance network analysis 

from which relevant climate information can be derived. 
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3.2.3 The soil thermodynamics model 

Neglecting the horizontal exchanges of heat, the tendency equation governing the heat 

transfer for a soil at temperature, T , can be formulated as 

⎥⎦
⎤

⎢⎣
⎡

∂
∂

∂
∂

=
∂
∂

z
T)(K

zt
T)(C T ΘΘ         3.12 

where C (Jm-3K) is the volumetric heat capacity and TK (Wm-1K-1) is thermal 

conductivity. C and KT are formulated as functions of the volumetric soil water content, 

Θ (m3m-3), following Pan and Mahrt (1987). The volumetric heat capacity is estimated 

as a weighted sum of the heat capacity of its various phases (i.e., water, soil and air). 

This is formulated as 

airssoilswater CCCC )()1( ΘΘΘΘ −+−+=       3.13 

where waterC , soilC  and airC  are the volumetric heat capacity for water, soil and air, 

respectively.  

The thermal heat capacity is parameterized as  
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sΘ and sΨ are the saturated volumetric soil water content and matric potential (bubbling 

pressure), respectively, and depend on soil texture (Cosby et al., 1984).  

The soil consist of layers so that the soil heat transfer equation can be 

formulated in a layer-integrated form for which the governing equation for the i-th soil 

layer are given by 
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The boundary conditions at the top of the soil model are given as 
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where Gs is the ground heat flux at the surface (s=0 cm). The bottom temperature is 

assumed to be at 3 m below the surface for the implementation of the OSU LSM in 
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MM5. In the current version of the OSU LSM, it is assumed to be at 8 m below the 

surface (Meyers, 2000).  

 

3.2.4 The soil moisture dynamics model 

Neglecting the horizontal exchange of soil water, the soil water dynamics in the 

unsaturated zone is governed by the prognostic equation  
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based on the diffusive form of Richard’s equation derived from Darcy’s law under the 

assumption of a rigid, isotropic, homogeneous, and one dimensional vertical flow 

domain (Hanks and Ahscroft, 1986). ΘF  represents the sources and sinks for soil water 

(i.e. precipitation, evaporation and runoff).  

The soil water diffusivity, D (m2s-1), hydraulic conductivity, K (ms-1), and 

matric potential, Ψ (m), are respectively formulated following Cosby et al. (1984) as   
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where sK and b are the respective saturated hydraulic conductivity and Clapp-

Hornberger parameter (a curve-fitting parameter that depends on soil type). The soil 

hydraulic diffusivity, hydraulic conductivity and matric potential depend nonlinearly on 

b  to the extent that slight changes in b can produce significant changes in their 

respective values. Additionally, they depend nonlinearly on the soil water content such 

that they can change several orders of magnitude with slight variations in soil water 

content, particularly when the soil is dry (Chen and Dudhia, 2001). Figure 3.2 shows the 

influence of the Clapp-Hornberger exponent, b, on soil hydraulic and thermodynamic 

properties.   



Theory and model description of the inverse-SVAT method 

36 

 
 
Figure 3.2: Sensitivity of soil hydraulic and thermodynamic properties to variations in 

Clapp-Hornberger exponent b and soil moiture. Source: Ek and Cuenca 
(1994). 

 

To accurately model the soil moisture dynamics, the soil is divided into four 

homogeneous layers. Integrating equation 3.18, layered soil hydrology equation over 

four soil layers and expanding ΘF to incorporate the relevant components gives    
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and  
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where zid and ziK are the respective thickness and hydraulic conductivity of the i-th soil 

layer, dP is the precipitation not intercepted by the canopy, dirE is the direct soil 

evaporation, and tiE is the canopy transpiration taken by the canopy root in i-th layer 

within the root zone layers. There are three root layers in the OSU LSM implementation 
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in MM5. The hydraulic conductivity is assumed to be zero at the bottom so that soil 

water movement is possible only through gravitational percolation term 4zK (drainage). 

The direct evaporation from the bare soil surface is assumed to occur at the 

potential rate, Ep, when the near-surface soil moisture exceeds the field capacity. 

Otherwise, it is regulated by the rate of transfer of soil moisture to soil surface 

according to the relation 
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The boundary condition at the top of the model soil layer is given by 
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where In is the infiltration rate of precipitation and fσ is the fraction of the surface 

covered by plant canopy. 

 

3.2.5 The surface runoff and infiltration model 

The formulation of the runoff and infiltration dynamics of the soil water follows 

Schaake et al. (1996) for the version of OSU LSM implemented in MM5. They are 

parameterized respectively as  

maxd IPRunoff −=          3.26 

where the maximum infiltration is given by 
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and 
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s
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K
kdtkdt =          3.29 

iδ  is the conversion of the current model time step tδ into daily values, refkdt and refK are 

specified constants based on experimental observations.  
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In the current stand-alone version of the OSU LSM, infiltration, runoff and 

maximum infiltration are parameterized respectively following Chang et al. (1999) as  

RunoffPRI refn −=          3.30 
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The effective precipitation, PRref, is formulated as 

DRIPPRPR ftotalfref σσ +−= )1(        3.33 

for the case where there is no snow. In the presence of snow it is given by  

mref SPR =           3.34 

where mS represents snowmelt, fσ is the vegetation cover, DRIP  is the water drip rate 

from the canopy, and totalPR is the total precipitation. 

 

3.2.6 The evapotranspiration model 

The total evapotranspiration is formulated as the sum of 1) direct soil evaporation, dirE , 

2) evaporation from canopy intercepted precipitation, cE , and 3) transpiration from 

canopy and the roots system, tE :   

tcdir EEEE ++=          3.35 

The direct soil evaporation is parameterized based on sensitivity test of Betts 

et al. (1997) and a simple linear approach following Mahfouf and Noilhan (1991) as 
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is a linear function of the instantaneous soil moisture content of the first layer. wΘ is the 

wilting point; it represents the point where the soil water adjacent to the vegetation roots 

drops to –200 m with respect to the ground surface (Cosby et al., 1984; Wetzel and 

Chang, 1987). wΘ  is the field capacity; it is the presumed water content at which the 
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internal drainage allegedly ceases (Cosby et al., 1984). The wilting soil reference and 

wilting points are computed respectively as 
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The potential evaporation, Ep, is derived from a Penman-based energy balance 

approach  

psn EHGR λ+=−          3.40 

which incorporates a stability-dependent aerodynamic resistance formulation following 

Mahrt and Ek (1984). λ (6.25 x 106 Jkg-1) is the latent heat of vaporization and Rn is the 

net solar radiation at the surface given by equation 2.4 in Chapter 2. It depends linearly 

on the surface albedo and emissivity. Equation 3.40 is the available energy for turbulent 

surface energy fluxes and is partitioned between the sensible and latent heat fluxes 

based on the surface properties and surface wetness. 

The wet canopy evaporation is parameterized following Noilhan and Planton 

(1989) and Jacquemin and Planton (1990) as 
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where cW is the intercepted canopy water content, S is the maximum canopy capacity  

(set to 0.5mm), and n is an empirical constant of value 5.  

The formulation of the intercepted canopy water follow the water transport 

equation 
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where P represents the input total precipitation. The formulation requires that the excess 

precipitation or drip reaches the ground when cW exceeds S . 

The canopy transpiration is formulated as  
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cB is a function of the canopy resistance and parameterized as 
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where r∆ depends on the slope of the saturation specific humidity curve, rR is a function 

of air temperature and surface pressure, and cR is the canopy resistance. In an alternative 

treatment of transpiration following Pan and Mahrt (1987), and Ek and Mahrt (1991), Bc  

is replaced by the plant co-efficient defined as 
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+

=          3.45 

The formulation of the canopy resistance follows Jacquemin and Noilhan 

(1990) and Noilhan and Planton (1989). They parameterized the plant resistance as four 

nonlinear functions of solar insolation, (F1), atmospheric humidity/vapor pressure, (F2), 

atmospheric temperature, (F3), and soil moisture content, (F4) as 
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The functions 4321 ,, F and FFF lie between 0 and 1. Rcmin is the minimum 

stomatal resistance, LAI is the leaf area index, and Rcmax is the cuticular resistance of 

the leaves (set to 5000 sm-1; Dickinson et al., 1993). refT  is set to 298 K according to 

Noilhan and Planton (1989). dzi is the depth of the i-th root layer. Rgl is the solar 

insolation factor, Rs is the instantaneous solar insolation, and Hs is the vapor pressure 
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deficit factor.  The parameters depend nonlinearly on the canopy resistance and hence 

also nonlinearly on transpiration. wref ΘΘ − is the soil moisture available to the plant 

system and represents the range of soil moisture content that influences transpiration. 

When the soil moisture content exceeds refΘ , transpiration is not regulated by soil 

moisture deficit; when the soil moisture content is less than wΘ , soil water deficit would 

prevent transpiration within the soil layer. The nonlinear dependence of transpiration on 

vegetation parameters poses formidable problems even for the 1D SVAT case. Their 

spatial representation in SVAT models requires a great deal of innovation and 

computational effort as discussed in Chapter 2. 

 

3.2.7 Soil moisture initialization 

The initialization of soil moisture in the stand-alone version of the OSU LSM is 

implemented with point estimates or site-specific soil moisture data. However, in the 

implementation of the OSU LSM in MM5 (3D coupled mode), the spatial variability of 

soil moisture must be incorporated in the initialization process. In the 3D coupled mode, 

the soil moisture initialization is determined empirically from reanalysis and data 

assimilation data. The soil moisture fields are adjusted for biases based on the seasons. 

For the NCEP-NCAR reanalysis system, two regimes have been chosen to represent 

annual soil moisture initialization. For January to June, the formulation is given by 
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For July to December, the following formulation is used 
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where gSM is the soil moisture from NCEP-NCAR reanalysis and 5MMSM is the initial 

soil moisture in the MM5 model. 
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3.3 The inverse-SVAT problem 

A discussion on SVAT models was presented in the previous section. This section gives 

a discussion of an efficient and robust method for parameterizing subgrid processes. 

The formulation of the inverse-SVAT problem and its numerical solution is presented 

closely following Sun (1994) and Doherty (2002). 

 

3.3.1 Formulation of the inverse-SVAT problem 

The representation of subgrid scale processes can be formulated as a dynamical system 

governed by differential equations and subject to planetary boundary conditions. The 

SVAT model output (state variables) is represented in terms of the SVAT model Du  

parameter set p by the relation  

(p)u MD ′=           3.54 

where M ′  is a transformation with dimension m  that maps each parameter set p  to a 

unique SVAT model output Du ; Du and p have dimensions of m and n respectively. 

A formal discussion on forward and inverse problems was presented in section 

2.3.4. Equation 3.54 defines the forward SVAT problem such that for a given SVAT 

parameter set p , the transformation M ′ produces the SVAT model output Du (e.g. area-

weighted average of surface energy fluxes over a heterogeneous surface). The inverse 

SVAT problem is the reverse operation where we seek for the parameter set p that 

produces the same SVAT model output Du . The solution to the inverse-SVAT problem 

is given by the relation 

D
1 )M( up −′=            3.55 

where 1M −′ is an inverse mapping of M ′ , which maps the SVAT model parameter 

set p to the SVAT model output Du (Sun, 1994). The inverse mapping 1M −′ contains 

information about the upscaling relationships between the effective parameter at the 

grid scale and its corresponding subgrid scale parameters as defined in section 1.3.  
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For equation 3.55 to be solvable, the following conditions must be met: 

• The solution must exist, i.e., the SVAT model parameters must be real. 

• The solution must be unique, i.e., each SVAT model output Du must 

uniquely correspond to a specific parameter set p ; i.e., a one-to-one 

mapping exists between SVAT model output and parameters. 

• The solution must be stable, i.e., small changes in SVAT model 

parameters should induce only negligible changes in SVAT model 

output. 

These requirements are very difficult to meet in real-life situations. For this 

reason, physical inverse problems are generally ill-posed (not well-defined), and hence 

an exact algebraic solution does not exist. Approximate methods exist for transforming 

an ill-posed problem to a well-posed one (Sun, 1994; Tikhonov, 1963). More 

importantly, as SVAT processes are highly nonlinear and parameterized by the 

similarity theory, the inverse-SVAT problem defined by equation 3.55 is generally ill-

posed. Treatment is therefore possible via approximate iterative solutions, since the 

exact algebraic solution does not exist. 

Several techniques have been developed to solve optimization problems, with 

each technique being suitable for a particular class of problems (Bates et al., 1988; 

Fletcher, 1987; Sun, 1994; Marquardt, 1963; Tarantola, 1987). In recent studies, hybrid 

forms of the optimization techniques have gained much attention because of their 

robustness. In this work, the Gauss-Marquardt-Levenberg hybrid technique 

implemented in PEST (Doherty, 2000) for the optimal parameter estimation solution is 

adopted. 

 

3.3.2 The Gauss-Levenberg-Marquardt method 

The discussion for the Gauss-Levenberg-Marquardt Method closely follows Doherty 

(2002) and Cooley and Naff (1990). To formulate an approximate solution to the 

nonlinear inverse-SVAT problem, the SVAT model representation of equation 3.54 

must be reformulated to incorporate model and other errors. This representation is given 

by 

epuD +′= )(M          3.56 



Theory and model description of the inverse-SVAT method 

44 

where e is the model error. The regression solution in the least square sense is obtained 

by minimizing the objective function (weighted sum of square errors) 
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where Q is the weighting function (Doherty, 2002). Since the problem is generally 

nonlinear, the solution can be obtained by the linearization of equation 3.56 around an 

initial parameter estimate, op , which gives a new set of parameters that minimizes 

equation 3.57. Expanding Du about the initial parameter set op  by Taylor expansion 

yields 
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is the Jacobian matrix of M ′ calculated at the i-th model output point and  

epu oo +′= )(M .          3.60 

Equivalently, equations 3.58 can be rewritten in terms of the error term 

)( op-pJuue oD −−=         3.61 

and then substituted into equations 3.57 to obtain an appropriate form of the objective 

function. 

The optimal solution for p can be obtained by minimizing  
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with respect to p . This yields the set of normal equations  

)( oD
TT uuQJQJdJ −=1         3.63 

from which the parameter upgrade vector  

oppd −=1           3.64 

is computed as 
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The parameter upgrade vector )( opp −  is based on the residual vector  

oD uur −=            3.66 
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which defines the discrepancy between the SVAT model output ou  and the numerical 

observation Du  (e.g. aggregated surface energy fluxes from a heterogeneous surface).  

The relevant information about the estimated parameter are contained in the 

covariance matrix defined as   
12 −= )()( QJJpC Tσ          3.67 

where 
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−
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is the variance of the elements of Du . m-n is the degree of freedom of the parameter 

estimation process. A brief discussion will be given later in this section. 

 

The Marquardt parameter 

The parameter upgrade vector defined by  

QrJQJJd TT 1
1

−= )(          3.69 

is the basis of nonlinear weighted least squares parameter estimation. The minimization 

of the objective function is carried out via a gradient search procedure. The gradient of 

the  

objective function, g , defined by 
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constitutes a critical entity in the search for the optimal parameter set, as it determines 

the direction in which the optimal solution is located in parameter space. When the 

angle between 1d  and g−  is greater than o90 , the objective function (equation 3.62) 

will increase.  

Although g− defines the direction of steepest descent of the objective 

function, 1d is considered a better parameter upgrade direction, especially in cases 

where the parameters are correlated (Doherty, 2002). In such instances, iteratively 

following the direction of steepest descent leads to hemstitching, where the parameter 

set jumps from side to side in a valley in )( p2χ during the parameter upgrade process. 
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However, the gradient search procedure can be improved by adjusting 1d such 

that it is closer to the direction of g−  in the initial stages of the parameter estimation 

process.  

This is achieved by the introduction of a factor α , called the Marquardt 

parameter, to 1d (equations 3.69) such that 

QrJIQJJd TT 1
1

−+= )( α         3.71 

and I is the nxn identity matrix.  

The gradient vector g (equations 3.70) can be rewritten to incorporate the 

residual vector r (equations 3.66) as 

QrJg T2−=           3.72 

It can be deduced from equations 3.71 and equation 3.72 that, for high values 

of α , the direction of 1d approaches that of g− ; when α is zero, equation 3.71 is the 

same as equation 3.69. Therefore, a high initialα value is preferred.   

To reduce round-off errors and the problem of stiffness associated with the 

observations and parameter values of vastly different magnitudes, the scaling of the 

normal equations is required. This is achieved by the introduction of a scaling matrix 

(Doherty, 2002; Cooley et al., 1990). More importantly, an optimal length of the 

parameter upgrade vector ( 1dβ ) is required to ensure that the parameter upgrade vector 

does not overshoot or jump over the location of the optimal solution. A detailed 

treatment of the determination of the optimal length of the parameter upgrade vector is 

presented in Doherty (2002). 

The upgraded parameter vector p is finally given by  

1dpp o β+=           3.73  

 

Measures of Goodness-of-Fit 

Parameter correlation 

As mentioned previously, C(p) and σ2 contain very useful information about the quality 

of the parameter estimation process. In particular, σ2 is directly proportional to the 

objective function and hence inversely proportional to the Goodness-of-Fit of the 

parameter estimation process. 
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For a successful parameter estimation process, C(p) must be diagonal 

(nonsingular). However, in most physical problems, the parameters of interest are 

strongly correlated, so that C(p) becomes almost singular. In this case, one parameter 

can be better estimated or a number of linear combinations of parameters instead of the 

individual parameters themselves. For instance, where the parameter correlation is 

extreme, C(p) becomes singular and parameter estimation is impossible.  

Two very useful information on parameter correlations can be obtained from C(p). 

• The correlation co-efficient, ρ, between parameters with values ranging 

from –1 to 1. The closer ρ is to –1 or 1, the stronger the correlation 

between the parameters. 

• The normalized eigenvectors of C(p). If each eigenvector is dominated 

by one element, individual parameter values may be well resolved by 

the parameter estimation process. However, if the predominance within 

each eigenvector is shared between a number of elements (with largest 

eigenvalues), the corresponding parameters are highly correlated. 

 

Correlation co-efficient between observations and model output 

Beyond obtaining information about the estimated parameters, another measure of 

Goodness-of-Fit is the measure of the correlation between the observations and the 

model output (Cooley and Naff, 1990; Doherty, 2002). Unlike the objective function, 

the correlation co-efficient, R, is independent of the number of observations and the 

uncertainty associated with the observations. Hence, R provides a direct independent 

measure for comparing the results of different parameter estimation runs. Generally, for 

an acceptable fit between observations and model output, R, must be above 0.9 (Hill, 

1998; Doherty, 2002). 

 

Procedures for improving the parameter estimation process 

Beyond the measures incorporated in the PEST algorithm, to ensure successful 

parameter estimation, additional measures are required to facilitate convergence of the 

parameter estimation process. As the inverse-SVAT method is a model-independent 

approach, the parameter estimation process must be constrained by physical information 

about the problem under investigation. In this way, the problem is customized to meet 
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the specific requirements of the problem. For example, parameter bounds can be 

provided so that the search process is constrained within the feasible region of the 

parameter search space. 

Transformation of model parameters and model output from highly nonlinear 

functions to linear functions greatly facilitates the convergence of the search process to 

the optimal solution. The essence of such transformations is to ensure that the 

requirements for well-posedness are met (Tikhonov, 1963; Bates and Watts, 1988; Sun, 

1994; Doherty, 2002).  Widely used transformations functions are the logarithmic and 

power laws (Bates and Watts, 1988). 

Additionally, provision of good initial parameter estimates is crucial for a 

successful parameter estimation process. It has been shown (Cooley and Naff, 1990; 

Sun, 1994) that when an initial parameter estimate can be found within a close 

neighborhood of the optimal parameter set, convergence to the optimal solution is 

immensely facilitated. More importantly, when there are several local minima in the 

parameter space, a good initial parameter is a strict requirement for successfully 

locating the global minimum.   

 

3.4 The Monte Carlo random number generator for normally distributed 

fields 

The Monte Carlo random number generator is developed based on the Box-Muller 

transformation following Press et al. (1992). The Box-Muller transformation is a 

transformation that transforms a two-dimensional continuous uniform distribution to a 

two-dimensional bivariate normal distribution.   

To transform a uniform distribution into a standard normal distribution: 

• Start with two independent random variables that are uniformly 

distributed between 0 and 1. 

• The transformation function required is that for which the sum of the 

squares of the two uniformly distributed variables chosen above is less 

than 1 (i.e. within the unit circle).   

• The derived random variables satisfying the condition above will each 

be independently distributed according to the standard normal 

distribution (with zero mean and a standard deviation of 1). 
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By using different seeds in a uniformly distributed random number generator, 

different realizations of the standard normally distributed random fields can be obtained 

from the above procedure. The normally distributed random fields can be used to 

generate a distribution with a specified mean and standard deviation through a linear 

transformation. The implementation of the above method is presented in Chapter 5, 

where distributions of specified means and standard deviations are used to represent 

land surface parameters. A detailed treatment can be found in Press et al. (1992). 

 

3.5 Concluding remarks 

The complexity involved in representing the SVAT processes with respect to the highly 

nonlinear dependence of surface energy fluxes on most land surface parameters implies 

that aggregating these parameters spatially presents a formidable challenge. However, 

these formidable challenges present an opportunity for the development of innovative 

strategies for resolving the problem of representing subgrid scale processes in SVAT 

models.  

The relevant theoretical formulations for upscaling land surface parameters 

using inverse -SVAT modeling has been presented. The salient points for enhancing 

convergence of the parameter estimation process to the optimal solution have been 

discussed. The subsequent chapters use the formulations discussed in this chapter to 

development of concepts and methodologies for numerical experimentation on 

upscaling land surface parameters. In particular, Chapter 5 gives a conceptual design 

and numerical implementation of the inverse-SVAT method. The following chapter 

gives the sensitivity analysis of surface energy fluxes and moisture indicators for six 

land surface parameters.  
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4 SENSITIVITY OF SURFACE ENERGY FLUXES AND MOISTURE 

INDICATORS TO CHANGES IN LAND SURFACE PARAMETERS IN 

THE VOLTA BASIN 

 

4.1 Introduction 

Several studies have shown that changes in landuse in West Africa are closely 

correlated with interannual fluctuations in rainfall (Brubaker et al., 1993; Kunstmann et 

al., 2003; Mohr et al., 2002; Nicholson et al., 1998). Brukaber et al. (1993) have shown 

that precipitation recycling approaches 50% in West Africa in summer, implying an 

important role of landuse in the development of rainfall. 

To properly quantify the extent of the impact of vegetation on rainfall and 

climate in the Volta Basin, the land surface parameters that control evapotranspiration 

must be accurately determined. However, the functions that govern evapotranspiration 

are highly nonlinear and too complicated for very detailed analysis. More importantly, 

the computational effort and computing resources required for a detailed analysis at the 

regional level is very prohibitive for regional climate modeling. Hence, there is the need 

for a sensitivity analysis to aid in the identification of the land surface parameters that 

greatly influence evapotranspiration. 

The complex feedback mechanisms between highly nonlinear functions that 

govern the soil, vegetation and atmospheric interactions make it difficult to generalize 

the findings obtained from such an analysis in that different initial conditions will drive 

the climate system differently. However, such an analysis affords one the ability to 

identify possible states and responses of the climate system to changes in land surface 

parameters and initial conditions. The results of such an analysis also enables one to 

identify the most sensitive land surface parameters that greatly influence the dynamics 

of the earth’s climate system and to focus the analysis on these critical parameters. This 

information is crucial in parameter estimation studies where reducing the number of 

parameters to be estimated greatly improves the performance of the parameter 

estimation process. Additionally, one would also like to know which of the parameters 

are correlated, so that the relevant parameter transformations and prior information can 

be introduced as regularization constraints to guide the parameter estimation process to 

the optimal parameter set. 
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Recent studies have shown that roughness length, plant insolation factor, vapor 

pressure deficit factor, leaf area index, surface albedo, surface emissivity, fractional 

vegetation coverage, soil field capacity, wilting point and minimum stomatal resistance 

are the most important land surface parameters (Avissar et al., 1989; Bastiaanssen, 

1995; Collins et al., 1994; Deardoff, 1978; Noilhan et al., 1989).  However, due to 

limitations in computing resources and information obtained from related studies on the 

relative importance of the land surface parameters for model output, the following six 

land surface parameters are identified for the sensitivity analysis in this work: 

Surface roughness length, zo. 

Surface albedo, α. 

Surface emissivity, ε.  

Minimum stomatal resistance, Rcmin. 

Radiation stress factor, Rgl.  

Vapor pressure deficit factor, Hs. 

To evaluate the impact of land surface parameters on soil-vegetation-

atmosphere interactions in the Volta Basin, a sensitivity analysis on each of the six land 

surface parameters was done to aid in characterizing and estimating their relative 

importance on model simulations and to gain deeper understanding of how these 

parameters interact. These interactions are captured by analyzing how the 

hydrologically-controlled partitioning of the available surface energy between the 

sensible and latent heat fluxes is effected. The extent of the energy partitioning is 

measured via moisture indicators, which express the magnitude between zero 

evaporation and potential evaporation and hence reveal the surface energy partitioning 

for an appreciable length of time. Bastiaanssen (1995) recommends the evaporative 

fraction and Bowen ratio as appropriate moisture indicators as they can be easily 

computed from surface energy fluxes. Additionally, their diurnal variations are 

relatively stable and hence reliable moisture indicators.  

The sensitivity analysis constitutes model responses to increases in control 

parameters of the six land surface parameters. For reasons of limitation on computing 

resources, only 20% increase in the selected land surface parameters are considered. For 

instances where the 20% increase in a vegetation parameter would lead to violation of 

the physical limits of that parameter, the maximum possible physical value is used (e.g. 
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maximum surface emissivity is set to 1). The parameter increases were done exclusively 

for each parameter type. Two parameter perturbation scenarios were considered. For 

Case I, an increase of 20% in parameter values was applied to the dominant vegetation 

(savanna) only. In Case II, the 20% increase in parameter values was applied to all 

vegetation types in the Volta Basin. 

The Pennsylvania State University Mesoscale Meterological Model (MM5) 

(Grell et al., 1994) coupled to the Oregon-State-University Land-Surface-Model (OSU 

LSM) (Chen & Dudhia, 2001) was used. In the analysis, the percentage change (ratio of 

the difference in model output for the perturbed and control runs to the control model 

output) of a model output was used as a sensitivity index to investigate the relative 

importance of each vegetation parameter on the energy dynamics of the land-

atmosphere interactions in the Volta Basin. A percentage change equal to or greater than 

10% is considered significant (Hu et al., 1997). Also, negative values imply that the 

model output for a given perturbed parameter run is less than that of the control run 

while a positive value indicates otherwise. 

 

4.2 The numerical experimentation 

To investigate the sensitivity of surface energy fluxes and moisture indicators to 

changes in land surface parameters, MM5 was applied in a non-hydrostatic two-way 

nesting mode using three domains with horizontal resolutions of 81 × 81 km2 (61 × 61 

gridpoints), 27 × 27 km2 (61 × 61), and 9 × 9 km2 (121 × 67) and 26 vertical layers 

extending up to 30 mbar at the model top (Figure 4.1). The global reanalysis fields 

obtained from NCEP (National Centres for Environmental Prediction) are used. The 

outer and middle domains provide boundary conditions for the inner domain (domain 

3), which constitutes the experimental domain over which the sensitivity experiment 

was undertaken. 
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Figure 4.1: The experimental domain configuration for the sensitivity analysis. The 

outer domains provide boundary and initial conditions for the experimental 
domain (domain 3; Volta Basin) by dynamically downscaling the global 
reanalysis data down to 9 × 9 km2 using a two-way nesting approach. 

 

Additionally, MM5 was coupled to the Oregon State University Land Surface 

Model (OSU–LSM) (Chen & Dudhia, 2001) to account for the feedback mechanisms 

between soil, vegetation and the planetary boundary layer. Elevation, landuse and soil 

data are taken from NCAR data archives, as well as from data sets compiled by the 

landuse cluster of the GLOWA-Volta project. Figure 4.2 shows the landuse types in the 

Volta Basin. 
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Figure 4.2: Landuse types in the Volta Basin based on USGS category 24. Source: 

NCAR. 
 

The third domain covers an area of 660,000 km2 of which 400,000 km2 

constitute the Volta Basin. The period July 15, 1998 to August 14, 1998 constitute the 

first maximum of the bimodal rainy season to the intermediate minimum of the ‘Little-

Dry-Season’ in August. For purposes of capturing the response of surface energy fluxes 

and moisture indicators to changes in land surface parameters, the period August 15 – 

18, 1998 was chosen because there is appreciable amount of soil moisture in the Volta 

Basin and the rains are not too severe to cause flooding and other climatic events that 

could complicate the sensitivity experiment. 

The model sensitivity analysis was applied to investigate the sensitivity of the 

surface energy fluxes (available surface energy, sensible and latent heat fluxes) and 

moisture indicators (evaporative fraction and Bowen ratio) to six USGS category 24 

land surface parameters. The parameters were perturbed by 20% increase in the control 

parameter and simulation runs made for 72 hours at 3-hour intervals (from August 15 – 

18, 1998). The surface energy fluxes and moisture indicators were computed for the 

inner domain by taking the spatio-temporal averages over domain 3 (7920 data points 

and 72-hour period).   

Class Landuse type 
3 Irrigated crop/pasture 
7 Grassland 
8 Shrubland 
10 Savanna 
13 Evergreen broadleaf 
15 Mixed forest 
16 Water bodies 
19 Sparsely vegetated 



Sensitivity of surface energy fluxes and moisture indicators 

55 

The relevant model outputs were computed as follows: 
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where Eλ , H , Λ  and β are the spatio-temporal averages over the domain and period 

of simulation for the latent heat flux, sensible heat flux, evaporative fraction and Bowen 

ratio respectively. ),( jiij tAEλ and ),( jiij tAH are the instantaneous values of latent and 

sensible heat fluxes in the domain, iA  is the thi − data point (grid) in the model domain, 

and jt  the thj − time at 3 hour intervals. N=7920 (grids) and T=72 (hours). The 

percentage changes (SI) in the surface heat fluxes and moisture indicators are estimated 

and used as sensitivity indices to investigate the relative significance of each vegetation 

parameter on the model output following Bastiaanssen (1995).  

The percentage changes were computed for the surface energy fluxes and 

moisture indicators as: 
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Additionally, parameter sensitivities based on the Jacobian formulation 

(Doherty, 2002) were computed as: 
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where kp is the k-th vegetation parameter (other symbols as above).  Control is the 

original/default parameter in the MM5 scheme. The land surface parameters used in the 

experiment (control/default) are given in Table 4.1. 

 

Table 4.1: Control/default landuse parameters based on the USGS category 24 
classification. 

Parameter Type 3 Type 7 Type 8 Type 10 Type 13 Type 15 Type 16 Type 19 

α[-] 0.18 0.20 0.22 0.20 0.12 0.13 0.08 0.25 

ε [-] 0.92 0.93 0.88 0.92 0.95 0.94 0.98 0.85 

zo (cm) 0.15 0.16 0.10 0.15 0.50 0.50 0.0001 0.10 

Rcmin(sm-1) 40.00 40.00 300.00 70.00 150.00 125.00 100.00 999.00 

Rgl (Wms-2) 100.00 100.00 100.00 65.00 30.00 30.00 30.00 999.00 

Hs (kg/kg) 36.25 36.35 42.00 54.53 41.69 51.93 51.75 999.00 

 

The above experimentation was applied under two parameter perturbation 

scenarios. For Case I, an increase of 20% in parameter values was applied to the 

dominant vegetation (savanna) only. In Case II, the 20% increase in parameter values 

was applied to all vegetation types in the Volta Basin. The following section gives the 

analysis of the results for the two Cases considered. 
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4.3 Analysis of sensitivity results 

4.3.1 Response of surface energy fluxes and moisture indicators to changes in 

land surface parameters in the Volta Basin  

The Volta Basin consists of very heterogeneous land surfaces characterized by water 

bodies, savanna mosaic, tropical rain forest, cities, irrigated crops, transition landcover 

zones, bare surfaces and mountains. These highly heterogeneous surfaces greatly 

influence the near surface atmospheric flow variables and energy distribution. 

Therefore, changes in land surface characteristics (e.g. albedo, roughness length, 

emissivity and stomatal resistance) affect the evolution of the atmosphere in a highly 

nonlinear way.  

The available surface energy given by the energy balance relation 

HEGRAE sn +=−= λ         4.13 

determines the energy available for land surface processes. The net radiation defined by  

)TR(R)1(R 4
slssn σεα −+−=        4.14 

in turn determines the magnitude of  the available surface energy and is dependent on  

land surface characteristics (albedo and emissivity). Since the energy dynamics are 

hydrologically-controlled, the initial (soil) water content plays a very important role in 

the energy partitioning (balance) processes. Therefore, the interaction of the landcover 

with the radiation from the sun determines the prevailing climatic conditions in the 

Volta Basin. 

In the afternoon when the available energy is maximum, the vegetated surfaces 

produce higher latent heat fluxes than the bare soil surfaces. In particular, since a sizable 

area within the Volta Basin is covered by water (River Volta/Lake Volta), evaporation 

is at potential rate in these areas. At the same time, the bare soil surfaces heat up faster 

and produce more sensible heat fluxes than the water and vegetated surfaces. This 

creates both moisture and temperature gradients between the contrasting surfaces, and 

hence the climate system is driven in a way that reduces these gradients by 

redistributing the moisture and temperature profiles. As the atmospheric moisture and 

temperature profiles move towards establishing equilibrium with the underlying 

heterogeneous surfaces, the micrometeorological conditions (near surface wind, 

temperature and moisture profiles) are modified by the fluxes whenever moving air 

parcels experience changes in the underlying surface. After going over several different 
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land surfaces, the air parcels modify the meteorological conditions with the differences 

growing with time and distance from the first change in the underlying surface. These 

modified micrometeorological properties in effect modify the sensible and latent heat 

fluxes.  

Because the initial meteorological forcing and landuse types are identical in 

both scenarios (Case I and Case II) considered in the sensitivity experiment, the 

distribution patterns of the surface energy fluxes differ primarily due to the changes in 

the landuse parameters. For instance, changes in albedo would lead to differences in the 

net radiation and available surface energy. Hence, the available surface energy fluxes 

will be partitioned differently into sensible and latent fluxes. Secondary differences 

result from the modified micrometeorological conditions that affect the heat fluxes. As 

time evolves, further differences may arise from the modification of the thermal 

stratification, cloud formation, net surface radiation and hence modified 

evapotranspiration. Additionally, differences may occur due to advection of momentum, 

heat and moisture. The orographic effect of mountains also modifies the climate of the 

Volta Basin. Studies by Kunstmann and Jung (2003) have shown that changing the 

landuse type and soil moisture content can create feedbacks in moisture and thermal 

gradients resulting in different precipitation events. For the short simulation period used 

in this investigation, the initial water content plays a very important role in the energy 

budget.  

The analysis of the results of the sensitivity experiment is presented in the 

following sections.  Section 4.3.2 gives the response of the surface energy fluxes and 

moisture indicators to changes in land surface parameters for only the dominant 

vegetation type (Case I). Section 4.3.2 gives the scenario where the parameter changes 

are applied to all vegetation types (Case II). 

 

Case I: Response of surface energy fluxes and moisture indicators to 20% increase 

in parameter values for the dominant vegetation type (savanna) 
 

a. Surface energy fluxes 

Figure 4.3 shows the response of the respective average surface energy fluxes to 

changes in the parameters of the dominant vegetation. Figure 4.4 shows the 
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corresponding percentage changes in the surface energy fluxes with respect to the 

corresponding control values.  

 
Figure 4.3: Comparison of the response of the surface energy fluxes to changes in land 

surface parameters based on 20% increase in the dominant vegetation 
parameters. 

 
Figure 4.4: Comparison of the percentage changes in the response of the surface energy 

fluxes to changes in land surface parameters based on 20% increase in the 
dominant vegetation parameters.  
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Tables 4.2-4.3 give detailed information on the above plots. The values are based on the 

spatio-temporal averages over the experimental domain (Domain 3). 

 

Table 4.2: Response of surface energy fluxes to 20% increase in land surface parameters 
of the dominant vegetation. 

 Control zo ε α Rcmin Rgl Hs 

H (Wm-2) 151.70 104.81 109.57 155.69 132.66 122.64 94.37 

λE (Wm-2) 765.39 753.14 745.71 776.52 777.94 766.33 727.10 

AE (Wm-2) 917.09 857.95 855.28 932.20 910.60 888.96 821.46 

 
Table 4.3: Percentage difference in surface energy fluxes in response to 20% increase in 

dominant vegetation parameters. 
 zo ε α Rcmin Rgl Hs 

H (Wm-2) -30.91 -27.77 2.63 -12.55 -19.16 -37.79 

λE (Wm-2) -1.60 -2.57 1.45 1.64 0.12 -5.00 

AE (Wm-2) -6.89 -6.74 1.65 -0.71 3.07 -10.43 

 
The available surface energy flux (AE) has a maximum of 932.20 Wm-2 (α) 

and a minimum of 821.46 Wm-2 (Hs), and corresponding maximum percentage change 

of –10.43 % (Hs) and minimum of –0.71% (Rcmin). The percentage changes in AE are 

insignificant (<10%) for all the land surface parameters except for Hs (-10.43). 

The maximum latent heat flux (λE) is 777.94 Wm-2 (Rcmin) and minimum of 

727.10 Wm-2 (Hs). This indicates a rather wet condition as would be expected due to 

the fact that the period of the investigation is within the rainy season. The corresponding 

maximum percentage change is –6.89% (zo) with a minimum of 0.12% (Rgl). The 

percentage changes in λE are insignificant (<10%) for all parameters. The latent heat 

fluxes are relatively higher (about 6-fold) than the sensible heat fluxes. This implies that 

a larger fraction of the available energy is used in evaporating water and a smaller 

fraction is used in warming the earth’s surface in the form of sensible heat fluxes. 

The sensible heat flux (H) has a maximum percentage change of –37.79% 

(Hs) and a minimum of 2.63% (α). The percentage changes in H are significant (>10%) 

for all parameters except for α (2.63%).  The H follows the same trend as AE. The AE 

has the highest variability whereas the variability in λE is smaller than that of H.  
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Albedo produced the highest increase in surface energy fluxes, whereas Hs 

had the least decrease in surface energy fluxes. The available energy and sensible heat 

fluxes show an increase for only albedo, whereas there was a decrease for the remaining 

parameters. Percentage changes in AE for Rcmin and Rgl are insignificant. The 

minimum stomatal resistance has the highest latent heat fluxes (somewhat higher than 

that of albedo, 1.52 Wm-2). This indicates that an increase in albedo results in an 

increase in the available surface energy for driving the climate system in the Volta 

Basin. For the latent heat flux, Rgl, α and Rcmin show increases. 

 

b.  Moisture indicators 

Figures 4.5 and 4.6 show the response of the evaporative fraction and Bowen ratio to 

changes in the dominant land surface parameters. The details of these responses are 

given in Tables 4.4 and 4.5. The values are based on the spatio-temporal averages over 

the experimental domain (Domain 3). 

 

 
 
Figure 4.5: Comparison of the response of the moisture indicators to changes in land 

surface parameters based on 20% increase in the dominant vegetation 
parameters. The values are based on the spatio-temporal averages over 
Domain 3. 
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Table 4.4: Response of moisture indicators to 20% increase in land surface parameters 
of the dominant vegetation. 

 Control zo ε α Rcmin Rgl Hs 
Λ [-] 0.83 0.88 0.87 0.83 0.85 0.86 0.89 
β [-] 0.20 0.14 0.15 0.20 0.17 0.16 0.13 

 

Table 4.5: Percentage difference in moisture indicators in response to 20% increase in 
dominant vegetation parameters. 

zo ε α Rcmin Rgl Hs 

Λ [-] 5.18 4.47 -0.19 2.36 3.29 3.29 

β [-] 6.74 -25.87 1.16 -13.96 19.26 -19.26 

 

 

 
Figure 4.6: Comparison of the percentage changes in the response moisture indicators to 

changes in land surface parameters based on 20% increase in the 
dominant vegetation parameters. 

 

The evaporative fraction (Λ) has the lowest variability with a maximum of 

0.89 (Hs) and minimum of 0.83 (α) and an average of 0.85.  The Λ has a maximum 

percentage change of 5.18% (zo) and a minimum of –0.19% (α). However, the 

percentage changes in Λ are insignificant (<10%) for all the land surface parameters.  
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The Bowen ratio (β) however shows marked sensitivities to the changes in the 

land surface parameters. It has an average of 0.16, maximum of 0.2 (α) and a minimum 

of 0.13 (Hs). The β has a maximum percentage change of –25.87% (ε) and a minimum 

of 1.16% (α). The percentage changes in β are significant for all parameters except α, 

which has a value less than 10%.  

Generally, β follows the same trend as H and AE. The Λ follows a trend 

similar to that of the latent heat fluxes, but the correlation is not as strong as in the Case 

of β with respect to AE and H. The Λ is very high compared to the Bowen ratio as a 

result of the high λE and small H values. This again shows the correlation between Λ 

and λE and β and H (following the observed pattern for the sensible and latent heat 

fluxes). More importantly, the evaporative fraction shows lesser variability compared to 

the Bowen ratio, indicating that the evaporative fraction is a better or reliable moisture 

indicator than the Bowen ratio. 

 

Case II: Response of surface energy fluxes and moisture indicators to 20% 

increase in parameter values for all vegetation types 

 

a.  Surface energy fluxes 

Figures 4.7 to 4.8 show the average surface energy fluxes and their corresponding 

percentage changes in response to changes in vegetation parameter values for all 

vegetation types in the Volta Basin. The detailed information associated with the 

response of surface energy fluxes are shown in Tables 4.6 to 4.7. The highest and 

lowest average AE are 988.87 Wm-2 (zo) and 845.38 Wm-2 (ε), respectively.  

The maximum average λE for changes in all the parameters is less than that of 

the control (765.39 Wm-2). The second highest is 759.64 Wm-2 (Rgl). The least and 

most significant change in λE is 737.56 Wm-2 (α). The zo has the highest percentage 

change for both H (53.77%) and AE (7.83%). The minimum average H is 102.54 Wm-2 

(ε). The percentage changes in H are significant (>10%) for all parameters. However, 

the percentage changes in all parameters are insignificant for λE and AE (<10%). The 

Rgl, Hs and Rcmin have the least changes (<1.2%) in λE. The AE has the highest 

variability, whereas λE has the lowest variability. 
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Figure 4.7: Comparison of the response of the surface energy fluxes to changes in land 

surface parameters based on 20% increase in vegetation parameters for all 
vegetation types in the Volta Basin. The values are based on the spatio-
temporal averages over the experimental domain (Domain 3). 

 

Table 4.6: Response of surface energy fluxes to 20% increase in land surface parameters 
of vegetation types in the Volta Basin. 

 Control zo ε α Rcmin Rgl Hs 
H (Wm-2) 151.70 233.26 102.54 111.39 117.93 123.58 119.18
λE (Wm-2) 765.39 755.61 742.84 737.56 756.85 759.64 758.76
AE (Wm-2) 917.09 988.87 845.38 848.95 874.79 883.22 877.94

 

Table 4.7: Percentage difference in surface energy fluxes in response to 20% increase in 
vegetation parameters for all vegetation types in the Volta Basin. 

 zo ε α Rcmin Rgl Hs 
H (Wm-2) 53.77 -32.40 -26.57 -22.26 -18.53 -21.43 
λE (Wm-2) -1.28 -2.95 -3.64 -1.11 -0.75 -0.87 
AE (Wm-2) 7.83 -7.82 -7.43 -4.61 -3.69 -4.27 
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Figure 4.8: Comparison of the percentage changes in the response of the surface energy 

fluxes to changes in land surface parameters based on 20% increase in 
vegetation parameters for all vegetation types in the Volta Basin. The 
values are based on the spatio-temporal averages over the experimental 
domain (Domain 3).  

 

b.  Moisture indicators 

The response of the evaporative fraction and Bowen ratio to changes in all the land 

surface parameters in the Volta Basin is shown in figures 4.9 to 4.10. Tables 4.8 to 4.9 

show the corresponding detailed information for the moisture indicators. The moisture 

indicators do not show any significant deviations from that of Case I. This is an 

indication that the partitioning of the total available energy into sensible and latent heat 

fluxes remained fairly constant in both Cases under the applied forcing information.  

However, there was quite an appreciable change in the β for zo (about 56%). 

Percentage changes in Λ are insignificant (<10%) for all parameters with a maximum 

percentage change of -8.44% (zo) and a minimum of 3.05% (Rgl). The β has a 

maximum percentage difference of 55.76% (zo) and a minimum of –17.92% (Rgl). 

Percentage changes in β are significant (>10%) for all parameters. In general, the β 

shows marked variability and an inverse relation to the evaporative fraction as observed 

also in Case I. 
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Figure 4.9: Comparison of the response of the moisture indicators to changes in land 

surface parameters based on 20% increase in the vegetation parameters 
applied to all vegetation types in the Volta Basin. The values are based on 
the spatio-temporal averages over the experimental domain (Domain 3). 

 
Figure 4.10: Comparison of the percentage changes in the response moisture indicators to 

changes in land surface parameters based on 20% increase in vegetation 
parameters applied to all vegetation types in the Volta Basin. 
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Table 4.8: Response of moisture indicators to 20% increase in land surface parameters 
applied to all vegetation types in the Volta Basin. 

 Control zo ε α Rcmin Rgl Hs 
Λ [-] 0.83 0.76 0.88 0.87 0.87 0.86 0.86 
β [-] 0.20 0.31 0.14 0.15 0.16 0.16 0.16 

 
Table 4.9: Percentage difference in moisture indicators in response to 20% increase 

vegetation parameters applied to all vegetation types in the Volta Basin. 
 zo ε α Rcmin Rgl Hs 

Λ [-] -8.44 5.29 4.10 3.67 3.05 3.55 
β [-] 55.76 -30.35 -23.80 -21.38 -17.92 -20.75 

 

 

4.4 Parameter sensitivities based on the Jacobian matrix formulation 

Parameter sensitivities give a measure of the rate at which a given model output (e.g. 

surface energy fluxes or moisture indicator) is changing with respect to changes in a 

given parameter. The formulation of parameter sensitivities in the context of inverse 

modeling, was given by the Jacobian matrix (equation 3.59) in Chapter 3. 

Figures 4.11 and 4.12 show the respective parameter sensitivity plots for the 

surface and vegetation parameters investigated. Table 4.10 gives the corresponding data 

for figures 4.11 and 4.12.  For the sensible heat fluxes and available energy, the 

parameter sensitivities follow the same trend, which is given in ascending order of 

parameter sensitivity as zo, ε, α, Hs, Rgl and Rcmin. In the Case of the latent heat 

fluxes, the ascending order of parameter sensitivities is zo, ε, α, Hs, Rcmin and Rgl. 

Generally, it can be observed that the surface parameters are (several orders of 

magnitude) more sensitive than the vegetation parameters. 

 

Table 4.10: Parameter sensitivities based on the Jacobian matrix investigated for Case I. 
The model outputs are the surface energy fluxes.    

 zo ε α Rcmin Rgl Hs 
H(Wm-2) -1562.92 -870.578 99.67708 -1.35992 -2.23559 -5.25683 

λE(Wm-2) -408.38 -406.702 278.2083 0.896703 0.07234 -3.51103 

AE(Wm-2) -1971.3 -1277.28 377.8854 -0.46322 -2.16325 -8.76786 
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Figure 4.11: Parameter sensitivity plot based on the Jacobian formulation. The land 

surface parameters are the surface parameters and surface energy fluxes 
are used as model output (Case I). 

 

 
Figure 4.12: Parameter sensitivity plot based on the Jacobian formulation. The land 

surface parameters are the vegetation parameters and surface energy 
fluxes are used as model output (Case I). 
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4.5 General discussion: Comparison between Case I and Case II. 

The pattern of the changes in Case II is generally different from that in Case I with 

respect to the influence of each of the six parameters. However, the relative magnitudes 

of the surface energy fluxes in each scenario did not change much. This is due to the 

fact that the effective response of surface energy fluxes and moisture indicators to the 

moisture and temperature gradients induced by changes in the land surface parameters 

in each Case is different. Hence the climate dynamics move to different equilibrium 

levels in both Cases as the moisture and temperature profiles are redistributed. More 

importantly, as the energy dynamics is hydrologically-controlled, the initial water 

content (especially of the soil) will have a significant impact on the results. 

Details of the variability and average of the surface energy fluxes and moisture 

indicators are given in Tables 4.11 to 4.16. In general, the changes are more pronounced 

in Case II.  The difference in maximum available energy between Case I and Case II 

was 56.67 Wm-2. The corresponding difference in minimum available energy is 23.92 

Wm-2.  

 

Table 4.11: Statistics on surface energy fluxes (Case II). 
 Average Max Min Spread 

H (Wm-2) 137.08 233.26 102.54 130.72 
λE (Wm-2) 753.81 765.39 737.56 27.83 
AE (Wm-2) 890.89 988.87 845.38 143.49 

 

Table 4.12: Statistics on surface energy flux (Case I). 
 Average Max Min Spread 

H (Wm-2) 124.49 155.69 94.37 61.32 
λE (Wm-2) 758.87 777.94 727.10 50.85 
AE (Wm-2) 883.36 932.20 821.46 110.74 

 

However, the average available energy between the two Cases was 7.53 Wm-2, 

which is not very significant. A similar trend exists in the Case of sensible heat fluxes. 

The difference in maximum, minimum and average sensible heat fluxes is 77.57 Wm-2,  

8.17 Wm-2 and 12.59 Wm-2, respectively. For the latent heat fluxes, the average and 

maximum values are higher in Case II than in Case I. Their respective differences in 

average and maximum values are 18.30 Wm-2 and 5.06 Wm-2.  The minimum of Case II 

is higher than that of Case I, and the difference is 10.46 Wm-2.  
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Figures 4.13 and 4.14 show the deviations of the surface energy fluxes from 

the control values for Case I and Case II, respectively.  The variability in H for Case II 

is 130.72 Wm-2 as against 61.32 Wm-2 for Case I, which is a ratio of about 2:1. The 

variability in the available surface energy fluxes shows a similar trend to that of the 

sensible heat fluxes with 143.49 Wm-2 in Case II as against 110.74 Wm-2 in Case I. 

However, the latent heat fluxes show a reverse trend with 27.83 Wm-2 in Case II and 

50.85 Wm-2 in Case I.    

 
Figure 4.13: Deviations of surface energy fluxes from control run values (Case I). 
 

 

Table 4.13: Deviations of surface energy fluxes from control run values (Case I). 
 zo ε α Rcmin Rgl Hs 

H (Wm-2) -46.89 -42.13 3.99 -19.04 -29.06 -57.33 
λE (Wm-2) -12.25 -19.68 11.13 12.55 0.94 -38.29 
AE (Wm-2) -59.14 -61.81 15.12 -6.49 -28.12 -95.62 

 
Table 4.14: Deviations of surface energy fluxes from control run values (Case II). 
 zo ε α Rcmin Rgl Hs 
H (Wm-2) 81.57 -49.16 -40.31 -33.77 -28.11 -32.52 
λE (Wm-2) -9.78 -22.55 -27.83 -8.53 -5.75 -6.63 
AE (Wm-2) 71.79 -71.70 -68.14 -42.30 -33.86 -39.15 
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Figure 4.14: Deviations of surface energy fluxes from control run values (Case II). 

 

For the moisture indicators, the Bowen ratio in Case II has a higher percentage 

change (55.76%) than Case I (-25.87%). The changes are significant (>10%) for all 

parameters in Case II but significant only for ε, Rcmin, Rgl and Hs in Case I. Also, 

Case II has higher minimum than in Case I. For the evaporative fraction, changes in 

both Cases I and II are insignificant for all the parameters. A statistical description of 

the moisture indicators for the both Case I and Case II are summarized in Tables 4.15 

and 4.16. 

 

Table 4.15: Statistics on moisture indicators (Case I). 
 Average Maximum Minimum Spread 
Λ [-] 0.86 0.89 0.83 0.05 
β [-] 0.16 0.20 0.13 0.07 

 

Table 4.16: Statistics on Moisture indicators (Case II). 
 Average Maximum Minimum Spread 
Λ [-] 0.85 0.88 0.76 0.11 
β [-] 0.18 0.31 0.14 0.17 
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4.6 Concluding remarks 

In conclusion, the sensitivity analysis shows that the responses of surface energy fluxes 

and moisture indicators to changes in the six land surface parameters are generally 

important. However, the sensible heat fluxes and Bowen ratio show significant changes 

(>10%) for all land surface parameters in both Case I and Case II. The evaporative 

fraction and latent heat fluxes are not sensitive enough to changes in the six land surface 

parameters investigated. The available energy is moderately sensitive. A possible 

explanation for the observed marked differences in sensitivities may be due to the fact 

that the latent heat fluxes are relatively higher (about 5-fold) than the sensible heat 

fluxes in both Cases so that the equilibrium state of the energy balance will shift in way 

that will reduce the energy difference between the latent and sensible heat fluxes. In this 

Case, the sensible heat fluxes with lower energy fluxes will show more sensitivity. A 

similar argument can be made for the moisture indicators where the evaporation fraction 

is also far higher (about 5-fold) than the Bowen ratio. However, these deductions can 

not be generalized, because under different forcing conditions the results may show 

otherwise. For instance, Diekkrüger (2003) argues that nonlinear systems (such as 

investigated in this research) are sensitive to their initial and boundary conditions and 

that an extreme state of any distribution (dynamical system) may be most important in 

controlling the observed response. In particularly, the processes in soils depend 

nonlinearly on boundary and initial conditions, and problems in determining these 

boundary conditions may significantly influence simulation results (Diekkrüger et al., 

1995).   

The results show that the sensible heat fluxes and Bowen ratio are very 

sensitive to the land surface parameters investigated. The order of sensitivity for the 

land surface parameters investigated in Case I is given in Table 4.17 below.  

 

Table 4.17: Ascending order of parameter sensitivity based on the dominant vegetation 
H(Wm-2) zo ε α Hs Rgl Rcmin 
λE(Wm-2) zo ε α Hs Rcmin Rgl 
AE(Wm-2) zo ε α Hs Rgl Rcmin 
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In general, the surface energy fluxes were more sensitive to changes in the 

surface parameters than the vegetation parameters investigated. Although the parameter 

sensitivity analysis based on the Jacobian model was not applied in Case II, the simple 

sensitivity analysis (equations 4.5 – 4.8) show that the roughness length was the most 

sensitive parameter followed by the vapor pressure deficit factor, albedo, emissivity and 

minimum stomatal resistance. Similar results have been reported in other studies 

(Lakshmi, 1993). However, results from such sensitivity studies are mixed (Hu et al., 

1997), and hence these findings cannot be generalized as the meteorological and soil 

conditions determine which biophysical processes are dominant under a given set of 

conditions. For example, Avissar et al. (1989) applied the Fourier Amplitude Sensitivity 

Test (FAST) with Land-Atmosphere-Interactions Dynamics (LAID) to study the 

response of surface energy fluxes to changes in land surface parameters and observed 

that for vegetated land surfaces, stomatal resistance and surface roughness are the two 

most important land surface characteristics for  forcing the atmosphere. For bare land 

surfaces, they concluded that soil surface wetness and surface roughness are the most 

important parameters. The leaf area index (LAI) was also found to be important as it 

gives a measure of the relative abundance of vegetation and bare ground. In some 

circumstances, albedo can play a very significant role.  The relative sensitivity of the 

model output to each vegetation parameter depends on the extent of the spatial 

organization of the land cover types within the domain of interest and the prevailing 

atmospheric conditions. 

In Chapter 5 the conceptual design of the upscaling method is presented. 

Chapter 6 applies the knowledge obtained from the sensitivity analysis presented in this 

chapter to the numerical implementation of the proposed methodology.  
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5 THE INVERSE-SVAT TECHNIQUE PART I:  

 DESCRIPTION OF THE UPSCALING METHOD 

 

5.1 Introduction 

Methods for upscaling land surface properties have been an issue of many enquiries 

over the past 20 years. Theoretical studies by McNaughton (1994), Raupach (1995), and 

Raupach and Finnigan (1995) have shown that the 1D SVAT equations which describe 

the homogeneous point scale subgrid processes (e.g. surface energy balance) are 

applicable for describing the area-average (spatial) behavior of heterogeneous land 

surface characteristics at the coarse scale. More importantly, most methods include the 

use of surface and meteorological variables at each time step for computing the 

effective parameters and are therefore not applicable in free-running predictive 

(forecasting) models where the future meteorological variables are unknown (Arain et 

al., 1999). However, upscaling relationships are most often required such that they are 

independent of meteorological forcing (Arain et al., 1996; Chehbouni et al., 1995; Hu et 

al., 1999).  

Chapter 2 gave a survey of existing parameter upscaling techniques. The 

intense debate surrounding the representation of subgrid scale processes demands that 

efforts be made towards the development of a unified framework for representing 

subgrid scale effects. Since the solution for a unified theory has proved evasive, the 

possibility for developing a model-independent parameter upscaling method seems a 

more pragmatic approach to resolving the subgrid scale controversy. Therefore, a 

significant step is made in this thesis towards the development of a model-independent 

parameter upscaling method via inverse-SVAT modeling. Use is made of the theoretical 

formulations developed in chapters 2 and 3 to formulate a conceptual design of the 

inverse-SVAT method and its numerical implementation. The formulation follows 

closely the energy matching method of Hu et al. (1999) (see section 2.3.2 of Chapter 2), 

but the optimization of the objective function for the energy residual terms is done 

through nonlinear parameter optimization (see section 3.3 of Chapter 3). 
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5.2 Description of upscaling method 

5.2.1 Problem definition 

The parameterization of subgrid scale effects has been defined in many ways based on 

the adopted solution strategy. Recent studies have shown that there is no unique 

procedure for defining effective land surface parameters, and that averaging schemes 

should be designed to serve specific purposes (Lhomme et. al., 1994; McNaughton 

1994). 

Therefore, a model-independent formulation of the solution would be a 

significant step towards resolving the subgrid scale controversy. The problem of 

aggregating land surface parameters is formulated in this thesis as an inverse problem, 

and a solution is sought via nonlinear parameter estimation (see section 3.3 of Chapter 

3). The subgrid scale problem for this enquiry can be posed as follows: 

• Given a distributed heterogeneous land surface (characterized by land 

surface parameters of mean kµ  and standard deviation kσ ) at the 

subgrid scale, can we find an effective parameter keffp ,  at the grid 

scale such that the relative change in output response (e.g. surface 

energy fluxes and moisture indicators) is less than 10% (at least quasi 

scale invariant)? 

• If such an effective parameter keffp ,  exists, can we find a functional 

relation that maps the mean kµ  and standard deviation kσ  of the 

distributed land surface parameters at the subgrid scale to their 

corresponding effective parameter keffp , at the gridscale?  

The first question to be addressed is the scale invariant problem that must be 

addressed. A scale invariant land surface map means that the empirical relationship 

developed from point observations can be used for large areas. A quasi-scale invariant 

map means that the resulting error from using an effective parameter (map) to estimate 

grid scale fluxes will be small (less than 10%). A scale-invariant transformation (or 

map) must satisfy two conditions (Hu et al., 1997): (i) the parameters of a distributed 

land surface must be homogeneous over the grid and (ii) the map must be a linear 

combination of inputs and parameters. 
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The second question is the determination of the upscaling law that links the 

heterogeneity of the distributed land surface parameters to their corresponding effective 

parameter. The implementation of such a scheme would be a significant step towards 

improving climate model performance. Additionally, it would drastically reduce the 

intensive utilization of computing resources and CPU time consumed by current high 

resolution climate models. 

 

5.2.2 Conceptual design of the methodology 

The general observation made from the survey of existing methods in Chapter 2 is that 

these methods are formulated based on some physics assumptions about the subgrid 

scale processes, which define the type of surface heterogeneity these methods are valid. 

To develop the proposed methodology, some basic assumptions about the 

heterogeneity of the land surface must be made. A common assumption used in 

developing aggregation schemes for land surface parameters is that at some 

characteristic height (blending height), the atmospheric flow over a heterogeneous land 

surface can be considered homogeneous (Blyth et al., 1993; Claussen, 1991; Grotzner et 

al., 1996; Mason, 1988; Wieringa, 1986). An implication of this assumption is the fact 

that land surface heterogeneity is disorganized rather than organized. Otherwise due to 

mesoscale circulations induced by the land surface heterogeneity, the atmospheric 

boundary layer will behave differently (Hu et al., 1999). However, Claussen (1995) has 

shown that the limits of the blending height can be stretched to include mesoscale or 

organized heterogeneity. Additionally, it is assumed that the effect of lateral advection 

is relatively weak and the classical resistance formulations for the sensible and latent 

heat fluxes are valid for each relative homogeneous subgrid (Bunzli and Smith, 1998).  

The similarity law (Raupach and Finnigan, 1995) for surface flux estimation is also 

assumed to be applicable.  

For this work, a heterogeneous land surface within a grid cell is viewed as a 

collection of land surface elements, referred to as subgrids, patches or tiles. A subgrid 

represents a small area that can be assumed to be homogeneous.  An approach using a 

distributed map calculates the grid level output by first dividing the grid into a number 

of subgrids that can be assumed to be homogeneous. Then the response of each subgrid 

is aggregated by a suitable kernel (e.g. the areal weighted average) to get the grid scale 
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output (Hu et al., 1997). A distributed model accounts for the spatial variability of 

inputs, parameters, and outputs within the grid.  

Using the concept of the distributed map discussed above, the grid is divided 

into subgrids with parameters ip ( ni ,..,1= ) characterized by a mean parameter kµ  and 

standard deviation kσ  as illustrated in figure 5.1 (Hu et al., 1997). 

 

 
 

1p      

 •    

  •   

   •  

    
np  

  
 
 
 
 
 
 
 
 
 
 
                 

 
Figure. 5.1: Upscaling of land surface parameters. 

 

The subgrid-scale variability at the fine resolution is resolved by the 

distributed map at the grid scale. The coupled climate-parameter estimation algorithm 

(SVAT-PEST) is used to derive a distributed map for estimating an effective parameter 

keffp ,  such that the grid scale )( ,keffpG  output (e.g. G: sensible heat flux) is almost (less 

than 10%) equal to that of the subgrid scale aggregated output ),()(1
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This procedure is illustrated in figure 5.2. 

Subgrid scale: f(µk , σk) 
Grid scale 

Land surface parameter, pi (i=1,..,n) Effective parameter, peff,k 

Upscaling 
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             Subgrid scale fluxes: Gi (pi) 

 

                Grid scale fluxes: G( keffp , )  

 
Figure. 5.2: Aggregation of surface energy fluxes: H-1, H-2 and H-3 are subgrid scale 

sensible heat fluxes. 
 

The problem reduces to an inverse (root finding) problem for keffp , , according 

to the relation: 

)(
!

),()(1
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1
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i
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n ≅=∑
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σµ      5.1 

 

 

One then proceeds to derive an upscaling law ),( kkf σµ  that maps the mean 

kµ  and standard deviation kσ of the distributed parameters at the subgrid scale to their 

corresponding effective parameter keffp , at the grid scale. The solution of the inverse 

problem given by Equation 5.1 ( keffp , ), is applied to its corresponding sets of ( kk σµ , ) 

as 

),(, kkfkeffp σµ=      5.2 

Equation 5.2 is the required upscaling law that describes the relationship 

between the land surface heterogeneity (parameters) at the subgrid scale and the 

corresponding effective parameter at the grid scale.   

 

The solution to the inverse problem of equation 5.1 is to find the coarse scale 

parameter pcoarse for which the chi square objective function  
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Since this is a nonlinear problem, the exact algebraic solution does not exist, 

and hence only approximate solutions via iterative methods are possible. The search 

process is done along the direction where the chi square function is decreasing. This 

occurs when the angle between the negative of the Jacobian vector (the derivative of the 

chi square function with respect to the coarse scale parameter) and the parameter 

upgrade vector is less than 90o (Doherty, 2000). The approximate solution of the inverse 

problem of equation 5.1 is not trivial. The problem is further complicated by the fact 

that the search process can be trapped in a valley containing a local minimum, making 

the global minimum evasive as illustrated in figure 5.3.  

 

effp coarsep
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Global 
minimum
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Figure 5.3: Parameter space in relation to the chi square and existence of both local and 

global minima. 
 

More importantly, when the objective function is granular, the computation of 

derivatives becomes very problematic and can render the search process impossible.  

Therefore, for an approximate solution to exist, the following conditions (extended 

well-posedness in the Tikhonov sense) (Sun, 1994; Tikhonov, 1963) must be met: 
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• The parameter must exist. 

• The parameter must be unique. 

• The objective function must be well behaved (stable) and continuously 

differentiable with respect to the parameter of interest. 

Additionally, the solution will converge to the global chi square minimum if 

an initial parameter estimate can be found such that it lies within a parameter region 

bounded by the parameter set containing the optimal parameter (Cooley et al., 1990; 

Doherty, 2002). A good choice of initial parameters helps to resolve the problem of the 

local minimum. A common approach is the use of Monte Carlo (repeated) runs with 

variable parameters. A review of the various methods was given in section 3.3 of 

Chapter 3. 

 

5.3 Concluding remarks 

The upscaling methodology presented in this chapter gives a conceptual framework 

upon which a numerical solution can be developed to calculate effective parameter land 

surface parameters. A numerical experimentation was setup to test the methodology in 

both the 1D SVAT mode and the 3D SVAT mode. Chapter 6 gives a description of the 

numerical experimentation using the OSU LSM as the 1D SVAT mode; the mesoscale 

model MM5 was applied as the 3D SVAT mode. For the optimal parameter estimation, 

the highly efficient nonlinear parameter estimation tool PEST (Doherty, 2002) was 

applied. Synthetic land surface parameters were produced using a Monte Carlo 

simulation to drive the SVAT models and PEST.   
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6 THE INVERSE-SVAT TECHNIQUE PART II:  

 NUMERICAL IMPLEMENTATION OF THE UPSCALING METHOD 

 

6.1 Introduction 

In chapter 5, a conceptual design of the upscaling method was presented. A numerical 

experimentation is presented in this chapter to investigate the performance of the 

proposed methodology. To undertake a numerical implementation of the proposed 

upscaling methodology presented in the previous chapter, an existing, validated public 

domain SVAT model (OSU LSM) was coupled to the nonlinear parameter estimation 

tool PEST. Approximate solutions based on existing methods were used as initial 

parameters to drive the parameter estimation process. The experiment was extended to 

include the full 3D mesoscale case by coupling MM5 (which includes the same OSU 

LSM model as lower boundary) to PEST where the influence of lateral interactions 

between adjacent grids are accounted for in the analysis. A random number generator 

was used to provide synthetic normally distributed land surface parameters to drive the 

models. 

The implementation of the scheme consists two parts: 1) the preprocessing of 

the component models and relevant initialization information, and 2) the coupling of the 

component models to PEST. For discussion on the preprocessing of the model 

components, the following procedures are presented: 

• The Monte Carlo random number generator 

• Initialization of the experimental domains 

• Generation of observation data sets 

• Computation of initial parameter estimates 

For the second part on the coupling of the component models, a description is 

presented on the coupling and relevant internal interactions between PEST and the 

component models (Monte Carlo random number generator, 1D and 3D SVAT models). 

Because, the Monte Carlo random number generator and the coupling procedure are 

repeated in both 1D and 3D SVAT modes, a single presentation would be given and 

reference made to them when appropriate.  
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6.2 Materials and Methods 

The choice of the experimental model domains and site locations was based primarily 

on availability of data and computing resources. For the 1D SVAT upscaling 

experiments, data on the Meyer/NOAA measurement site was readily available. 

Additionally, the forcing data had been tested with the current OSU LSM version and 

good results had been obtained. More importantly, a review of relevant literature helped 

in identifying the possible (and relevant) experiments to be undertaken and the other 

appropriate methods for comparison.  

Similar arguments follow for the 3D SVAT upscaling experiment. Modeling 

data and facilities were available from the GLOWA-Volta project. The selected location 

is within the Volta Basin of West Africa (Northern Ghana). Therefore, an optimal mix 

of these opportunities and constraints defined the limits of these experiments. 

 

6.2.1 The Monte Carlo experiment 

Model setup 

The objective of the experiment is to generate random fields to represent land surface 

parameters that serve as input to the MM5, OSU LSM and PEST models. The Box-

Muller transformation method for generating normally-distributed random fields was 

used because it is a widely proven method (Press et al., 1992). A brief review of the 

Box-Muller method was presented in chapter 3. 

To make sure the random fields are positive (consistent with model physics), 

the standard normal distribution (with a population mean of zero and standard deviation 

of one) was first generated. The random fields of the standard normal distribution were 

then transformed to a prescribed mean and standard deviation (truncated normal 

distribution). The standard deviation was carefully selected to ensure that the random 

fields are positive. Additionally, the appropriate random fields of the standard normal 

distribution must satisfy the following selection criteria: 

• The sample mean of the random fields must be close to zero and their 

corresponding standard deviation close to one. 

• The random fields must have enough heterogeneity that is 

representative of naturally occurring land surface parameters. 
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The above conditions are difficult to satisfy without the use of advanced tools. 

To be able to identify the appropriate random fields for the parameter estimation 

process, the properties of the random fields must be analyzed. To this end, a Monte 

Carlo experiment was setup to analyze the properties of the random fields and to 

provide a selection criterion for identifying the appropriate distribution (optimal 

realization). The schematic of the Monte Carlo random number generation experiment 

is given in fig.6.1.  

The Box-Muller transformation method incorporates a random uniform 

deviate generator. A number of random number generators were tested with different 

seeds (initialization numbers), with each seed giving unique random fields. Based on 

experiment and literature review, a general-purpose robust uniform random deviate 

generator was applied (Press et al., 1992). The number of realizations needed to produce 

the required properties was between 30 and 100 but 100 was considered appropriate. 
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 Figure 6.1: Schematic of the Monte Carlo experiment. 

 

 

 

 



The inverse-SVAT technique part II 

85 

The procedure for the analysis is given as follows: 
 

• Generation of large number of realizations (order of 100) of the 

standard normal distribution ( ),(, jjji gp σµ= ,j=1,..,100).  

• Identification of the realization (with optimal properties) that best 

satisfy the selection criteria ),(, jojojoi gp σµ= . 

• Transformation of the random fields of the optimal realization to a 

distribution with a prescribed mean and standard deviation through 

the transformation 

joikkki pp ,, *σµ +=  

where  

kip ,  = The distributed land surface parameter of the transformed or 

prescribed distribution for the i-th subgrid. 

jip , = The i-th random field of the standard normal distribution of the 

 j-th realization (for the i-th subgrid). 

joip , = The i-th random field of the standard normal distribution of the 

optimal realization. 

kµ  = The mean of the prescribed distribution. 

kσ = The standard deviation of the prescribed distribution. 

     jµ  = The mean of the j-th realization. 

jσ  = The standard distribution of the j-th realization. 

k = The index of the prescribed distribution. 

n = The number of parameters or subgrids. 

j  = The index for the number of a given realization.  

joµ  = The mean of the optimal realization. 

joσ  = The standard distribution of the optimal realization. 
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For the implementation of the above procedure, the standard normal 

distribution scheme (Box-Muller transformation method) in Numerical Recipes (Press 

et al., 1992) was adopted, as it is easy to implement in the parameter estimation process 

(i.e. easily incorporated into the MM5, NOAH LSM and initial parameter estimation 

codes).  Also, the random number used in this implementation is robust and does not 

suffer from known limitations of other random number generators (Press et al., 1992). 

 

6.2.2 Initialization of the experimental domains  

The 1D SVAT experiment (OSU LSM) 

Model setup 

In this experiment, the current version of the OSU LSM (Ek & Mahrt, 1991,Mitchell, 

2000) was applied with 1998 observation forcing data (4 days subset, Jan. 1st- 4th) from 

the Meyers/NOAA measurement site in Champaign, Illinois. The measurement site is 

located at longitude 88.37o W and latitude 40.01o N (Meyers & Ek, 1999). The site is 

characterized by vegetation type “groundcover only” (for the period of this exercise) 

and soil type “silty loam”. A detail description of the measurement site can be found in 

Mitchell (2000). 

A model description for the OSU LSM can be found in appendix A.1. The 

model was initialized with an albedo of 0.15 and green vegetation fraction of 0.01. The 

maximum albedo was set to 0.75 (snow albedo) and the annual constant bottom 

boundary soil temperature set to 285 K. The initial skin temperature and canopy 

moisture content are given as 263.95 K and 0.47mm respectively. The soil consists of 

four layers. The initial actual snow depth and water equivalent snow depth are 

respectively set to zero. Additional initial soil state variables are given in table 6.1 

below. 

Table 6.1: The soil initial state variables for the 1D SVAT experiment. 
Soil thickness 

(cm) 

Temperature 

(K) 

Liquid Total moist 

(m3/m3) 

Liquid moist 

(m3/m3) 

10.00 266.0 0.325 0.166 

30.00 273.9 0.319 0.282 

60.00 276.6 0.317 0.317 

100.00 280.1 0.307 0.307 
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The time step for the model simulations was 30 minutes. The forcing data was 

available at 30 minutes interval (or interpolated to 30-minute time interval from about 

1- 6 hour interval observations). For observation intervals longer than 1-hour, the 

incoming surface solar insolation was interpolated with a solar zenith angle weighting, 

in order to capture the full amplitude of the diurnal solar insolation. The required 

forcing data are: 1) air temperature at 3m above ground, 2) air humidity at 3m above 

ground, 3) surface pressure 4) wind speed at 10m above ground, 5) surface downward 

longwave radiation, 6) surface downward solar radiation and 7) precipitation. The OSU 

LSM computes surface energy fluxes based on the input data and model configuration. 

A review of the model physics of the OSU LSM was presented in chapter 3. 

 

Generation of observation data 

The procedure for generating area-weighted fluxes from a distributed heterogeneous 

land surface (at the subgrid scale) was discussed in section 5.2.2 of chapter 5. Fig 5.2 

shows the flux aggregation over a heterogeneous land surface with distributed (subgrid) 

parameters. 

The current OSU LSM version used in this study has a Fortran namelist 

construct that allows for the external supply of land surface parameters to the physics 

routine without recompilation of the whole code. This is a significant improvement 

because it provides enough flexibility for automating the numerical experimentation. 

Fig. 6.2 shows the configuration for this experiment. The Monte Carlo random number 

generator was used to supply nine synthetic land surface parameters of specified mean 

(µk) and standard deviation (σk) to the relevant physics routine. Each synthetic 

parameter represents the land surface parameter of a homogeneous subgrid.  

For each mean, four simulations were carried out, each with a specified 

standard deviation (i.e.10%, 25%, 37.5% and 50% of the mean). Each synthetic land 

surface parameter was used by the model to compute surface fluxes and the area-

weighted average of the subgrid fluxes computed as the observation data set for the 

parameter estimation process.  The observation data set is computed as 
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where n is the number of subgrids. The observation data set is used by PEST in the 

parameter estimation process. The specific surface energy fluxes used as observation 

depend on the type of parameter to be estimated. The model output that is chosen as 

observation is the one that succinctly expresses its relationship with the parameter of 

interest (Chehbouni et al., 1995). Additionally, a number of model outputs that meet the 

above condition can be combined into a well-behaved function that satisfies the well-

posedness condition (see section 3.3 of Chapter 3).   

 

 
 
Figure 6.2: Schematic diagram of the upscaling of land surface parameters for 1D 

SVAT model. 
 

 

The 3D SVAT experiment (MM5) 

Model setup 

In this study, MM5 was applied coupled to the OSU LSM in the one-way nesting mode 

to account for interaction between the soil, vegetation and the atmosphere. The one-way 

nesting approach was chosen because of the advantage of producing a higher resolution 

domain from a coarse grid domain. This ensures that: 1) the lateral boundary conditions 

of the fine grid use consistent physics to those of the coarse grid model, 2) the lateral 

boundary conditions are available at a relatively high temporal frequency, and 3) the 

vertical structure of the atmosphere is not significantly modified through vertical 

interpolation (Dudhia et al., 2000).  

An area in the Volta Basin (West Africa) was chosen for the investigations (4 

days subset 2 - 5 December, 1998). The one-way nesting model configuration consists 
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(121x67), 3x3 km2 (55x49) and 3x3 km2 (10x10 grid points), and 26 vertical layers 

extending up to 30mbar at the model top. The nested domains have central latitude at 

7.5o N and central longitude at 0.0o. The Mercator map projection was used considering 

the region of interest. Each larger domain provides the lateral and initial boundary 

conditions for the next smaller domain. The domain resolutions are chosen as powers of 

three to be consistent with the GLOWA-Volta project specifications for climate 

modeling. An experimental domain (domain 5) with 9x9 grid cells, each with a 

resolution of 3x3 km2 was chosen within domain 4. The experimental domain is chosen 

to be homogeneous as possible with respect to land surface characteristics. The 

resolution of the experimental domain was chosen to be the same as domain 4 so that 

the boundary and initial conditions are consistent. Additionally, this ensures that the 

same subgrid scale processes are captured in both domains and parameterized with 

equal precision. Fig. 6.3 shows the domains of interest.  

 
Figure 6.3: Schematic of the five domains for the one-way nesting approach in West 

Africa. Domain 3 is the Volta Basin and Domain 5 is the experimental 
domain. 

 

The terrain information was horizontally interpolated from the regular latitude-

longitude terrain elevation and vegetation data onto the specified coarse and fine 

domains. Additional interpolation of soil and vegetation data was incorporated using 

data from NCAR and other data compilation developed by the land use group of the 
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GLOWA-Volta project. The terrain and land surface information were produced for 

each domain. First guess surface and pressure information from a global analysis (e.g. 

NCAR archived reanalysis data) was used to produce model initial and boundary 

conditions for the coarsest domain. The MM5 climate model numerically solves the 

prognostic equations of the atmospheric motions using the OSU LSM output as lower 

surface boundary condition. The output of the MM5 run for the coarsest domain is used 

as initial and boundary conditions to drive the next coarsest domain. The process is 

repeated till the finest (experimental) domain is fully initialized. A detailed description 

of the one-way nesting approach can be found in appendix A.2. 

 

Generation of the observation data 

The procedure for this study is similar to that used for the 1D SVAT case discussed in 

section 6.2.3. Fig 6.4 shows the configuration for the study. Here, there are 81 subgrids. 

To generate observation data, the MM5 routine that supplies land surface parameters to 

the MM5 physics routines was modified to incorporate the Monte Carlo random number 

routine described in section 6.2.1. The purpose of the Monte Carlo routine is to generate 

random fields of a specified mean and standard deviation to replace the original land 

surface parameters in the physics routine. Each field represents a unique land surface 

parameter of a subgrid within the experimental domain, and has the same physical 

characteristics as the real-life land surface parameters. The model is run with the 

modified land surface parameter routines using the physics configuration of the 

initialized experimental domain to generate surface heat fluxes. Each grid cell generates 

surface heat fluxes based on the assigned synthetic parameter. The output is then 

aggregated as an area-weighted average of the surface fluxes. These aggregated fluxes 

are obtained as synthetic observations for the parameter estimation process. 
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Figure 6.4: Upscaling of land surface parameters for the 3D SVAT Model. 

 

Initial parameter estimation 

The approximate method applied in solving the inverse problem is an iterative method 

that requires an initial parameter set. Several studies have shown that the initial 

parameter sets are very crucial for a successful parameter estimation process, in 

particular when the problem is highly nonlinear or ill-posed. To drive the parameter 

estimation process, PEST must be supplied with good initial parameter estimates. The 

Gauss-Marquardt-Levenberg algorithm has been shown to converge to the optimal 

parameter set provided an initial parameter set can be found within a close 

neighborhood of the optimal parameter set (Cooley and Naffi, 1990). Based on this 

assertion, approximate methods derived from physics consistent with those of the OSU 

LSM and MM5 are used as initial parameter estimates. Chapter 2 gave a survey of 

existing parameter aggregation methods that are appropriate for initial parameter 

estimation. These parameter estimates can be considered as suboptimal parameters from 

which the optimal parameters can be estimated using the nonlinear parameter estimation 

tool PEST. A summary of the methods for deriving the initial parameter estimates used 

in this study is given in Table 2.2 (Chapter 2). 
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Additional PEST preprocessing routines 

PEST requires some special routines to facilitate its communication with the component 

models coupled to it. Because high precision derivatives of the model output with 

respect to the parameter set of interest is required by the PEST algorithm for the 

estimation of the optimal parameter set, PEST has a routine for formatting model output 

for its internal use. Additionally, PEST communicates with the coupled models through 

special interfaces that facilitate its operation. These preprocessor routines must be 

created prior to PEST runs. A detailed description of these preprocessor routines for the 

1D SVAT and 3D SVAT experiments can be found in Appendix B. For a detailed 

general description of the PEST preprocessor routines, see Doherty (2002). 

 

6.2.3 Coupling of models to PEST 

The previous sections discussed the preprocessing of the relevant model components of 

the inverse-SVAT modeling. This section constitutes the second part of the numerical 

experimentation and focuses on the coupling of the component models discussed in the 

previous sections, to PEST. Because the exact algebraic solution does not exist, a great 

deal of innovation is required in providing optimal settings for the parameter estimation 

process. More importantly, since the estimation of the effective parameters constitutes 

an enormous computational effort, care must be taken in meeting the necessary 

conditions of well-posedness (see section 3.3 of chapter 3) so as to facilitate solution 

convergence and optimization run time. 

To couple PEST to the climate models, the interfaces through which PEST 

communicates with the models must be well designed. Data must be provided with a 

precision that permits accurate computation of derivatives to aid in the search for the 

optimal parameter set. Procedures for generating the relevant PEST preprocessor files 

are described in detail in appendix B. Fig. 6.5 gives a sketch of the coupled PEST-OSU 

LSM and PEST-MM5.  
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The handshaking between PEST, OSU LSM, MM5 and the Monte Carlo 

random number generator is summarized below as follows:   

• Random fields are generated using the Monte Carlo random number 

generator to represent the land surface parameters of interest. 

• The synthetic land surface parameters are passed to the SVAT model 

and observations generate based on the area-weighted average of 

surface energy fluxes generated by the subgrid cells. 

• The same synthetic land surface parameters from the Monte Carlo 

simulation are used to compute initial parameter estimates based on the 

existing methods outlined in table 2.2. 

• PEST uses the output of the simulation obtained in step 2 and the 

initial parameter estimates obtained from step 3 to initialize the 

parameter estimation process. 

• PEST uses the initial parameter estimates to run the SVAT model and 

then compare the output to the observation based on the objective 

function (e.g. the sum of the mean square error). 

• If the difference is within some preset tolerance limit, the effective 

parameter has been found and the search process is terminated, else 

PEST updates the parameter based on the search information of the 

previous iteration (see chapter 3) and then repeats the whole process 

again until a preset termination criteria is reached. 



The inverse-SVAT technique part II 

94 

 

 

 

 
Monte Carlo Simulation 
Random Field Generation 

),(gp kkk,i σµ=  

OSU LSM/MM5 
Generation of SVAT Output 

G~G n,..,1i ⇒=  

Initial Parameter Estimates 
Linear and reciprocal laws 

(Arain et al., 1996; Hu et al., 1999)

PEST 
Nonlinear Parameter Estimation 

),(fp kkeff σµ=  

 
Figure 6.5: Schematic of the numerical experimentation the with Inverse-SVAT Model 

 

A detail description of the internal PEST processes based on the Gauss-

Levenberg-Marquardt algorithm (see chapter 3) is summarized in the following steps 

below: 

• The input/output files and system variables are initialized. 

Additionally, all initial input data are read via the PEST preprocessor 

files 

• The initial parameter estimates are passed to the model input files via 

the template files and PEST uses these initial parameters to run the 

SVAT model. 

• The instruction files are used to read the output of the SVAT model 

runs and the initial objective function is computed. 

• PEST then starts the parameter estimation process with the 

optimization iteration. 

• After computing the Jacobian matrix, PEST attempts objective 

function improvement using one or two Marquardt parameters 

(Lamda). 
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• If the second Marquardt parameter falls by a factor of 0.03 relative to 

the first or the factor change in parameter between the previous and 

current optimization iterations is more than 3, PEST does not test any 

further lamdas and progresses to the next optimization. 

• The optimization process stops after the 3 lowest objective function 

values are within a relative distance of 0.01. 
 

PEST produces a run record which gives parameter statistics, observation, 

model output calculated with optimized parameter set, residuals (difference between 

observation and optimized model output) and other optimization information. A detailed 

description of the above internal PEST routine can be found in Doherty (2002). 

 

6.3 Concluding remarks 

The implementation of the proposed method for upscaling land surface parameters has 

been presented through numerical experimentation in a coupled SVAT-Parameter 

estimation environment. The coupling of a nonlinear parameter estimation tool to a 1D 

SVAT model and its complex 3D extension is a formidable task. Because the inverse 

problem is ill-posed and has no true solution, the approximate solution demands 

innovative strategies to constrain the solution to converge to the optimal parameter set. 

The estimation of each effective parameter constitutes an enormous computational 

effort, especially, for the 3D SVAT case. The discussion included:  

• A description and implementation of the Monte Carlo random number 

generator. 

• A description of the 1D SVAT model setup (OSU LSM) and 3D SVAT 

model setup (MM5). The one-way nesting approach used to produce 

initial and boundary conditions for the experimental domain in MM5 

was also discussed. 

• The preprocessing of the relevant PEST input files with respect to the 

OSU LSM, MM5, initial parameter estimates and initialization of 

PEST 

• The experimental setup and coupling of PEST to: 1) 1D SVAT and 2) 

3D SVAT. 
 



The inverse-SVAT technique part II 

96 

The major challenges to the success of the parameter estimation include: 

• Poor choice of initial parameter estimates. In general, the closer the 

initial parameters are to the optimal parameter set, the faster the 

convergence to the global minimum. Beyond reducing the run time, a 

good choice of initial parameters make optimization possible, 

especially for highly nonlinear models or models with local objective 

function minima in the parameter space at places removed from the 

global objective minimum. 

• Non-differentiable fitting functions. If the problem is not 

continuously differentiable or at least differentiable at points where 

derivatives are computed, the estimation process would have extreme 

difficulties in estimating parameters of the model. 

The next chapter gives a presentation of the detailed analysis of the results 

obtained from the numerical experimentation undertaken in this chapter. It also gives a 

comparison of the results of the proposed method to that of existing methods. 
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7 ANALYSIS OF RESULTS 

 

7.1 Introduction 

In chapters 5 and 6, the conceptual design of the proposed upscaling method and its 

application in a numerical experiment with 1D SVAT and 3D SVAT models were 

presented. Several aggregation rules for land surface parameters of varying complexity 

were surveyed in Chapter 2. The comparison of the results from these studies suggests 

that simple aggregation rules may have the same order of performance as 

computationally-intensive schemes (Arain et al., 1996; Hu et al., 1999; Blyth et al., 

1993). The proposed methodology is also computationally intensive to the extent that, 

for the domain setup used in this exercise for the 3D SVAT case, the estimation of an 

effective land surface parameter requires about 2 days of CPU time. For an upscaling 

law derived from 100 effective parameter data points, this would be a very expensive 

venture. Therefore, a prime focus of the analyses in this chapter is to formulate simple 

aggregation schemes from the trends exhibited by the results obtained from the CPU-

intensive experiment applied in this thesis. Procedures required to achieve this objective 

are presented together with other relevant strategies. 

In this chapter, upscaling laws for 1D and 3D SVAT parameters are analyzed 

to obtain information about subgrid scale processes. Several approaches for comparing 

the performance of the proposed method and that of existing methods are also 

presented. The methods that are compared to the proposed method are those of Arain et 

al. (1996), Blyth (1993) and Hu et al. (1999). In particular, the method of Hu et al. 

(1999) was chosen for detailed comparison of surface energy fluxes and moisture 

indicators, because it is a well established theory-based method (i.e. Hu et al. (1999) is 

derived from relevant planetary boundary layer physics as compared to simple 

averaging methods that are based on purely statistical arguments). Procedures for 

enhancing the performance of the parameter estimation process are also discussed. 

Finally, the uniqueness of the effective roughness length with respect to duration of 

episodes is analyzed.  
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7.2 Results for coupled stand-alone SVAT and PEST 

7.2.1 Upscaling laws 

To account for subgrid scale effects, upscaling laws are derived that map the mean and 

standard deviation of the distributed land surface parameters at the subgrid scale to their 

corresponding effective parameter at the grid scale. The potential upscaling laws 

investigated are:  linear, parabolic, polynomial, exponential, logarithmic, Lorentz, 

logistic and a mixture of different functions. The criteria for selecting the best fitting 

(regression) models are based on the correlation co-efficient and model complexity 

(nonlinearity and number of parameters). Generally, the linear and parabolic laws gave 

the best fits. Upscaling laws were developed for the roughness length, surface albedo, 

surface emissivity, Clapp-Hornberger soil parameter b, minimal stomatal resistance, 

vapour pressure deficit factor, leaf area index and plant insolation factor. Details of the 

best upscaling laws are given in Table 7.1 and discussed below.  

 

Roughness length 

Plots for upscaling roughness length using evaporative fraction, sensible and latent heat 

fluxes as fitting functions are presented in figures 7.1 to 7.3, respectively.  
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Figure 7.1: Parabolic upscaling plot for roughness length, zo , R =0.9985. The objective 

function used in the estimation of zo is based on the evaporative fraction. 
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The evaporative fraction and sensible and latent heat fluxes were used in 

formulating objective functions for the determination of the roughness length because of 

their dependence on the roughness length. The Bowen ratio was not used, because it is 

not well-behaved close to zero latent heat fluxes and has been reported to be 

complicated to analyze (Bastiaanssen, 1995). For the evaporative fraction and latent 

heat fluxes, the parabolic upscaling law was the best fitting model. For the sensible heat 

fluxes, the linear law was the best upscaling model. Based on the correlation co-

efficients of the various fitting functions, the parabolic upscaling law obtained with the 

evaporative fraction is the best fitting model for determining the roughness length. The 

linear upscaling law obtained from the sensible heat fluxes was the second best, while 

the parabolic plot obtained from the latent heat fluxes was the third.  
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Figure 7.2: Planar upscaling plot for the roughness length, zo , R =0.9982. The objective 

function used in the estimation of zo is based on the sensible heat fluxes. 
 

The evaporative fraction is the most appropriate fitting function for the 

roughness length because its formulation is based on the sensible and latent heat fluxes 

(see equation 4.1 in Chapter 4) and hence it properly captures the error associated with 

estimating roughness length. More importantly, the evaporative fraction is continuous, 

analytic and bounded between 0 and 1 (an important condition for a successful 

parameter estimation simulation). 
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Figure 7.3: Parabolic upscaling plot for roughness length, zo , R =0.9864. The objective 
function used in the estimation of zo is based on the latent heat fluxes. 

 

Surface parameters: Surface albedo and emissivity 

Figures 7.4 and 7.5 show the respective upscaling relationships for surface albedo and 

emissivity. Upscaling laws for these surface parameters are well established (Hu et al., 

1999 and 1997). The linear upscaling law was found to best fit the surface parameters, 

surface albedo and emissivity. The correlation co-efficients were the highest (almost 1). 

This is because they have linear dependence on the surface radiation functions from 

which they are computed.  
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Figure 7.4: Planar upscaling plot for surface albedo, α, R =0.9998. The objective 

function used in the estimation of α is based on the net shortwave 
radiation. 
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The same linear upscaling laws derived for the 1D SVAT case applies in the 

case of the 3D SVAT case. This is mainly due to the fact that the effective parameter is 

independent of meteorological forcing. A summary of the upscaling laws and their 

corresponding measures of fit for the land surface parameters investigated are given in 

Table 7.1.  
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Figure 7.5: Planar upscaling plot for the surface emissivity, ε, R =0.9999. The objective 
function used in the estimation of ε is based on the outgoing longwave 
radiation. 

 

The vegetation parameters 

Figures 7.6 to 7.9 show the respective upscaling plots for the vegetation parameters: 

minimal stomatal resistance, vapour pressure deficit factor, leaf area index and plant 

insolation factor. They depend highly nonlinearly on canopy resistance and hence are 

difficult to aggregate. The plant insolation factor, solar insolation factor and leaf area 

index show the highest nonlinearities (Kim and Ek, 1995). Because of their highly 

nonlinear nature, a good initial parameter set is crucial for their successful estimation. 

The parabolic upscaling law (with mixed nonlinear terms) was found appropriate for all 

the vegetation parameters investigated. 
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Figure 7.6: Parabolic upscaling plot for the minimum stomatal resistance, Rcmin,  
 R =0.9997. The objective function used in the estimation of Rcmin is based on 

transpiration. 
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Figure 7.7: Parabolic upscaling plot for the vapour pressure deficit factor, Hs,  
 R =0.9996. The objective function used in the estimation of Hs is based on 

transpiration. 
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Figure 7.8: Parabolic upscaling plot for the leaf area index, LAI, R =0.9993. The 
objective function used in the estimation of LAI is based on transpiration. 
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Figure 7.9: Parabolic upscaling plot for the plant insolation factor, Rgl, R =0.9995. The 
objective function used in the estimation of Rgl is based on transpiration. 
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The Clapp-Hornberger constant 

For the Clapp-Hornberger soil parameter b, the parabolic upscaling law (with no 

nonlinear mixed terms) was best fitting model. Although the correlation co-efficient 

was good, it is lesser than those obtained for the vegetation and surface parameters (see 

Table 7.1). This is due to the highly nonlinear nature of the dependence of the soil 

hydraulic and thermodynamic properties on b (see section 3.2.2 of Chapter 3). The 

upscaling law for b is shown in figure 7.10. 
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Figure 7.10: Parabolic upscaling law for Clapp-Hornberger parameter, b, R =0.9583. 
The objective function used in the estimation of b is based on soil 
evaporation. 

 

General observations from the analysis of the upscaling relationships 

The general observation from the above upscaling analysis is that when the 

heterogeneity becomes large, the effective parameter becomes smaller than the mean 

parameter. However, when the heterogeneity becomes small, the effective parameter 

approaches the mean parameter (arithmetic mean of the subgrid scale parameters). This 

is consistent with other related studies (Hu et al., 1997 and 1999). A similar trend was 

observed with a Monte Carlo simulation of the normally distributed fields. When the 

standard deviation, which is a measure of heterogeneity becomes large, the sample 

mean becomes smaller than the population mean. However, when the standard deviation 

approaches zero, the sample mean approaches the population mean.  
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Table 7.1: Upscaling laws, objective functions and Goodness-of-Fit for the 1D SVAT 
parameters. The effective parameters are independent of boundary and 
meteorological conditions. 

Parameter 

 

Upscaling law Correlation 

Co-efficient 

R 

zo(cm): Λ zo,eff =1.019µzo-0.193σzo - 2.000*10-4σzo
2  

+ 3.100*10-3µzoσzo-7.700*10-3σzo
2 

0.9985 

zo(cm) :H zoeff =1.018µzo - 0.2372σzo 

 

0.9982 

zo(cm) :λE zo,eff  =1.093µzo-0.232σzo-1.100*10-3µzo
2   

+  7.200*10-3µzoσzo- 1.360*10-2σzo
2 

0.9864 

α [-] αeff =0.999µα - 4.150*10-2σα 

 

0.9998 

ε [-] 

 

εeff =1.001µε - 4.410*10-2σε 

 

0.9999 

Rcmin (sm-1) Rcmineff  =1.029µRcmin - 0.333σRcmin 

-1.000*10-4µRcmin
2+1.200*10-3µ RcminσRcmin   

  -2.400*10-3σRcmin
2 

0.9997 

 

 

Hs (kg/kg) Hseff  =1.022µHs - 0.293σHs - 4.000*10-4µHs
2 

+ 7.500*10-3µHsσHs - 1.660*10-2σHs
2 

0.9996 

LAI [-] LAIeff =1.029µLAI - 0.315σLAI  - 4.100*10- 3 µLAI
2  

+ 5.790*10-2µLAIσLAI - 0.125σLAI
2 

0.9993 

Rgl (Wm-2) Rgleff=1.021µRgl-0.206σRgl -3.00*10-4µRgl
2 

+5.3*10-2µRglσRgl -1.180*10-2σRgl
2 

0.9995 

Clapp-

Hornberger b [-] 

beff=1.100µb+0.1462σb - 1.680*10-2µb
2 

-2.880*10-2σb
2

 

0.9583 

 

 

More importantly, the upscaling laws summarized in Table 7.1 show that when the 

standard deviation is zero, the effective parameter is equal to the mean parameter, which 

is the homogeneous land surface parameter. Hence, the upscaling laws derived from the 
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experiment give a measure of subgrid scale heterogeneity and are consistent with (both 

theoretical and experimental) results.  

 

7.2.2 Comparison of proposed method with method of Hu et al. (1999) 

To assess the performance of the proposed model, the scale invariance criteria of Hu et 

al. (1997) was applied. It requires that the percentage change of a grid model output 

with respect to aggregated output be less than 10% for the change to be negligible. 

Figures 7.11 to 7.22 show the time series plots for the surface energy fluxes (sensible 

heat and latent heat fluxes) and the moisture indicators (evaporative fraction and Bowen 

ratio), respectively for the 1D SVAT investigations. The detailed analysis of model 

output for the surface energy fluxes and moisture indicators are discussed below. The 

distribution of the subgrid scale land surface parameters used in this investigations have  

a sample mean of 100 and sample standard deviation of 46.69.   

 

Sensible heat fluxes 

The time evolution of the sensible heat fluxes is given in figure 7.11 for the observed, 

proposed method and that of Hu et al. (1999). Figures 7.12 and 7.13 give the 

corresponding percentage difference and residual sensible heat fluxes. The maximum 

residual sensible heat flux as can be seen from figure 7.13 is 1.48 Wm-2, which is small 

(< 5 Wm-2) compared to that obtained from the method of Hu et al. (1999), which is 

6.97 Wm-2. 
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Figure 7.11:  Time evolution of the sensible heat fluxes for the measured and methods 

based on the proposed and Hu et al. (1999). 
 

The time evolution of the residual sensible heat fluxes tends to increase with 

increasing sensible heat fluxes. Similar results have been reported in related literature 

(Moran et al., 1997). However, percentage differences are high at night time, where the 

residual sensible heat fluxes are far below 5 Wm-2 as compared to the low percentage 

differences observed during the day where the residual sensible heat fluxes are 

sometimes greater than 5 Wm-2.       
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Figure 7.12: Percentage difference in sensible heat fluxes. 
 

Although appreciable differences exist between values of effective roughness 

lengths for both methods at higher degrees of heterogeneity, the observed sensible heat 

fluxes were quite close. The method of Hu et al. (1999) overestimates the sensible heat 

flux, whereas the proposed method consistently reduces the error to zero. 
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Figure 7.13:  Time evolution of the residual sensible heat fluxes for the proposed 

method and Hu et al. (1999). 
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Latent heat fluxes 

The time evolution of the latent heat fluxes and the corresponding percentage difference 

and residual latent heat fluxes are respectively given in figures 7.14 to 7.16. A similar 

trend to that of the sensible heat fluxes was also observed in the case of the latent heat 

fluxes in that residual fluxes increase for daytime fluxes and decreases for nighttime 

fluxes. More importantly, maximum residual latent heat fluxes are much larger than that 

of the residual sensible heat fluxes.  
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Figure 7.14:  Time evolution of the latent heat fluxes for the measured and methods 

based on the proposed and Hu et al. (1999). 
 

The plots show significant deviations from the observed for the method based 

on Hu et al. (1999) than that of the proposed method. Whereas quite a large number of 

points exceed 5 Wm-2 in residual latent heat fluxes for the method based on Hu et al. 

(1999), no point exceeded 5 Wm-2 in the case of the proposed method.  



Analysis of results 

110 

T im e  (M in u te s )

0 1 0 0 0 2 0 0 0 3 0 0 0 4 0 0 0 5 0 0 0 6 0 0 0

Pe
rc

en
ta

ge
 D

iff
er

en
ce

 (%
)

-1 0 0

-5 0

0

5 0

1 0 0

P E S T  
H u  

 
Figure 7.15: Percentage difference in latent heat fluxes. 

 

The latent heat fluxes show large percentage differences for the method of Hu 

et al. (1999), whereas the proposed method consistently reduces it to zero. For the 

proposed method, 7 out of 192 points violated the scale invariance criteria as against 

112 out of 192 points for method of Hu et al. (1999). 
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Figure 7.16:  Time evolution of the residual latent heat fluxes for the proposed method 

and Hu et al. (1999). 
 

 



Analysis of results 

111 

Evaporative fraction 

Figures 7.17 to 7.19 show respectively, the time evolution of the evaporative fraction 

and the corresponding percentage difference and residuals for proposed method and that 

of Hu et al. (1999). The observed trend for the residual evaporative fraction is quite 

different from the sensible and latent heat fluxes in that the residual evaporative fraction 

closely matches that of the corresponding percentage differences.  
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Figure 7.17:  Time evolution of the evaporative fraction for the measured and methods 

based proposed and Hu et al. (1999). 
 

For the proposed method, only 2 points have residuals greater than 0.05, 

whereas for the method of Hu et al. (1999), quite a number of points (about 20%) have 

residual evaporative fraction exceeding 0.05. However, the percentage differences in 

evaporative fraction (Figure 7.18) show a similar trend to those of the latent heat flux 

(Figure 7.15). For methods based on PEST, 7 out of 192 points violated the scale 

invariance condition as against 54 out 192 for those based on Hu et al. (1999). 
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Figure 7.18: Percentage difference in evaporative fraction. 
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Figure 7.19:  Time evolution of the residual evaporative fraction for the proposed 

method and Hu et al. (1999). 
 

Bowen ratio 

The Bowen ratio does not follow any specific trend, and the fluctuations/errors are very 

erratic and large. A few points were in excess of 100,000 and hence were eliminated to 

enable the detailed display of the time evolution of the Bowen ratio and the 

corresponding residual Bowen ratio. Figures 7.20 to 7.22 give the respective time 

evolution of the Bowen ratio and the corresponding percentage difference and residuals. 

The higher residuals correspond at the same points in both the time evolution plots of 
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the Bowen ratio and the corresponding residual Bowen ratio. The high values occur 

mostly at night, when low values of the latent heat fluxes are observed. The plots show 

that the proposed method and that of Hu et al. (1999) have similar performance with 

respect to the Bowen ratio. Because the Bowen ratio function is not analytic, it is not 

suiTable for use as objective function in a parameter estimation process. 

The Bowen ratio is inappropriate for scale invariance analysis, because it is 

not well defined at vanishing latent heat fluxes as illustrated in figure 7.21. In this case, 

over 112 out of 192 points violated the scale-invariant criteria for both the proposed 

method and that of Hu et al. (1999). 
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Figure 7.20:  Time evolution of the Bowen ratio for the measured and methods based 
proposed and Hu et al. (1999). 
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Figure 7.21: Percentage difference in Bowen ratio. 
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Figure 7.22:  Time evolution of the residual Bowen ratio for the proposed method and 
Hu et al. (1999). 
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Additional validation of the proposed method: Comparison with method of Blyth 

et al. (1993) 

Most of the results obtained in this experiment are closer to the geometric mean of the 

subgrid scale parameters, which is also bounded by the harmonic and arithmetic means. 

More importantly, Blyth et al. (1993) used observation data to show that effective 

parameter estimates obtained as the average of the harmonic and arithmetic means give 

better results than either the harmonic or arithmetic means. These effective parameters 

are often very close to the geometric mean as shown in figures 7.26 to 7.28 for the 3D 

SVAT case (will be discussed later in this section). A similar trend was observed in the 

1D SVAT case. A comparison of the method of Blyth (1993) with the proposed method 

and the geometric mean is given in Tables 7.2 to 7.5. The conclusion drawn from this 

analysis is that the geometric mean is a better aggregation scheme than the other simple 

averaging methods, as its values are the closest to the PEST estimated or optimal 

parameter estimates. 

A detailed comparison of the proposed method with other existing simple 

averaging methods will be given for the 1D SVAT case later in section 7.5 of this 

chapter. For the analysis, a similar Chi square versus parameter plots will be used to 

assess the performance of the various models. The 3D SVAT case was omitted because 

it will have been computationally very expensive to undertake as discussed in the 

introduction to this chapter. 

Table 7.2: Plant insolation factor, RGL ( RGLµ =70 Wm-2, RGLσ =32.83 Wm-2) 
Method Parameter value Chi square value 

PEST 59.74 214510 

Geometric mean (GM) 59.74 214510 

Mean of HM and AM (BM) 56.92 283947 

 

Table 7.3: Leaf area index, LAI (µLAI =10, σLAI =4.69) 
Method Parameter value Chi square value 

PEST 8.53 229941 

Geometric mean (GM) 8.53 229941 

Mean of HM and AM (BM) 8.13 285494 
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Table 7.4: Roughness length, zo (µzo =100cm, =σzo 46.69 cm) 
Method Parameter value Chi square value 

PEST  88.53 15.65 

Geometric mean (GM) 85.34 39.45 

Mean of HM and AM (BM) 81.30 75.18 

 
Table 7.5: Plant Insolation factor, Rgl (µRgl=500 sm-1, σRgl=234.5 sm-1) 

Method Parameter value Chi square value 

PEST 426.70 114969 

Geometric mean (GM) 426.70 114969 

Mean of HM and AM (BM) 406.47 114969 

 

 

7.3 Results for coupled Mesoscale Climate Model MM5-PEST (3D SVAT) 

7.3.1 Upscaling laws 

The analysis in this section focuses on upscaling laws for the 3D SVAT case. To 

account for subgrid scale effects, upscaling laws are derived that map the mean and 

standard deviation of the distributed land surface parameters at the subgrid scale to their 

corresponding effective parameter at the grid scale for the coupled MM5-PEST case. 

Due to constraints on computing resources and experience gained from the 1D SVAT 

and preliminary 3D SVAT experiments, the evaporative fraction was used in 

formulating the objective functions for all the 3D SVAT land parameters. Details on the 

efficiency of the evaporative fraction as an objective function will be discussed in 

section 7.4. Figures 7.23 to 7.25 show the respective plots of the upscaling law for the 

roughness length, minimal stomatal resistance and solar insolation factor. Table 7.6 

gives their upscaling laws and the measure of Goodness-of-Fit.  
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Figure 7.23: Parabolic upscaling plot for the roughness length, zo, R =0.9762. The 
objective function used in the estimation of zo is based on the evaporative fraction. 
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Figure 7.24: Parabolic upscaling plot for the minimum stomatal resistance, Rcmin, R 
=0.9987. The objective function used in the estimation of Rcmin is based 
on the evaporative fraction. 
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Figure 7.25: Parabolic upscaling plot for the solar insolation factor, Rgl, R =0.9872. The 
objective function used in the estimation of Rgl is based on the 
evaporative fraction. 

 

In the case of the surface emissivity and albedo, it was found that a planar fit is 

best suited for interpolation between mean, standard deviation and effective values of 

emissivity and albedo.  Their upscaling laws were given in Table 7.1. It was observed 

that parabolic fits are best suited for interpolation between the mean, standard deviation 

and effective values of the roughness length, minimum stomatal resistance and solar 

insolation factor. These results follow a similar trend observed in the 1D SVAT case 

discussed in section 7.2.1. 
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Table 7.6: Upscaling laws and Goodness-of-Fit measures for the 3D SVAT parameters. 
The effective parameters are independent of boundary and meteorological 
conditions. 

Parameter 

 

Upscaling Law Correlation 

Co-efficient R 

zo  (cm) zoeff=1.095µzo-1.092σzo-1.200*10-3µzo
2+1.480*10-2µzoσzo 

- 1.530*σzo
2 

0.9762 

Rcmin (sm-1) Rcmineff =1.019µRcmin – 0.375σRcmin - 3.001µRcmin
2 

+ 6.000*10-4µRcminσRcmin - 2.000*10-3 σRcmin
2 

0.9987 

Rgl (Wm-2) Rgleff = 0.939µRgl + 0.165σRgl + 6.000*10-4µRgl
2 

- 2.400*10-3 µRglσRgl - 3.000*10-4σRgl
2 

0.9872 

 

 

Comparison of the upscaling relationship for the 1D and 3D SVAT 

Tables 7.1 and 7.6 show that the derived upscaling relationships for the 1D SVAT and 

3D SVAT have the same functional forms (but different coefficients) for each land 

surface parameter investigated. Additionally, the derived upscaling laws are 

independent of meteorological conditions because the 1D SVAT and 3D SVAT 

experiments were forced (run) with different meteorological and terrain information and 

during different periods of investigation. Hence the upscaling relationships derived for 

the 1D SVAT case are applicable to the 3D SVAT case within the limits of the 

assumptions and conditions under which the experiments were undertaken. More 

importantly, these results are consistent with other related research (Arain et al., 1996; 

Blyth et al., 1993; Hu et al., 1999).    

 

Variation of the effective parameter with degree of heterogeneity 

In section 7.2.1, a discussion on the behavior of the effective parameter with surface 

heterogeneity was discussed. A similar trend was observed with the 3D SVAT case. The 

variation of the effective parameter with heterogeneity is shown in figures 7.26 to 7.28 

for zo, Rcmin and Rgl, respectively. Four aggregation schemes: PEST, geometric mean 

(GM), harmonic mean (HM) and the average of the harmonic and arithmetic means 

(BM) are compared. The plots show that as heterogeneity increases, the effective 

parameter becomes smaller than the mean of the subgrid scale parameters. However, 
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when the heterogeneity approaches zero, the effective parameter approaches the mean 

parameter, which is the case for the homogeneous land surface. More importantly, it can 

be observed that at low heterogeneity, the effective parameter estimated from the 

various schemes converges to the same value. Additionally, it was observed that the plot 

for the effective parameter estimated from PEST is oscillatory for Rgl. This may be due 

to irregularities in the parameter search space and depends much on the initial parameter 

estimate used to drive the estimation process. In this experiment, the harmonic mean 

was used to compute the initial parameters. 

 The effective parameter estimates obtained by the proposed method (PEST) 

are based on 95 % confidence interval statistics. The parameter estimates obtained from 

simple averaging formulations (GM, HM, BM) are given as point estimates. The 

overlapping of the error bars on the PEST estimates by estimates obtained from the 

simple average methods implies that the effective parameter estimates are significantly 

not different from the PEST estimates. The detailed discussion on specific land surface 

parameters is given below. 
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Figure 7.26: Variation of effective zo with heterogeneity. (Parameters are distributed 

with: µzo =100 cm, σzo =44.69 cm). 
 

In the case of the roughness length, zo, all the methods are not significantly 

different from the PEST estimates at low to medium degree of heterogeneity. The HM 
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estimates are the most farthest from the PEST estimates at high degree of heterogeneity. 

This is also consistent with results obtained in the 1D SVAT case, and are shown in a 

chi square analysis in section 7.5. 
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Figure 7.27: Variation of effective Rcmin with heterogeneity. (Parameters are 

distributed with: µRcmin =50 sm-1, σRcmin =22.84 sm-1). 
 

For the Rcmin, the BM is fairly close to both the PEST and GM values at low 

degrees of heterogeneity. However, at high degrees of heterogeneity, BM is closer to the 

PEST estimates than GM. In general, HM is the farthest from the PEST estimates, 

indicating it is the least accurate of the various methods. Similar results have been 

observed in the 1D SVAT case and are shown in a number of Chi square vs parameter 

space plots for the land surface parameters investigated in this research.  
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Figure 7.28: Variation of effective Rgl with heterogeneity. (Parameters are distributed 

with: µRgl =100 Wm-2, σRgl =44.69 Wm-2). 
 

The parameter space for Rgl is very rough, therefore the choice of a good 

initial parameter set is crucial for the location of the global minimum. This is evidenced 

by the oscillatory nature of the line linking the PEST estimates. In general, the global 

minimum/optimal parameter is within the neighborhood of GM, because although the 

initial parameter estimates used in the optimal parameter search process was HM, the 

resulting optimal/PEST effective parameters are within a close neighborhood of GM. 

This is also consistent with results obtained from the chi square analysis with the 1D 

SVAT in section 7.5.   
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7.3.2 Comparison of the proposed method to method of Hu et al. (1999):  

The 3D SVAT case 

The comparison made in this section is analogous to that of the 1D SVAT case 

presented in section 7.2.2. The distribution of the subgrid scale land surface parameters 

used in this investigations have a sample mean of 100 and sample standard deviation of 

46.69.   

 

Sensible heat fluxes 

For the coupled 3D SVAT (MM5-PEST) runs, the results generally show similar trends 

to those of the 1D SVAT case discussed in section 7.3.1. However, marked differences 

exist for the sensible heat flux where the relative changes during the night violate the 

scale invariance criteria due to sign changes and very low values of the sensible heat 

fluxes as illustrated in Figures 7.29 to 7.31.  
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Figure 7.29:  Time evolution of the sensible heat fluxes for the measured and methods 

based proposed and Hu et al. (1999). 
 

A careful examination of the plots shows that generally both methods perform 

very well, because the regions with very high percentage differences occur at low 

incident solar radiation (mostly at night; around hours 18 - 36, 42 - 50 and 65 –75).  
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The residual fluxes at these times are insignificant (almost zero) to affect the 

energy dynamics appreciably (Moran et al., 1997; Nakaegawa et al., 2001).  
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Figure 7.30: Percentage difference in sensible heat fluxes. 
 

Generally, there are no significant differences between the observed sensible 

heat fluxes and those of the proposed method and Hu et al. (1999) at low sensible heat 

fluxes, which occur mostly at night and in the early morning. However, at high values 

of the sensible heat fluxes, mostly during daytime (between 9 – 16 hours GMT), 

significant differences exist between the two methods as evidenced in the residual plots. 

A maximum residual sensible heat flux of 11.90 Wm-2 was observed for the proposed 

method as against 12.26 Wm-2 obtained for the method of Hu et al. (1999). Also, 9 out 

of 72 points have residual sensible heat fluxes in excess of 5 Wm-2 as against 13 out of 

72 for the method of Hu et al. (1999). Hence, the two methods show comparable 

performance with respect to the sensible heat fluxes, as in the 1D SVAT case. 
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Figure 7.31:  Time evolution of the residual evaporative fraction for the proposed 

method and Hu et al. (1999). 
 

Latent heat fluxes 

A similar trend as observed for the sensible heat fluxes was also observed for the latent 

heat fluxes. Figures 7.32 to 7.34 show the time courses for the latent heat fluxes and the 

associated percentage difference and residuals. The magnitudes of the latent heat fluxes 

and their corresponding residual latent heat fluxes are higher than those of the sensible 

heat fluxes. However, the percentage differences are within the scale-invariance criteria 

of less than 10% (Hu et al., 1999) as shown in figure 7.33. Residual latent heat fluxes in 

excess of 30 Wm-2 have been observed for the method of Hu et al. (1999) as compared 

to a maximum of 14.26 Wm-2 for the proposed method. More importantly, the number 

of points with residual sensible heat fluxes greater than 5 Wm-2 is small (11 out of 72) 

for the proposed method compared to that of Hu et al. (1999) (26 out of 72). This shows 

improved performance of the proposed method compared to that of Hu et al. (1999).  A 

similar observation was realized with respect to the 1 D SVAT case. 
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Figure 7.32:  Time evolution of the latent heat fluxes for the measured and methods 
based proposed and Hu et al. (1999). 
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Figure 7.33: Percentage difference in latent heat fluxes. 
 

More importantly, the low percentage differences in latent heat fluxes (Figure 

7.33) for both methods compared to the 1D SVAT case (7.15) indicate that the subgrid 

scale effects are better resolved in the 3D SVAT case under the prevailing conditions. 

This further suggests that the lateral interactions between adjacent cells tend to 
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minimize the observed errors quite well compared to the stand-alone version (1D 

SVAT) where these interactions are assumed negligible. For lower degrees of subgrid 

scale variability, the two methods give the same parameter estimates for roughness 

length as shown in figure 7.28.  
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Figure 7.34:  Time evolution of the residual latent heat fluxes for the proposed method 
and Hu et al. (1999). 

 

Evaporative fraction 

Figures 7.35 and 7.36 show the respective time courses for the percentage difference 

and the corresponding residual evaporative fraction for the proposed method and that of 

Hu et al. (1999). The plots show a strong correlation between the residual and 

percentage differences in the time evolution of the evaporative fraction. More 

importantly, a similar but weaker trend was observed in the 1D SVAT case than 

depicted in figures 7.35 and 7.36. 

For the latent heat fluxes and evaporative fraction both methods satisfy the 

scale invariance condition very well, while the proposed method performs much better 

than that of Hu et al. (1999). 
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Figure 7.35: Percentage difference in evaporative fraction. 
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Figure 7.36:  Time evolution of the residual evaporative fraction for the proposed 

method and Hu et al. (1999). 
 

Surface parameters 

For the derivation of effective albedo, reflected shortwave radiation was used as the 

fitting function. In the case of emissivity, surface temperature was applied. Here, Hu et 

al. (1999) and the proposed method yield nearly identical results. The associated errors 
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are negligible, confirming results from related studies (Chehbouni et al., 1995; Hu et al., 

1997; Hu et al., 1999; Li et al., 1994). 

 

7.4 Effect of choice of objective functions, initial parameters and parameter 

bounds on results of the parameter estimation process 

Each point in the 3D upscaling plane presented in sections 7.2 and 7.3 constitutes a 

great deal of computational effort. For example, it takes on average about 45 MM5 

model calls (runs) to obtain a point in the upscaling relation using latent heat fluxes as 

fitting functions for the objective function. With each MM5 model call of about one 

hour duration, this translates to at least 6 months of computer time per upscaling law of 

100 points. The computational effort required for even three land surface parameters 

using this setting would be prohibitively expensive in terms of computing resources 

(e.g., CPU time and storage). 

Therefore, an important component of the research was to find effective ways 

of saving computing resources during the parameter estimation process by reducing the 

duration of model runs while ensuring accurate results. One approach was to formulate 

the solution strategy to meet the key requirements of well-posedness discussed in 

Chapter 3 as close as possible. The main requirements for achieving a feasible solution 

and faster convergence to the true solution are: 1) the initial parameter set must lie 

within a region R, bounded by the parameter set containing the global minimum, 2) the 

fitting function must be continuously differentiable for the range of parameters bounded 

by the region R, and 3) the covariance matrix for the parameters bounded by the region 

R must be a nonsingular and continuous function for the range of parameters bounded 

by the region R  (Cooley et al.,1990; Doherty, 2002, and Sun 1994). 

To realize these objectives, transformation of the functions of interest (latent 

and sensible heat fluxes) to a form (e.g. evaporative fraction) that guarantees a feasible 

solution and faster convergence was made. Similarly, much effort was made to obtain 

good initial parameters that were within the close neighborhood of the true solution 

(condition 1 above) using limiting cases of the transformed functions and other well-

known methods (Arain et al., 1996; Hu et al., 1999; Noilhan et al., 1996;Shuttleworth et 

al., 1999). Additionally, a criterion for parameter bounds was developed to restrain the 

solution from wandering in the non-feasible region of the parameter search space, hence 
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saving computing resources and CPU time. The lower and upper bounds were 

respectively obtained as the harmonic and arithmetic means of the subgrid scale 

parameters.  

 

Objective functions 

Verification and implementation of the above assumptions were made for the estimation 

of roughness length by undertaking model runs for fitting functions of evaporative 

fraction, latent and sensible heat fluxes using the same initial parameter of 31.8 cm 

obtained by the method of Hu et al. (1999). The result for each fitting function was fed 

to MM5 and the results compared to the aggregated sensible heat fluxes (observation). 

Model calls for evaporative fraction, latent and sensible heat fluxes were 26, 20 and 45, 

and corresponding parameter estimates 72.42 cm, 42.84 cm and 69.99 cm respectively. 

Although the number of model calls for sensible heat flux was the least, this had the 

poorest fit as it was trapped in a local minimum. Evaporative fraction has the best fit 

and second least model calls. These results are shown in Table 7.7 and illustrated in 

figures 7.37 and 7.38. Additionally, these values were used to generate latent heat 

fluxes. The roughness lengths obtained from using evaporative fraction and latent heat 

fluxes gave (almost) the same deviations, whereas those for the sensible heat fluxes 

gave the highest deviations from the observation. This scenario is illustrated in figure 

7.39.  
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Figure 7.37: Sensible heat fluxes based on zo estimates for different fitting functions. 
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Table 7.7: Comparison of objective functions based on the evaporative fraction, sensible 
heat latent and fluxes. 

Fitting function Number of model calls Roughness length (cm) 

Λ[-] 26 72.72 

λE(Wm-2) 45 69.99 

H (Wm-2) 20 42.84 

 
 

 
Figure 7.38: Residual sensible heat fluxes based on zo estimates for different objective 

functions. 

T i m e  ( H o u r s )

0 2 0 4 0 6 0 8 0

Pe
rc

en
ta

ge
 D

iff
er

en
ce

 (%
)

- 2 0

- 1 5

- 1 0

- 5

0

5

1 0

1 5

2 0

Λ
λ Ε

H

 
Figure 7.39: Percentage difference in latent fluxes based on zo based on different 

objective functions. 
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Initial parameter estimates 

The effect of the choice of initial parameters on the result of the parameter estimation 

process was further investigated. Initial values based on the arithmetic mean, harmonic 

mean (Hu et al., 1999) and an arbitrary value of half the mean were chosen to drive the 

parameter estimation process. The results show that parameter estimates obtained using 

initial values based on harmonic mean (Hu et al., 1999) give the best results as shown in 

figure 7.40.  
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Figure 7.40: Sensible heat fluxes based on different initial zo estimates. 

 

Transformation of fitting functions from sensible and latent heat to evaporative 

fraction and use of appropriate initial parameter estimates had the following advantages: 

• Better measures of fit observed with correlation coefficients and chi 

square minimum. 

• Reduced total number of model calls leading to reduction in simulation 

time per parameter estimation process. On the average, over 50% 

reduction in simulation time was realized. This reduces the required 

effort on the average from about 2-3 days to about 1 day per parameter 

estimation process.  

These achievements constitute a great step towards the realization of the objective of the 

thesis in that upscaling laws that require over 60 parameters could be obtained within 2-

3 weeks instead of about 3 months observed in previous experiments.  
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More importantly, better parameter estimates were obtained at greatly reduced model 

simulation times. 

 

7.5 Chi square analysis: 1D SVAT case 

To undertake the parameter estimation process, PEST must be initialized with good 

initial parameter estimates so as to increase the chances of locating the optimal 

parameter set. More importantly, there is the need for an appropriate framework upon 

which the performance of the different aggregation schemes discussed in this chapter 

can be compared. For this reason, one seeks for appropriate initial parameters or 

approximate aggregation schemes based on physics compatible with that of the SVAT 

models used in this research. 

To this end, the PEST’s PARREP facility (Doherty, 2002), which is used to 

generate chi square values for given parameters, was coupled to the OSU LSM and used 

to produce chi square values for some selected parameter values that scan the parameter 

spaces of the land surface parameters of interest. Plots of chi square versus land surface 

parameters were produced to provide a medium for comparing results of the proposed 

method and the existing parameter aggregation methods. The chi squared plots for the 

various effective land surface parameters are given in figures 7.41 to 7.50. Additionally, 

sets of chi square values and their corresponding parameter values are given in Tables 

7.8 and 7.9 for comparison. The investigation was done for both 9 and 81 subgrids to 

investigate the impact of the number of subgrids on the estimation of the effective 

parameter. 

These results show that the choice of initial parameter estimates based on the 

harmonic and geometric means of subgrid scale parameters is justified, as the initial 

parameter sets lie within reasonable ranges (close neighborhood) of the chi squared 

minima. It was also observed that the optimal parameter sets are very close to the 

geometric means of the distributed land surface parameters as discussed previously. 

More importantly, the results for the 9 subgrids are consistent with those of the 81 

subgrids. The method of Hu et al. (1999), which is a theory-based method, gives 

effective roughness length and canopy resistance as the harmonic mean of the 

distributed land surface parameters and serves as an appropriate initial parameter 

estimate method. In this scheme, corrections for errors associated with the 
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approximations made in formulating the effective parameters are difficult to quantify 

and hence omitted in the formulation. This leads to underestimation of the roughness 

length. The geometric mean and method of Blyth et al. (1993), which are upper bounds 

for the harmonic mean, seem to capture these errors quite well. Similar arguments can 

be made for the method of Arain et al. (1996), whose parameter estimates for minimum 

stomatal resistance is based on the harmonic mean. Also, the aggregation scheme 

proposed by Arain et al. (1996) for estimating the effective leaf area index (which is 

based on the arithmetic mean) overestimates the leaf area index. The geometric mean 

and method of Blyth et al. (1993), which are lower bounds to the arithmetic mean, 

approximate the optimal parameter set very well.  

 

Parameter bounds for the effective parameter 

Based on the observations derived from the chi square analysis and other upscaling 

analysis presented so far, the criteria for the parameter bounds derived from the analyses 

of this research formulated by the relation  

                                             AMpHM eff ≤≤      7.1 

where HM and AM are the respective harmonic and arithmetic means of the subgrid 

scale parameters. Additionally, the arithmetic, harmonic and geometric means are 

known to be related by the inequality  

AMGMHM ≤≤          7.2 

This is consistent with the results obtained from the 3D SVAT analysis in section 7.3.1.  

 

7.5.1 Dependence of number of subgrids on estimation of effective parameters: 

The case of 9 and 81 subgrid parameter distributions with the same 

means  

The effect of increasing the number of subgrids on the estimation of the effective 

parameters was investigated for the 1D SVAT case. For this experiment, the coupled 1D 

SVAT-PEST was applied to two configurations with 9 and 81 subgrids, respectively. 

The objective functions used in the investigation for each land surface parameter can be 

found in Table 7.1.  The chi squared plots for the various effective land surface 

parameters are shown in figures 7.41 to 7.50. Additionally, sets of chi square values and 
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their corresponding parameter values are given in Tables 7.8 and 7.9 for comparison. 

The detailed analysis of the results is given in the ensuing discussion.  

 

Roughness length 

Figures 7.41 and 7.42 give the respective chi square plots for the 9 and 81 subgrid cases. 

Generally, no significant differences were observed between the 9 and 81 subgrid cases. 

The shape of the parameter spaces and key features are preserved in both cases. The 

roughness length has a relatively smooth parameter space compared to the other 

parameters investigated in this research. There is an initial increase in the chi square 

value up to about 10 cm and then decreases towards the global minimum, with some 

undulations at specific regions.  
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Figure 7.41: Chi squared plot for roughness length, zo (9 subgrids). 
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Figure 7.42: Chi squared plot for roughness length, zo (81 subgrids). 

 

The chi square minima are located at different parameter values (85.01 cm for 

the 81 subgrid case and 90.00 cm for the 9 subgrid case) and are close to GM, BM and 

PEST estimates. The parameter space is particularly rough in the region below 60 cm in 

both cases and hence the search for the optimal parameter with initial parameters less 

than 60 cm will most probably end up in a local minimum. Additionally, the location of 

the peak between 90 cm and 100 cm would make the search for the optimal parameter 

difficult with an initial estimate of about 100 cm. 

 

Minimum stomatal resistance 

The minimum stomatal resistance is the plant resistance to flow of water under optimal 

conditions where the environmental factors regulating transpiration are not limiting. Its 

nonlinear dependence on the canopy resistance implies that it has a rough parameter 

space where the search for the optimal parameter can be a formidable task.  Figures 7.43 

and 7.44 show the respective chi square plots of the minimum stomatal resistance for 

the 9 and 81 subgrid cases.  
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Figure 7.43: Chi square plot for minimum stomatal resistance, Rcmin (9 subgrids). 
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Figure 7.44: Chi square plot for minimum stomatal resistance, Rcmin (81 subgrids). 

 

Distinct differences exist between the parameter spaces for the 9 and 81 

subgrid cases. The chi square minimum occur over a range of parameter values in both 

cases, but are wider in the 81 subgrid case with a range of 249 – 280 at chi square 

minimum value of 205,895 as compared to a parameter range of 357 – 374 at a chi 

square value of 94,136. Additionally, these ranges occur at larger values in the 9 subgrid 
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case compared to the 81 subgrid case. This is possibly due to the fact that the GM, 

which is consistently close to the optimal parameter/chi square minimum, is larger in 

the 9 subgrid case than in the 81 subgrid case.    

The location of GM, BM and PEST estimates are closer to the chi square 

minimum than the HM estimates in the 9 subgrid case; the reverse is true for the 81 

subgrid case. The general observation with respect to the effective Rcmin is that, for 

large values, HM, GM and BM have comparable performances as the parameter space 

seems to have a flat/ large range of values for the chi square minimum.  

 

Vapor pressure deficit factor 

The respective chi square plots for the vapor pressure deficit factor for the 9 and 81 

subgrids are given by figures 7.45 and 7.46. The parameter space for the vapor pressure 

deficit factor is the roughest among the parameters investigated. The distinct flat regions 

in the parameter space are possibly due to the fact that the response of the vapor 

pressure deficit function performs poorly during the winter period when the experiment 

was undertaken. Several contrasting views exist on the parameterization of the vapor 

pressure deficit on transpiration (Lynn and Carlson, 1990; Lhomme et al., 1998). Lynn 

and Carlson (1990) argue that the effect is not direct. Lhomme et al. (1998) suggest an 

average value of 24 kg/kg for Hs and recommend that the vapor pressure deficit 

function be put to 1. Also, there are reports that the vapor pressure deficit 

parameterization works for forests and other large trees, and hence is not appropriate for 

the land cover type used in this investigation. These arguments show that the 

complexity of the formulation of vapor pressure depends of transpiration and hence on 

Hs. 
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Figure 7.45: Chi square plot for vapor pressure deficit factor, Hs (9 subgrids). 
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Figure 7.46: Chi square plot for vapor pressure deficit factor, Hs (81 subgrids). 

 

The distinct flat regions in the parameter space imply that the search process 

would be easily trapped in these range of parameters. The choice of the initial parameter 

is therefore crucial.  There was no change in the shape of the parameter space for both 
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the 9 and 81 subgrids scenarios. The chi square minimum is located exactly at the same 

parameter ranges in both 9 and 81 subgrids scenarios at Hs values in the ranges of 30-

41, 43-47, 55-61, 63-74 and 77-80. However, the chi square minimum values are 

different for both cases. For the 9 subgrids case, the chi square minimum occurs at 

1157, whereas in the case of the 81 subgrids, the value is 24,634. 

The chi square minimum for the 81 subgrids case is larger than that of the 9 

subgrids case because the sum of square error objective function is computed over 81 

subgrid points and also for the case of the 9 subgrids scenario. Additionally, the GM, 

BM and PEST estimates are the chi square minimum values for the 9 subgrid case 

whereas in the 81 subgrids case they lie in a flat local minimum. 

 

Leaf area index 

The chi square plots for the leaf area index for both the 9 and 81 subgrids are given 

respectively in figures 7.47 and 7.48. Generally, there are no significant differences in 

the parameter spaces between the 9 and 81 subgrid cases for the leaf area index. The 

parameter space for the leaf area index is relatively less rough compared to the other 

vegetation parameters investigated. The chi square function decreases steeply from low 

values towards the global minimum and thereafter increases gradually with increasing 

parameter values.  
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Figure 7.47: Chi square plot for leaf area index, LAI (9 subgrids). 
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Figure 7.48: Chi square plot for leaf area index, LAI (81 subgrids). 

 

The striking difference between the two cases can be seen around the 

neighborhood of 10, where there is a sudden drop in the chi square value of the 9 

subgrid case. However, the chi square minimum occurs at 66,360 within a wider 

range/flat range (4.1 – 4.9) for the 9 subgrid case than the 81 subgrid case (3.6 – 3.7) 

where it occurs at 125,105. More importantly, GM, BM and PEST estimates have the 

same values as the chi square minimum in both 9 and 81 subgrid cases. In the 9 subgrid 

case, AM has the same value as the chi square value, whereas, in the 81 subgrid case, 
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the AM value is quite close to the chi square minimum estimate. The parameter space is 

rougher after AM, and hence a search process for the optimal parameter set starting 

above AM would have great difficulty in locating the global minimum. 

 

Plant insolation factor 

Figures 7.49 and 7.50 show the chi square plots of the plant insolation factor for both 

the 9 and 81 subgrids, respectively. There are no significant differences in the shape of 

the parameter spaces for both the 9 and 81 subgrid cases, except that the chi square 

minimum is closer to AM in the 81 subgrid case than in the 9 subgrid case. 

Additionally, the chi square minimum (241,773) occurs in the parameter range 89 – 91 

for the 81 subgrid case where as in the 9 subgrid case (183,643) it occurs at a parameter 

value of  96. The parameter space of the plant insolation factor is very rough, and hence 

the estimation of the effective parameter is a formidable task. Each of the minor 

peaks/spikes in the parameter space constitutes a computational barrier for the 

parameter search process as it serves as a trap of a local minimum. The choice of 

appropriate initial parameter estimates for driving the parameter search process is 

therefore crucial for the location of the chi square minimum. More importantly, any 

search process starting before BM would have difficulty in locating the chi square 

minimum. In this experimentation, two initial parameter estimates computed as GM and 

HM were tested based on experience from preliminary studies and related literature 

(Arain et al., 1996). Each search process got trapped around the respective initial 

parameter estimates. For the case of HM, this is most likely due to the rough edges of a 

local minimum. For the case of GM, it may be either due to the fact that the termination 

condition for the optimal parameter was met or also to a local minimum problem. An 

initial parameter estimate based on AM would be a good choice as it is close to the chi 

square minimum in both 9 and 81 subgrids cases. Also, there are less rough surfaces to 

impede the search for the optimal parameter set. 
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Figure 7.49: Chi square plot for plant insolation factor, Rgl (9 subgrids). 
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Figure 7.50: Chi square plot for plant insolation factor, Rgl (81 subgrids). 

 

7.5.2 General remarks on the chi square analysis 

The general observation from this analysis is that there is no significant difference in the 

shape and key features of the parameter spaces for the land surface parameters 

investigated for both 9 and 81 subgrid cases. Increasing the number of subgrids did not 

influence the spikes/peaks in the parameter space. These spikes may be due to an 
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intrinsic property of the parameter space. Additionally, the location of the chi square 

minimum is within the close neighborhood of the GM in both cases. The main 

differences are in the location of the GM, BM, HM and optimal parameter sets. In 

effect, since the mean of the distributions of the land surface parameters used for the chi 

square experiments in the 9 and 81 subgrid cases are the same while their corresponding 

standard deviations are different, the estimation of the effective parameters can be 

analyzed on mainly statistical bases. Based on these findings, simple statistical 

experiments can be designed to investigate some key properties of the effective 

parameters before selected detailed SVAT experiments that require computationally 

expensive runs are undertaken. This would constitute a significant step towards 

reducing the computational effort required in such investigations.  
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Table 7.8: Chi squared analysis of parameter space for the 1D SVAT (9 subgrids) 
Parameter 
 

Parameter 
space value 
at χ2

min 

Parameter 
space χ2

min 
PEST 
value 

PEST 
χ2

min 
Geometric 
Mean of 
parameters 

Geometric 
Mean 
χ2

min 

Harmonic 
Mean of 
parameters 

Harmonic 
Mean 
χ2

min 

Arithmetic 
Mean of 
parameters 

Arithmetic 
Mean  
χ2

min 
Rgl (Wm-2) 86.00/93.00 183643.00 85.34 183643.00 85.34 183643.00 62.59 891980.00 100.00 211421.00 
LAI (.) 4.10-4.90 66360.00 4.27 66360.00 4.27 66360.00 3.13 358020.00 5.00 114970.00 
Rcmin (sm-1) 358.00 

359.00 
87191.00 426.70 114970.00 426.70 114970.00 312.94 212191.00 500.00 177469.00 

Hs (kg/kg) 30.00-47.00 
55.00-73.00 
77.00-80.00 

11574.00 59.00 11574.00 59.00 11574.00 43.83 11574.00 70.00 11574.00 

zo-Λ (cm) 90.00 6.16e-3 86.80 7.03e-3 85.34 8.78e-3 62.59 8.27e-2 100.00 1.25e-2 

 
Parameter 
 

Arithmetic 
Mean of 
parameters 

Arithmetic 
Mean  
χ2

min 

Blyth Mean 
parameters 

Blyth Mean 
Mean  
χ2

min 
Rgl (Wm-2) 100.00 211421.00 81.30 218360.00 
LAI (.) 5.00 114970.00 4.06 66360.00 
Rcmin (sm-1) 500.00 177469.00 406.50 114970.00 
Hs (kg/kg) 70.00 11574.00 56.92 11574.00 

zo-Λ (cm) 100.00 1.25e-2 81.30 1.45e-2 
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Table 7.9: Chi squared analysis of parameter space for the 1D SVAT (81 subgrids) 
Parameter 
 

Parameter 
space value 
at χ2

min 

Parameter 
space χ2

min 
PEST 
value 

PEST 
χ2

min 
Geometric 
Mean of 
parameters 

Geometric 
Mean 
χ2

min 

Harmonic 
Mean of 
parameters 

Harmonic 
Mean χ2

min 
Arithmetic 
Mean of 
parameters 

Arithmetic 
Mean  
χ2

min 
Rgl (Wm-2) 89.00-91.00 241773.00 76.11 284978.00 76.11 284978.00 46.74.00 1662290.00 100.00 302727.00 
LAI (.) 3.60-3.70 125105.00 3.6-3.7 125105.00 3.81 215385.00 2.34 865839.00 5.00 321093.00 
Rcmin (sm-1) 249.00 -

280.00 
205895.00 380.54 360215.00 380.54 360215.00 233.68 254506.00 500.00 484444.00 

Hs (kg/kg) 30.00-47.00 
55.00-73.00 
77.00-80.00 

71704.00 53.28 71704.00 53.28 71704.00 32.72 24634.00 70.00 24634.00 

zo-Λ (cm) 81.59 1.26e-2 85.00 1.13e-2 76.11 1.83e-2 46.74 2.23e-1 100.00 2.86e-2 

 
Parameter 
 

Arithmetic 
Mean of 
parameters 

Arithmetic 
Mean  
χ2

min 

Blyth Mean 
parameters 

Blyth Mean 
Mean  
χ2

min 
Rgl (Wm-2) 100.00 302727.00 73.37 321243.00 
LAI (.) 5.00 321093.00 3.67 125105.00 
Rcmin (sm-1) 500.00 484444.00 366.84 303888.00 
Hs (kg/kg) 70.00 24634.00 51.39 71704.00 

zo-Λ (cm) 100.00 2.86e-2 73.37 2.29e-2 
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7.6 Dependence of effective roughness length on the duration of episode. 

To check the uniqueness of the parameter estimation process for the duration of model 

runs, the estimation process was done for roughness length for periods ranging from 1 

day to 30 days using the coupled 1D SVAT-PEST model. Figures 7.51 to 7.53 show the 

plots of the roughness length obtained for different duration of episodes. Figures 7.51 

and 7.52 give regression plots of the roughness length with respect to duration of 

episodes; error bars are based on the standard deviation and residuals, respectively. The 

effective roughness length values ranges from 85.33 cm to 93.04 cm. It has an average 

of 88.67 cm, a standard deviation of 2.62 cm and a co-efficient of variation of 0.0295. A 

linear regression analysis of the effective roughness lengths for the episodes gives a 

gradient of –0.1460 cm per day (for the duration considered). This shows a relatively 

low variation in the effective roughness length and hence uniqueness of the parameter 

estimation process with respect to duration of episodes. Details of the analysis are given 

in Tables 7.9 and 7.10.   
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Figure 7.51: Linear regression plot for different duration episodes for investigating the 
uniqueness of the effective roughness length obtained from the sensible 
heat fluxes. Error bars are based on the standard deviation. 
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Figure 7.52: Plot showing the linear regression of effective roughness lengths obtained 

for different duration of episodes. Error bars are based on residuals of 
points from the regression line. 
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Figure 7.53: Plot showing significant differences between effective roughness lengths 

obtained for different duration of episodes. 
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Figure 7.53 shows the range of possible values of the effective roughness 

length that overlap for episodes of specific durations. It can therefore be deduced from 

figure 7.53 that:  

• The effective roughness lengths obtained for episodes of duration 10 

and 30 days are significantly different from those of 1, 5, 15, 20 and 25 

days. 

• There is no significant difference between roughness lengths obtained 

for episodes of duration 1, 5, 15, 20 and 30 days. 

The detailed information for the regression analysis of the dependence of the 

duration of episodes on the effective roughness length is given in Tables 7.9 and 

7.10. The high t-statistics (> 50) value for the intercept coupled with the low P value 

(< 0.05) implies there is a very high probability that the intercept is 90.86 cm. By 

similar arguments, the low t-statistics (< 2.5) value for the slope of the regression 

line coupled with its high P value (> 0.05) indicates that the duration of the episodes 

does not contribute much to the estimation of the effective roughness length.   
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Figure7.54: Plot showing relation between chi square minimum corresponding to the 

effective roughness lengths obtained for different duration of episodes. 
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The time course of the chi square minimum for the different duration of 

episodes is given in figure 7.54. The plot shows an increase in chi square minimum with 

the duration of episodes as expected (proportional to sum of residuals for the number of 

data points; Doherty, 2002). However, the increase is not linear but follows a multiple 

sigmoidal trend where it rises and flattens in some ranges of duration of episodes. The 

plot/chi square value increases slowly in the ranges 5 – 10, 15 – 20 and increases 

exponentially in the ranges 1 - 4, 10 - 15, 20-25 and 25 - 30. The regions/points where 

the plot is steep may indicate the presence of outliers or bifurcations in the inverse 

solution that tend to increase the chi square values exponentially. Comparison of figures 

7.53 and 7.54 suggests that the effective roughness length for episodes with durations of 

10 and 30 days may be outliers. 

 

Table 7.8: Regression statistics 
Multiple R 0.60 
R Square 0.36 
Adjusted R quare 0.23 
Standard Error 2.30 
Observations 7 
 

Table 7.9: Further regression statistics 
 Coefficients Standard Error

 
t- Stat P-value Lower 95% Upper 95%

Intercept (cm) 90.86 1.57 57.73 2.95E-08 86.81 94.91 
Duration (cm/day) -0.15 0.09 -1.67 0.12 -0.37 0.08 

 

Table 7.10: Predicted, residual and chi square minimum values 
Duration of episodes 

(Days) 

PEST 

zo (cm) 

Predicted, 

zo(cm) 

Residuals 

zo(cm) 

Chi square minimum 

χ2
min [-] 

30 85.33 86.48 -1.15 198.70 
25 85.69 87.21 -1.52 81.02 
20 90.00 87.94 2.01 53.01 
15 88.90 88.67 0.23 42.11 
10 93.04 89.40 3.64 17.02 
4 88.53 90.28 -1.74 15.65 
1 89.21 90.71 -1.51 2.01 
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7.7 Concluding Remarks 

The detailed analysis of the results obtained from the numerical experimentation on the 

proposed upscaling law described in Chapter 6 was presented in this chapter. The 

comparison with other methods using the chi square analysis and other methods of 

relevance to this thesis was also presented, with particular emphasis on the strengths 

and weaknesses of each methodology. The analogy drawn between the Monte Carlo 

random number experiment and the results of this research suggests that effective 

parameter estimates can be obtained from purely statistical experiments subject to the 

physical constraints (e.g. prior information) of the physical problem under investigation. 

More importantly, the investigation suggests that simple averaging techniques have 

comparable performance to complex time and resource intensive techniques. 

Additionally, the investigations show that with the appropriate choice of initial 

parameter set and objective function, the computational effort required in the complex 

resource-intensive methods can be significantly reduced.   

The findings obtained from this research are consistent with related literature. 

For instance, Noilhan et al. (1997) developed methodologies for areally-averaging land 

surface parameters over large areas with mesoscale heterogeneity within the framework 

of the Hapex-Mobilhy and EFEDA experiments. They computed the effective albedo, 

leaf area index and vegetation cover to be the arithmetic mean of the subgrid scale 

parameters. Roughness length was averaged logarithmically and the stomatal resistances 

as harmonic or inversely-averaged values. These aggregation schemes were tested by 

comparing a 1D SVAT model result with that of the 3D SVAT model results and it was 

observed that the effective average fluxes obtained with the 1D SVAT model match 

those of the 3D SVAT with a small relative error. They also observed that for dry 

vegetated surfaces the variability of the stomatal resistance is relatively small compared 

to that of the extremely variability observed for partially wet mesoscale canopies. Also, 

Kabat et al. (1997) investigated the possibility of using a scale-invariant 

parameterization for scaling soil parameters. They observed that the parameterization of 

the dynamical relations (Darcy-Richards) governing soil water transport is generally not 

scale-invariant, therefore, the parameters describing the nonlinear, area-average soil 

hydraulic functions should be treated as calibration parameters, which do not necessary 

have any physical meaning. They argued that with specific assumptions, techniques 
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such as inverse modeling can give effective parameters that can be implemented in large 

-scale models. They further concluded that the method of using the dominant soil type 

to represent the whole grid can result in a severe underestimation of evaporation.  

The next chapter gives a summary discussion and conclusion for the work 

undertaken in this thesis. The outlook for future research is also discussed.  
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8 SUMMARY AND CONCLUSION 

 

8.1 Achievements 

The general objective of the thesis was to develop a methodology for upscaling land 

surface parameters to address the problem of parameterizing subgrid scale heterogeneity 

effects.  To this end, an inverse-SVAT method was developed and applied to both 1D 

and 3D SVAT models through numerical experimentation.  

Specific objectives that were realized include: 

• Development of an inverse-SVAT modeling algorithm for estimating 

effective land surface parameters.  

• Derivation of upscaling laws, allowing one to scale distributed land 

surface parameters from the subgrid scale to the gridscale: 1) 

roughness length, 2) albedo, 3) emissivity, 4) minimum stomatal 

resistance, 5) plant insolation factor, 6) vapor pressure deficit factor, 7) 

leaf area index and 8) Clapp-Hornberger soil parameter b.  

• Identification of computationally efficient parameter aggregation rules 

using simple averaging methods. 

• Development of a unified framework for model comparison, enabling 

comparison of the developed aggregation scheme to existing methods 

(Arain et al., 1996; Chehbouni et al., 1995, Hu et al. 1999; Noilhan et 

al., 1996; Shutleworth et al., 1997).  

• Development of an experimental environment that allows the coupling 

of models of different complexity. Ideal for automatic calibration of 

complex models.   

• Establishing the differences in the upscaling laws between stand-alone 

and 3D versions. 

• Identification of optimal objective functions and parameter bounds for 

enhancing parameter estimation process (general application to inverse 

problems).  

• Identification of indeterminate states of solution; recommendation for 

selection of initial parameter guesses. 
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• Sensitivity analysis of surface energy fluxes and moisture indicators to 

perturbations in vegetation parameters in the Volta Basin. 

 

8.2 Method 

This work has demonstrated how inverse modeling can be used to obtain effective land 

surface parameters and establish scale invariance for the surface energy fluxes (latent 

and sensible heat fluxes), moisture indicators (Bowen ratio and evaporative fraction), 

surface temperature, and reflected shortwave radiation.  

To justify the choice of initial parameter estimates and also validate the 

performance the proposed scheme, the PEST’s PARREP facility (Doherty, 2000) was 

coupled to the OSU LSM to produce Chi Square values for some selected parameter 

values that scan the parameter spaces of the land surface parameters of interest. Plots of 

Chi Square versus land surface parameters were developed and the results of the 

proposed method compared to the existing methods surveyed in chapter 2. This 

provided a tool upon which performances of the various methods were assessed. The 

results show that the proposed method performs very well, and more importantly, the 

methods adopted for estimating the initial parameters are appropriate. That is, they 

guarantee that the initial parameter sets are within a close neighborhood of the optimal 

solution. This is a major requirement for a successful parameter estimation process. 

The thesis also outlined the limitations involved in implementing inverse 

modeling when the function of interest is not well defined as illustrated in chapter 7 

with the example on the Bowen ratio in section 7.2.2 and the analysis in section 7.4. 

Information obtained from these plots enables one to develop better strategies for 

analyzing residual errors to improve the parameter estimation process. For example, we 

know from this study that in the stand alone coupled SVAT-PEST runs, the residual 

error distribution for parameter estimates based on Hu et al. (1999) is Gaussian for 

latent heat fluxes and evaporative fraction, hence we can use the relevant parameter 

transformation to improve the parameter estimates. Similarly, an appropriate parameter 

transformation can be made in the case of the sensible heat flux estimates based on Hu 

et al. (1999) which consistently overestimates the observed sensible heat fluxes.  

On the other hand, the plots for the evaporative fraction are well within the 

scale invariant condition for both methods in the coupled MM5-PEST runs. This is due 
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to the fact that the evaporative fraction is well defined (bounded between 0 and 1) and 

stable. This is a requirement for parameter convergence and hence makes the 

evaporative fraction a natural choice for the parameter estimation formulation for 

roughness length and other land surface parameters. As there exist a strong mutual 

dependence of the latent and sensible heat fluxes on roughness length, using evaporative 

fraction as model output response in estimating the roughness length captures parameter 

sensitivities that properly reflect their interdependencies. This was discussed in section 

7.4 of chapter 7.  

A criterion for determining effective parameter bounds was developed to 

restrain the search process from wandering in the non-feasible region of the parameter 

space and hence reducing model run time considerably. The lower and upper limits of 

the effective parameter bounds were found to be the harmonic and arithmetic means of 

the subgrid scale parameters respectively. 

Moreover, it is important to note that the proposed method provides effective 

parameters that are independent of the length of the forcing episode as discussed in 

chapter 7 (section 7.3.1); in case of other methods (Arain et al., 1996; Chehbouni et al., 

1995) this is not the case; Hu et al. (1999) require an approximation on the temperature 

difference between subgrid and grid to achieve this goal. 

 

8.3 Results 

Several aggregation rules for upscaling land surface parameters and aggregating surface 

energy fluxes were surveyed in chapter 2. The use of simple averaging rules has been 

reported in several studies (Arain et al., 1996; Blyth et al., 1993) to offer comparable 

performance to complex and computationally expensive schemes. Chapter 7 gave a 

detailed analysis of the results of the thesis. More importantly, a simple aggregation 

scheme based on the geometric mean of distributed land surface parameters was found 

to be the most appropriate among the simple aggregation rules. A summary of 

comparison of the proposed method with other methods and the results of the upscaling 

laws for the 3D and 1D SVAT land surface parameters are given in tables 8.1 and 8.2 

respectively.   
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Table 8.1: Coupled MM5-PEST parameter upscaling laws (3D SVAT). 
Parameter Objective function Upscaling law General Comparison to  

existing methods 
Roughness length (zo) Evaporative 

fraction 
Parabolic Represents surface energy  

fluxes better than Hu et al., 
(1999). 

Surface albedo (α) Reflected  
shortwave 

Planar Same as Hu et al. (1997  
and 1999), Chehbouni et  
al. (1995). 

Surface emissivity (ε) Surface  
temperature 

Planar Same as Hu et al. (1997  
and 1999), Chehbouni et  
al. (1995). 

Insolation factor (Rgl) Evaporative  
fraction 

Parabolic Represents surface energy 
 fluxes better than Arain et  
al. (1996) and Blyth et al.  
(1993). Same values as the  
geometric mean. 
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Table 8.2: Coupled 1D SVAT-PEST parameter upscaling laws. 
Parameter Objective 

function 

Upscaling 

law 

Comparison  

Roughness length (zo) Evaporative 

fraction 

Planar or 

weak 

Parabolic 

Represents surface energy 

fluxes better than Hu et al., 

(1999) and geometric mean. 

Surface Albedo (α) Reflected 

shortwave 

Planar Same as existing methods. 

Surface emissivity (ε) Surface 

temperature 

Planar Same as existing methods. 

Minimum stomatal 

resistance (Rcmin) 

Evaporative 

fraction 

Parabolic Represents surface energy 

fluxes better than Arain et al. 

(1996) and Blyth et al. (1993). 

Same as the geometric mean. 

Insolation factor (Rgl) Transpiration Parabolic Represents surface energy 

fluxes better than Arain et al. 

(1996) and Blyth et al. (1993). 

Same as the geometric mean. 

Leaf area index (LAI) Transpiration Parabolic Represents surface energy 

fluxes better than Arain et al. 

(1996) and Blyth et al. (1993). 

Same as the geometric mean. 

Vapour pressure deficit 

factor (Hs) 

Transpiration Parabolic Represents surface energy 

equally as existing schemes. 

Same as the geometric mean. 

Clapp-Hornberger 

parameter (b) 

Soil evaporation Parabolic N/A 
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8.4 Conclusion 

In conclusion, the proposed method provides a convenient framework for upscaling 

land-surface parameters such that surface energy fluxes and moisture indicators in 

complex terrains become scale invariant. To extend the applicability of the proposed 

method, an investigation of its implementation in a full mesoscale climate model 

(MM5) was undertaken to account for the lateral interactions between atmospheric state 

variables of adjacent grids and the result was very promising. It was observed that the 

overall upscaling laws (planar, parabolic) themselves do not differ between the full 3D 

version and the stand alone version. However, the parameters appearing in the 

regression function differ: in general, the curvature show higher slopes in the fully 3D 

mode. 

 

8.5 Outlook 

Outlook for future work would include the implementation of the derived scaling laws 

in a mesoscale meteorological model to account for subgrid scale effects of the heat 

fluxes and apply it for global and regional climate simulations. In particular, the 

influence of cluster effects in subgrid scale variability must be investigated. Extended 

runs are also needed to investigate in detail, the influence of seasonal variability of land 

surface parameters on scale invariance and how to properly represent spatio-temporal 

variability of land surface processes at different scales of RCMs and GCMs. 

The impact of different statistical distributions of land surface parameters on 

aggregation schemes for land surface parameters and surface energy fluxes must also be 

investigated in detail. In particular, cluster effects and the influence of parameter 

correlations needs to be investigated and incorporate the assumption of distinct 

variability of land surface parameters. Also, detail statistical experiments that would 

include higher moments and related statistical parameter distributions of subgrid scale 

effects (instead of only mean and standard deviation used in this research) needs to be 

investigated. 
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Appendix A: Model Description 
 

1 OSU LSM (1D SVAT Model) 

The OSU LSM is a stand-alone, uncoupled, 1D column version used to execute single-

site land-surface simulations. It was developed by the climate group of Oregon State 

University and has been widely used in various studies on climate and environment.  

It is capable of predicting single site-specific thermodynamical and 

hydrological state variables of the land, vegetation and atmosphere components of the 

earth’s climate system (Mitchell, 2000). It is based on the coupling of the diurnally-

dependent potential evaporation approach of Ek and Mahrt (1984), the multi-layer soil 

model of Mahrt and Pan (1984), and the primitive canopy model of Pan and Mahrt 

(1987). Several modifications have been made over the past 20 years. It was extended 

by Chen et al. (1996) to include the canopy resistance formulation of Noilhan and 

Planton (1989) and Jacquemin and Noilhan (1990). It has a single-layer canopy and 

multi-layer soil geometry of up to 20 layers. It simulates the following prognostic 

variables: soil moisture and temperature in each soil layer, and snow cover.  

In this traditional 1D uncoupled mode, near-surface atmospheric forcing data 

is required as input.  The observation data is available at 30 minutes interval (or 

interpolated to 30-minute time intervals from about 1-6 hour interval observations). For 

observation intervals longer than 1-hour, the incoming surface solar insolation are 

interpolated with a solar zenith angle weighting, in order to capture the full amplitude of 

the diurnal solar insolation. The required forcing data are 1) air temperature at 3m above 

ground, 2) air humidity at 3m above ground, 3) surface pressure 4) wind speed at 10m 

above ground, 5) surface downward longwave radiation, 6) surface downward solar 

radiation and 7) precipitation. 

A significant extension to OSU LSM code is the inclusion of the Fortran 

“NAMELIST” construct which provides an alternative parameter input facility for 

external models (e.g. random number generator and PEST input/output communication 

files) without the need for recompilation of the whole code.   
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The main steps involved in the computation of SVAT state variables are 

summarized as follows: 

• The input/output files are initialized with data from the control file 

(model configuration, site characteristics, and initial conditions). 

• The time-step loop (including optional spin-up loop as indicated by 

control file) is invoked to enable the reading of atmospheric forcing 

data and conversion of signs and units to forms consistent with the 

model physics. 

• The monthly-mean surface greenness and surface albedo are 

interpolated to Julian day of the model time step.  

• The downward solar, longwave radiation and wind speed from input 

forcing are assigned to appropriate model variables and the 

intermediate model variables (e.g. actual and saturated specific 

humidity from input atmospheric forcing) are computation. 

• The model physics are invoked to numerically solve the governing 

equations of the soil, vegetation and atmospheric interactions. The state 

variables and surface energy fluxes over each time step are continually 

updated. 

• The output data from the simulation is written to the appropriate output 

files for each time step. 

A schematic for the OSU LSM model routine is given in figure A.1. The 

thermodynamic and energy related variables computed include the sensible heat fluxes, 

temperature (soil, air and surface), short and long wave radiations (incoming and 

outgoing) soil heat flux and other intermediate energy terms. The hydrological variables 

produced include latent heat fluxes, humidity, soil moisture (for each layer), 

transpiration, direct soil evaporation, evapotranspiration and other water related 

variables.  

It is currently been developed by the NOAH group (National Centers for 

Environmental Prediction, Oregon State University, Air Force and the Hydrologic 

Research Laboratory) and hence its new name NOAH LSM. The detailed model physics 

and parameters can be found in chapter 3. Additional information can be found in Chen 

and Dudhia (2001), Ek and Mahrt (1991) and Mitchell (2000). 
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Figure A. 1: Schematic of the OSU LSM model. 
 

 

 

 

 

 

 

CONTROL FILE 
Model configuration: 
- Initial conditions 
- Site-specific classification 

(location, Soil and 
vegetation types) 

- Duration of model run and 
time step 

FORCING DATA 
Data at 30 minutes interval 
- Air and soil temperatures 
- Surface pressure 
- Air humidity 
- Wind speed 
- Precipitation 
- Surface downward   

longwave radiation 
- Surface downward solar 

radiation 

NAMELIST INPUT 

NOAH LSM 
Numerically solves the 1D 
governing equations for the 
soil, vegetation and 
atmosphere interactions: 
- Soil thermodynamics 
- Soil hydrology 
- Plant transpiration 
- Surface energy balance 
- water species mixing ratio 
- Surface energy fluxes 
- Atmospheric state 

variables 
 
Model physics incorporate 
- Planetary Boundary Layer 

schemes 
- Cumulus parameterization 

 schemes 
- Radiation schemes 
- Explicit moisture schemes 
 
 

OUTPUT-THERMO.TXT 
Thermodynamical state variables 
- Sensible heat flux 
- Ground heat flux 
- Soil temperature for each layer 
- Air and surface temperature 
- Net radiation 

OUTPUT-HYDRO.TXT
Hydrological state variables 
- Soil moisture in each layer
- Latent heat flux 
- Transpiration 
- Run-off 
- Humidity 
- Canopy water content 
- Precipitation 

Namelist filename 

Namelist file 

OPTIONAL OUTPUT 
- Daily state variables 
- Selected observation data 
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2 Mesoscale Model (3D SVAT Model): Coupled MM5-OSU LSM 

The Penn State University (PSU)/National Centre for Atmospheric Research (NCAR) 

mesoscale model (MM5) was used in the fully coupled 3D SVAT-PEST experiment.   

MM5 is a limited area, nonhydrostatic, terrain following sigma-coordinate model. It 

consists of a collection of climate physics algorithms for predicting mesoscale 

atmospheric phenomena.  It has been developed as a community mesoscale model and 

has been continuously improved over the years by a wide group of international 

developers/users. The model improvements implemented over the years include:  

• Multiple nesting capability and nonhydrostatic dynamics, which allows 

for its application in at scales of very high resolution. 

• Multi-tasking capabilities on shared and distributed memory machines, 

and Four dimensional data assimilation capability. 

Included in the model are a number of variable resolution terrain and landuse 

data schemes. The data information include: landcover type, soil type, deep soil 

properties, vegetation fraction, and land-water mask data set. Additionally, the model 

allows for much flexibility in multi-nesting applications. This multi-nesting facility 

permits the model runs from global or synoptic scale down to cloud resolving scale in a 

single model run.  The model can be run in both 2-way and 1-way nesting modes. For 

the 2-way nesting mode, the nest’s input from the coarse domain comes via its 

boundaries, while the feedback to the coarser domain occurs over the nest interior. 

Multiple nests and moving nests are possible and the nesting ratio is always 3:1. For the 

1-way nesting mode, feedback from the nest domain to the mother domain is not 

permitted. The fine model domain is driven by the coarse model domain with no 

restriction on the nesting ratio. In the 1-way mode, the model is first run with the coarse 

domain to create output information that is time-interpolated to provide initial and 

boundary conditions for the nest domain.  Because it is vital that the terrain information 

of the nest domain is consistent with the coarser domain in the boundary zone, the 

terrain preprocessor is run with both domains. Fig A.3 shows the schematic for the one-

way nesting approach. A detail model description of MM5 can be found in Dudhia et 

al., (2000). 
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Figure A. 2: Schematic for MM5 modeling system. Source: MM5 Homepage 

(www.mmm.ucar.edu /mm5/lsm /lsm-docs.html). 
 
 
 

Blending the nest 
domain’s values  
with the coarser 
domain’s values  

Replaced with  
coarser domains 
values 

Coarser domain 

Fine domain 

 
Figure A. 3: Schematic of one-way nesting showing blending of a nest domain’s 

boundary and initial conditions with that of a mother domain. Source: 
(Dudhia et al., 2000) 
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TERRESTRIAL DATA 
(USGS) Landuse and 
terrain 

GLOBAL ANALYSIS 
DATA  

(NCAR Archived) 

TERRAIN 
Produces terrestrial 
data files for all 
mesoscale domains 

REGRID 
Produces first guess 
surface variables and 
pressure levels for 
INTERPF 

INTERPF 
Provides fields for 
initial and boundary 
conditions for coarsest 
domains 

NESTDOWN 
Provides fields for 

initial and boundary 
conditions for finer 

domains 

MM5 
Numerically solves the prognostic 
equations of the atmospheric 
motions: 

- Conservation momentum   
equation 

- Thermodynamic equation 
- Water species mixing 

ratio continuity equation 
- Mass continuity equation 

 
Model physics uses PBL 
schemes, cumulus 
parameterization schemes, 
radiation schemes,explicit 
moisture schemes. 
 
Coupled to OSU landsurface 
modeling scheme 

OUTPUT 
Meteorological variables for 
all domains and entire  
duration of runs 

 
 

Figure A. 4: Schematic of the one-way nesting approach. 
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3. The Nonlinear Optimal Parameter Estimation Tool (PEST) 

Parameter optimization is achieved using the highly efficient Gauss-Marquardt-

Levenberg method for which the discrepancies between model-generated variables and 

corresponding observation is reduced to a minimum in the least square sense. While 

requiring that the model output be differentiable with respect to the adjustable 

parameters, this method normally requires fewer model runs to achieve convergence to 

the optimal set than existing parameter estimation methods. Figure 5.10 shows the 

structure of the PEST scheme.  

PEST requires three input files: 

• Template files, one for each model input file on which model 

parameters needed for optimization are identified 

• Instruction files, one for each model output file on which model 

generated observations required for the objective function are 

identified, and  

• An input control file, which provides PEST with the names of all 

template and instruction files, the names of the corresponding model 

input and output files, the problem size, control variables, initial 

parameter values and bounds, observation data and related settings 

necessary for the parameter estimation process. 

The template file provides a medium through which PEST reads model input 

parameters and transform these parameters to the appropriate precision and format for 

the parameter estimation process. The instruction files provides an interface by which 

PEST reads model generated output and transform them to the required precision and 

form for the computation of the objective functions and derivatives required for the 

parameter estimation process. Unlike parameter values for which precision is important 

but not a strict requirement, precision in the representation of model-generated output is 

critical for the success of the parameter estimation process. The Gauss-Levenberg-

Marquardt method of nonlinear parameter estimation upon which the PEST algorithm is 

based, requires that the derivative of each model-generated output with respect to each 

parameter be computed for every optimization iteration. PEST computes these 

derivatives using the finite difference technique or one of its three-point variants 



Appendix A 

174 

(Doherty, 2002). In all cases, the derivative depends on the difference between two or 

three model-generated output on the basis of incrementally-varied parameter values. 

 

 

  
 
 
 
 
 
 
 
 
 
 
 
 

Model Input File Executable Model Model Output Files 

PEST Template File 
CASE.tpl PEST 

PEST Instruction Files
CASE.ins 

PEST Control File 
CASE.pst PEST Output Files 

 CASE.rec 
CASE.seo 

CASE.res 
CASE.sen 

CASE.par 
...,etc. 

 
 

Figure A. 5: Schematic of the PEST model. 
 

The control file is the control center of parameter estimation process as it 

provides the platform for coupling the model to PEST. It uses the template and 

instruction files as interfaces through which effective handshaking between PEST and 

the model is achieved. The relevant settings required by the Gauss-Levenberg-

Marquardt algorithm to drive the parameter estimation process are specified in the 

control file. These include the names of all template and instruction files, the names of 

the corresponding model input and output files, the problem size, control variables, 

initial parameter values and bounds, measurements and related settings necessary for the 

parameter estimation process. Additionally, executable commands needed to run the 

model to produce the information required by PEST are supplied in a batch file. 
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PEST works by taking control of the model and running it as many times as it 

needs to achieve the required parameter optimization. Each time PEST runs the model, 

it first writes the normal input files containing the parameters used by the model. After 

each model run, PEST reads the normal output files, locating those files with 

corresponding PEST formatted observation files. Settings are adjusted so that the 

method is tailored to best suit the problem under investigation. An efficient technique is 

used to compute accurate model output derivatives even when the model output is 

granular due to the limitation in the model numerical solution. 

Prior information on parameters and relationships between parameters are 

incorporated into the parameter estimation process. Parameters are transformed to 

appropriate forms by power laws to accelerate the convergence of the solution to the 

optimal parameter set.  Upper and lower bounds on parameters are imposed on 

parameters to constrain the parameter estimation process within the feasible region of 

the parameter space. Objective functions that are analytic (well behaved) greatly 

enhance solution convergence and drastically reduces the time for optimization runs. 

For this exercise, the combination of factors outlined above greatly improved the 

parameter estimation process, in particular, with the 3D climate mode where CPU time 

and computing resources were critical for the success of solution convergence. At the 

end of a successful optimization process, several output files are generated. The relevant 

output files for this thesis are the run record file (CASE.rec), the optimal parameter 

values file (CASE.par), the parameter sensitivity file (CASE.sen) and the residual file 

(CASE.res).   

 

 

 

 

 

 

 

 

 

 



Appendix B 

176 

Appendix B:  Preprocessing of relevant PEST files 
 

1 OSU LSM 

The OSU LSM is run with the model configuration outlined in appendix A.1. The 

relevant OSU LSM files that supply the land surface parameters to the physics routine 

are modified to include the random number generator that provides the synthetic land 

surface parameters for the model computations. 

 The PEST procedure for creating the instruction, template, parameter and 

control files for OSU LSM can be found in Doherty (2002). For albedo, the control file 

is modified to incorporate the random number generator. For the plant insolation factor, 

leaf area index, vapor pressure deficit factor and minimum stomatal resistance, the 

namelist file (namelist_chg_example) file is modified accordingly. The observation or 

fitting functions are transpiration, surface temperature, net radiation, and latent and 

sensible heat fluxes. A routine is coupled to the OSUL LSM to extract the relevant 

output after each run for each parameter of interest. 

The observation data for the parameter estimation process is obtained by 

running the OSU LSM with the appropriate modified routine where the parameter of 

interest is passed to the OSU LSM system via the namelist facility. The PEST 

instruction file is used to extract the observation data produced from the OSU LSM runs 

and then converted to PEST precision format. The PEST control file contains the PEST 

formatted observation, instruction and template for the corresponding model 

input/output files. The control file is modified to include the appropriate settings 

required by the Gauss-Levenberg-Marquardt algorithm and the executable (batch) files. 

A schematic showing the detailed handshaking between PEST, OSU LSM and the 

random number generator is shown in figure B.1.   
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2 MM5 

The finest MM5 domain (domain 5) prepared from the one-way nesting approach (see 

appendix A.2) is used for the coupled MM5-PEST simulations. The relevant MM5 files 

that supply the land surface parameters to the system are modified to include the 

random number generator that provides the synthetic land surface parameters for the 

model computations. This constitute the parameter initialization file (init.F) and the 

surface flux routine (sflx.F). For roughness length, emissivity and albedo, the init.F 

subroutine is modified. For the plant insolation factor and minimum stomatal resistance, 

the sflx.F file is modified. An extraction routine is incorporated in the MM5 output 

routine to write out the required observation (fitting function) for each parameter. The 

observation data (fitting functions) are the surface temperature, net radiation, and latent 

and sensible heat fluxes. 

The PEST procedure for creating the template, instruction, parameter and 

control files for MM5 can be found in Doherty (2002). Template and parameter files are 

produced for each of the modified files. Additionally, corresponding instruction files are 

produced for the observation. 

To prepare observation data for the parameter estimation process, MM5 is run 

with the appropriate modified routine where the parameter of interest is passed to the 

MM5 system. The relevant output (observation or fitting function) is written out in a 

PEST compatible format (ASCII). The PEST instruction file extracts the observation 

data produced by the MM5 run and then converts it to the PEST precision format. 

Similarly, corresponding template and parameter files are produced. 

Finally, a PEST control file is produced from the PEST formatted observation, 

parameter and template files. The control file is modified to include the appropriate 

settings required by the Gauss-Levenberg-Marquardt algorithm and the executable 

(batch) files. Figure B.1 shows the coupling of MM5 and PEST and the relevant 

handshaking between the various components of the coupled system.  



Appendix B 

178 

  

PEST 
Numerically solves the inverse 
problem through the highly 
efficient and robust Gauss-
Marquardt-Levenberg 
nonlinear parameter estimation 
scheme.  
 
System Configuration 
information include: 
- Initial parameter estimates 
- Termination criteria 
- Observation 
- Convergence criteria 
- Prior information 
- Regularization schemes 
- Parameter transformation 
- Input/output communications
 
Simulation results include: 
- Parameter statistics 
- Chi square values 
- Optimal parameters 
- Observation sensitivities 
- Parameter sensitivities 
- Model calls and run duration 
- Residuals 

Model Input Files 
OSU LSM Input 

MM5 Input 

Executable Model 
OSU LSM Executable Files 

MM5 Executable Files 

Model Output Files 
OSU LSM Output Files 

MM5 Output Files 

PEST Instruction Files
CASE.ins 

PEST Template Files
CASE.tpl 

PEST Control Files 
CASE.pst 

PEST Output Files 
 

CASE.rec 

CASE.seo

CASE.sen

CASE.par
...etc. 

Initial Parameter Estimates 
Nonlinear laws  
Linear Laws 

 
 
Figure B 1: Setup of the numerical experiment for coupling PEST to OSU LSM  and 

MM5. 
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