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ABSTRACT 
 
 
Afforestation, particularly with the use of N2-fixing trees (NFTs), is an option for ecological 
restoration of salinized, irrigated croplands in the lower reaches of the Amu Darya River. But current 
knowledge of enhanced juvenile tree growth and their N2 fixation rates is sparse for the marginal 
irrigated croplands of the Khorezm Region of Uzbekistan. A superior understanding would increase 
productivity of such lands, improve soil fertility status and increase profits for farmers. A two-
factorial field experiment was therefore conducted during 2006-2008 to compare the effect of three 
phosphorus (P) amendments on N2 fixation, biomass and growth rates of actinorhizal Elaeagnus 
angustifolia L. and leguminous Robinia pseudoacacia L. N2 fixation was quantified through 15N 
natural abundance, based on foliar and whole-tree sampling against non-N-fixing Gleditsia 
triacanthos L. The P rates included: (i) high-P (90 kg P ha-1), (ii) low-P (45 kg P ha-1), and (iii) no P 
applied (0-P). With high-P, N2 fixation by E. angustifolia increased by 81% and almost doubled for 
R. pseudoacacia when compared to 0-P. At a tree density of 5,714 trees ha-1, N2 fixed with high-P 
increased from an initial value of 64 kg ha-1 to 807 kg ha-1 after three years in E. angustifolia, and 
from 9 kg ha-1 to 155 kg ha-1 in R. pseudoacacia stands. The P-effect was inconsistent when 
analyzing absolute growth and biomass increase. Compared to 0-P, high-P increased total biomass, 
total above ground biomass and biomass of different tree fractions, but the increments in absolute 
growth were statistically insignificant. In contrast, high-P significantly increased relative growth 
rates of height for E. angustifolia, and the unit production rate and nitrogen productivity for R. 
pseudoacacia. Hence tree growth analyses should combine absolute and relative growth to gain a 
full insight.  

N2 fixation of E. angustifolia, the species with the highest potential in the field trial, was 
also quantified in lysimeters to eliminate inaccuracies that can occur when harvesting large trees in 
open fields. Here we used more than one reference species and two assessment methods, the 15N-
enrichment technique (15NET) and the A-value (AV). The non-N-fixers G. triacanthos and Ulmus 
pumila L. served as a reference. Twenty kg N ha-1 of 5 atom % 15N excess ammonium nitrate was 
applied to one-year-old trees in 2007 and to two-year-olds in 2008. This rate was suspected 
insufficient for the growth of older reference trees hence a treatment with 60 kg N ha-1 was included 
in 2008. With 15NET, the proportion of atmospheric N2 (%Ndfa) of E. angustifolia in 2007 was 79% 
when referenced against U. pumila and 68% against G. triacanthos. The results of the AV method 
showed that the %Ndfa of two-year-old E. angustifolia was 80%, and 68% when referenced against 
the same two species, respectively. Over two years, E. angustifolia fixed an average of 16 kg N2 ha-1 

year-1 when compared against both reference species. The findings of the N2 fixation rates of E. 
angustifolia measured with the 15NET and AV methods were compared also with the 15N natural 
abundance (15NA) and total N difference (ND) methods. The highest accuracy was obtained with the 
AV method, but financial and material considerations may favor the total ND method, especially 
when used in lysimeter trials when facilities are accessible for accurate dry matter and total N 
determination.  
 Tree plantation management would benefit from tools to support harvest scheduling of E. 
angustifolia and R. pseudoacacia foliage that have high N contents. During 2006-2008, the 
chlorophyll meter SPAD-502 was tested, calibrated and validated in the core experiment for the N2-
fixers and the non-N-fixer G. triacanthos. The temporally and spatially based validation of the 
species showed very high correlations with the empirically monitored values. The SPAD-502 is 
therefore helpful for livestock rearers who intend to include tree foliage in feed diets of their 
animals. Leaf crude protein (CP), an important indicator for feed quality, can now be determined for 
the three species given the established relationships between N/CP and the SPAD-502 readings. This 
determination, however, is only valid within the SPAD-502 range of readings determined during the 
calibration process for each species. Based on a least-cost-ratio model, the time of inclusion of 
foliage in the feed was simulated, which predicted that the leaves of non-fixer G. triacanthos would 
be best harvested in May, whereas the N2-fixer E. angustifolia should be harvested in July and 
September. Therefore, P fertilization at planting and the use of optical-based sensors during the 
vegetation season are two potential means for improving tree plantation management on marginal 
croplands that benefit the environment and farmers in the dryland regions of Uzbekistan. 



Auswirkungen von Phosphorzugaben auf die Stickstoffbindung und das Wachstum von 
Bäumen auf Agrarflächen mit hoher Bodensalinität im Unterlauf des Amu Darya in 
Usbekistan 
 
 
KURZFASSUNG 
 
 
Eine Aufforstung speziell mit N2-bindenden Bäumen  stellt eine Möglichkeit zur Restaurierung 
von salzbefallenen Agrarflächen am Unterlauf des Amu Darya dar. Die Bindungsraten von N2 
hinsichtlich eines verbesserten Wachstums junger Baumbestände in der 
Bewässerungslandschaft von Khorezm in Usbekistan sind jedoch kaum untersucht. Ein besseres 
Verständnis darüber kann die Bodenfruchtbarkeit und somit die Produktivität solcher 
degradierten Flächen in der Region steigern, und damit letztendlich das Einkommen der Bauern 
erhöhen. Ein Zweifaktorenversuch, durchgeführt zwischen 2006-2008, diente daher der 
Untersuchung der Auswirkungen von drei unterschiedlichen Phosphorzugaben (P) auf N2-
Bindung, Biomasse und Wachstumsraten der Aktinorrhiza-Pflanze Elaeagnus angustifolia L. 
und der Leguminose Robinia pseudoacacia L. Die Bindung von N2 wurde dabei anhand der  
natürlichen 15N Häufigkeit bestimmt, auf Blatt- und Baumebene im Vergleich mit der 
nichtbindenden Art Gleditsia triacanthos L.. Die Phosphorgaben wie folgt dosiert: (i) hohe 
Zugaben (90 kg P ha-1), (ii) niedrige Zugaben (45 kg ha-1) und (iii) keine Zugabe (0-P). Im 
Vergleich mit 0-P stieg die Bindung von N2 unter hoher P-Zugabe bei E. angustifolia um 81%, 
bei R. pseudoacacia sogar um fast das Doppelte. Bei einer Bestandsdichte von 5 714 Bäumen 
pro Hektar stieg die N2-Bindung innerhalb von drei Jahren bei E. angustifolia von anfänglich 64 
kg ha-1 auf 807 kg ha-1 N2, und bei R. pseudoacacia von 9 kg ha-1 auf 155 kg ha-1. Der Effekt der 
Phosphorgaben auf Wachstum und Biomassezunahme der Bäume zeigte jedoch Widersprüche. 
Verglichen mit 0-P resultierte eine hohe P-Beigabe in einer Zunahme der absoluten Biomasse, 
der oberirdischen Biomasse und der Biomasse der verschiedener Baumabschnitte, jedoch waren 
die Effekte statistisch nicht signifikant. Demgegenüber ergab eine hohe P-Beigabe signifikant 
höhere relative Höhenwachstumsraten für E. angustifolia und höhere Zuwachsraten (Unit 
Production Rate) als auch Stickstoffproduktivität für R. pseudoacacia. Wachstumsanalysen von 
Bäumen sollten daher sowohl absolutes als auch relatives Wachstum berücksichtigen, um einen 
vollständigen Einblick zu gewährleisten. 

Die N2-Bindung durch E. angustifolia, der vielversprechendsten Spezies im 
Feldversuch, wurde zusätzlich in Lysimeterexperimenten untersucht. Hierbei wurden mehrere 
Referenzarten und unterschiedliche Quantifizierungsmethoden verglichen, um möglichen 
Ungenauigkeiten auszuschließen, die bei der Ernte von großen Baumbeständen im Feld 
auftreten können. Die Quantifizierungsmethoden umfassten die 15N-Anreicherungstechnik 
(15NET) und den A-Wert (AW). Die nicht Stickstoff fixierenden Spezies G. triacanthos und 
Ulmus pumila dienten dabei als Referenz. Im Jahr 2007 wurde den ein- und 2008 den 
zweijährigen Bäumen je 20 kg ha-1 von mit fünf Atomprozent 15NET angereichertem 
Ammoniumnitrat zugegeben. Diese Menge war für das Wachstum von älteren Referenzbäumen 
nicht ausreichend, weswegen 2008 hier 60 kg ha-1 Stickstoff zugegeben wurden. Die 15NET 
Methode erbrachte im Jahr 2007 für E. angustifolia verglichen mit den Referenzpflanzen U. 
pumila und G. triacanthos einen Anteil an atmosphärischem N2 (%Ndfa) von 79% bzw. 68%. 
Die Ergebnisse der AW Methode bei zweijährigen E. angustifolia (2008) zeigten einen %Ndfa 
von 80% und 68% verglichen mit den genannten Referenzarten. Über zwei Jahre hinweg 
wurden im Vergleich zu beiden Referenzarten durch E. angustifolia im Mittel 16 kg ha-1 N2 
gebunden. Die durch die 15NET und AW Methoden gemessenen N2-Bindungsraten von E. 
angustifolia wurden auch hinsichtlich der natürlichen Häufigkeit von 15N (15NA) und durch die 
Berechnung von Gesamtstickstoff-Differenzen (ND) ausgewertet. Die höchste Genauigkeit 
wurde hierbei mit der AW Methode erzielt. Die ND Methode ist hingegen kostengünstiger und 



insbesondere in Lysimeterexperimenten zu bevorzugen, wenn auf eine gute Infrastruktur zur 
Bestimmung der Trockenmasse und des Gesamtstickstoffs zurückgegriffen werden kann. 
 Werkzeuge zur Planung von günstigen Erntezeitpunkten, also den Zeiträumen mit 
hohen Stickstoffgehalten der untersuchten Arten E. angustifolia und R. pseudoacacia, können 
das Management von Baumplantagen verbessern. Zwischen 2006 und 2008 wurde das 
Chlorophyll-Messgerät SPAD-502 im Hauptexperiment mit den beiden N2-bindenden sowie der 
nicht N2-bindenden Baumart G. triacanthos getestet, kalibriert und validiert. Die räumliche und 
zeitliche Validierung der Baumarten zeigte hohe Korrelationen mit empirisch gewonnenen 
Werten. Zusätzlich wurden für die drei Baumarten Bandbreiten von SPAD-502 Messungen 
ermittelt, innerhalb derer eine Überwachung und Vorhersage der zeitlichen Entwicklung von 
Stickstoffgehalten der Blätter mittels der statistischen Zusammenhänge möglich ist. Dieses 
Gerät kann tierhaltende Betriebe unterstützen, die Baumlaub optimal in die Zufütterung ihres 
Tierbestands integrieren möchten. Für die Bestimmung des Futterwerts der Blätter ist der Gehalt 
an Rohprotein (RP) von besonderer Bedeutung. SPAD-502 erlaubte die Bestimmung des RP-
Gehalts von Blättern der drei Baumarten auf Grundlage des bekannten Verhältnisses von 
Stickstoff zu Rohprotein (N/RP), allerdings nur im Bereich der mit dem SPAD-502 bei der 
Kalibrierung für jede Art festgelegten Meßwerte. Die minimale Kostenkombination 
verschiedener Intensitäten von Blattfütterung während der gesamten Vegetationsperiode wurde 
mit einem gesondert entwickelten Rechenmodell  simuliert. Wesentliche Ergebnisse waren, dass 
die Blätter des nicht-stickstoffbindenden G. triacanthos am Besten im Mai geerntet werden 
sollten, wogegen der optimal Erntezeitpunkt des stickstoffbindenden E. angustifolia zwischen 
Juli und August liegt. Die Düngung von Phosphor bei der Baumpflanzung und die Nutzung 
optischer Sensoren sind daher sehr gut geeignet, das Baumplantagenmanagement auf 
marginalen landwirtschaftlichen Flächen zu verbessern, was der Umwelt und den Farmern in 
den Trockenregionen von Usbekistan zu Gute kommt. 



РЕЗЮМЕ 

 

Лесоразведение, в особенности с использованием азотофиксирующих пород, является одним  
из вариантов улучшения экологического состояния засолённых орошаемых земель в низовьях 
Амударьи. Однако показатели роста молодых деревьев и уровень фиксации ими 
атмосферного азота на маргинальных землях Хорезмской области Узбекистана изучены 
недостаточно. Исследование данных вопросов может способствовать повышению 
продуктивности таких земель, улучшению их плодородия, а также увеличению доходов 
фермеров.   
 Исходя из этого, в 2006-2008 гг. был проведён двухфакторный полевой опыт для 
определения эффективности норм фосфорных удобрений на размеры азотофиксации, 
накопление биомассы и темпы роста азотофиксирующих пород, таких как Elaeagnus 
angustifolia L. и Robinia pseudoacacia L. Фиксация атмосферного азота была определена 
методом натурального обогащения 15N (15NА) как в образцах листьев, так и целого дерева.  В 
качестве контроля была использована Gleditsia triacanthos L., как порода дерева, 
нефиксирующая азот.  Нормы фосфорных удобрений  составили:  (i) 90 кг/га  (высокая 
норма), (ii) 45 кг/га (низкая норма), и (iii) контроль (без внесения фосфора).  
 Результаты исследований показали, что при внесении высокой нормы фосфора 
фиксация азота породой E. angustifolia повысилась на 81% и почти удвоилась у породы R. 
pseudoacacia по сравнению с контролем  без фосфора. К концу 3 года исследований, размер  
фиксации азота породой E. angustifolia при внесении высокой нормы фосфора увеличился с 
64 до 807 кг/га, и с 9 до 155 кг/га у породы  R. pseudoacacia при густоте стояния деревьев 5714 
штук/га. Действие фосфорных удобрений на увеличение биомассы и абсолютный рост 
деревьев имело непостоянный характер. По сравнению с контрольным вариантом, внесение 
высокой нормы фосфора повысило общую биомассу, общую надземную биомассу и биомассу 
различных фракций,  однако увеличение абсолютного роста  деревьев было статистически 
недостоверным.  В отличие от этого, внесение высокой нормы фосфора повысило 
относительные темпы роста в высоту у E. angustifolia, а также темпы производства биомассы 
с учётом многолетних фракций и продуктивность азота у R. pseudoacacia. Следовательно, для 
полной оценки продуктивности древесных пород  необходимо изучать  показатели как 
абсолютного, так и относительного  темпов  роста деревьев. 
 Фиксация атмосферного азота породой  E. angustifolia, которая показала высокий 
потенциал в полевом эксперименте, была также определена в лизиметрических установках, 
т.е. в контролируемых условиях, с целью исключения всевозможных отклонений, которые 
могут иметь место  при сборе биомассы с больших деревьев на открытых участках. В данном 
эксперименте в качестве контроля использовались древесные породы G. triacanthos и Ulmus 
pumila L. и применены два метода определения азотофиксации: (1) метод изотопного 
разведения (15NET), когда вносится одинаковая норма N-удобрения под фиксирующие и  
нефиксирующие атмосферный азот древесные породы, (2) А-метод (AV), когда вносятся 
разные нормы N-удобрения под фиксирующие и нефиксирующие атмосферный азот 
древесные породы. В 2007 г.  азот в норме 20 кг/га и в форме нитрата аммония с обогащением 
изотопа азота 15N 5 ат. % был внесен под однолетние деревья, а в 2008 г. - под двухлетние 
деревья. Предполагалось, что норма 20 кг N/га является недостаточной для нормального 
роста двухлетних контрольных пород. Поэтому в 2008 г. в эксперимент был введен  
дополнительный вариант с нормой азота  60 кг/га. При использовании метода 15NET 
фиксация азота породой E. angustifolia в 2007 году составила 79% в сравнении с контрольной 
породой U. pumila, и 68% в сравнении G. triacanthos. Результаты метода АV показали, что 
процент фиксации азота двухлетней E. angustifolia составил соответственно 80% и 68% в 
сравнении с теми же контрольными древесными породами. Размер фиксации атмосферного 
азота породой  E. angustifolia в среднем за два года изысканий составил 16 кг/га относительно 
упомянутых контрольных древесных пород. Размеры азотофиксации, определенные двумя 
методами изотопного разведения, были сопоставлены с результатами метода натурального 
обогащения 15N и методом «разности» по выносу общего азота между неудобренным и 
удобренным вариантами опыта. Выявлено, что в данном случае А-метод является наиболее 



точным. Однако если учесть финансовые и материальные стороны, метод «разности» был 
признан более подходящим, особенно при его использовании в условиях лизиметрических 
установок, где существуют возможности для более точного определения сухой массы 
деревьев и общего азота в растительных образцах.   
 Использование специального оборудования для разработки графика, который 
показывает время максимальной концентрации азота в листьях E. angustifolia и R. 
pseudoacacia для их сбора в качестве кормовой добавки скоту, принесло бы пользу в 
управлении древесными плантациями. В этих целях, в течение 2006-2008 гг., был 
протестирован и откалиброван  хлорофиллметр SPAD-502. Правильность калибровки данного 
прибора затем была подтверждена в полевом эксперименте с двумя азотофиксирующими и 
одной нефиксирующей азот породами. Проверка полученных в опыте данных во времени и 
пространстве показала высокую корреляцию между фактическими и  смоделированными 
значениями. Таким образом, хлорофиллметр SPAD-502 является полезным инструментом для 
животноводов, которые намерены ввести древесную листву в качестве добавки к основному 
корму. Более того, благодаря установленной зависимости между азотом/сырым протеином и 
значениями SPAD-502, стало возможным определение содержания сырого протеина в листьях 
трёх пород как основного индикатора качества корма. Однако эти данные приемлемы  в 
случае, если показания  SPAD-502 находятся в пределах значений, определённых при 
калибровке прибора для каждой древесной породы. С помощью модели линейного 
программирования были определены оптимальные сроки сбора лиственного корма: у G. 
triacanthos в мае, а у E. angustifolia – в июле и сентябре. Следовательно, внесение фосфорных 
удобрений при посадке древесных пород и использование оптических сенсоров, таких как 
SPAD-502, в течение вегетационного периода могут способствовать улучшению управления 
древесными плантациями на маргинальных землях. Это в свою очередь, окажет 
благоприятное воздействие на окружающую среду и на уровень жизни населения засушливых 
регионов Узбекистана.  
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1 GENERAL INTRODUCTION 

 

There are many reasons for planting, maintaining and managing trees in a landscape. 

These vary from ecological service provision (maintaining air quality, climate 

amelioration, water conservation, soil preservation, wildlife support and many others) to 

social roles, given the place of trees in religion, art, history and politics in communities, 

and also for improving livelihoods, given the many tangible and intangible benefits of 

trees. The role trees can play as a natural capital in the pathways to food security, 

poverty eradication and sustainable development has been underpinned by the United 

Nations (UN) in their Millennium Development goals (UN Millennium Project, 2005) 

and in the Framework Convention on Climate Change (1992). Much of the matters 

spelled out in these manuscripts should be of interest to decision makers, administrators 

and land users in Central Asia when planting, maintaining and managing trees on the 

marginal croplands in the irrigated landscapes. 

During the 20th century, the forest and woodland areas in Central Asia 

declined by on average 4-5 times due to an increasing anthropogenic impact (FAO, 

2006a). The present forest areas account for less than 7.3% of the entire region, but this 

is unevenly distributed over the five countries Kazakhstan, Kyrgyzstan, Tajikistan, 

Turkmenistan, and Uzbekistan (FAO, 2006a). During the Soviet era (1924-1991), 

forests and woodlands were promoted in Uzbekistan for environmental services 

provision, for combating land degradation and desertification (Tupitsa, 2010) and for 

protecting watersheds and conserving bio-diversity (Vildanova, 2006). Following 

independence in 1991, the government of Uzbekistan (GOU) included tree plantings on 

their development agenda, but this was mainly for satisfying the domestic demand for 

fruits and grapes (GOU, 2006b), construction wood and pulp (GOU, 1994) and for re-

vitalizing sericulture (GOU, 2006a). In the National Action Plan of 1999, the role of 

trees in landscape restructuring was outlined, although it remains unclear if this plan 

was eventually accepted. The year 2011 was declared by the UN assembly as the 

International Year of Forests to raise awareness on the role of trees and forests in 

reaching conservation and sustainable development. In pursuit of this, the GOU decided 

on a nationwide launch to plant trees in this year (Figure 1.1). 
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Figure 1.1: Banner installed in the center of Urgench city by the local Khokimiyat in 
accordance with the declaration of the year 2011 as the International 
Year of Forests. March, 2011. 
Translation: Dear compatriots: Let us take an active part in planting fruit 
and ornamental trees under the slogan: “For the 20th anniversary of 
independence my gift is 20 trees” 

 

1.1 Problem setting 

Prior to becoming socialistic republics within the Soviet Union (SU) bloc in 1924, the 

five Central Asian1 Republics (CARs) Kazakhstan, Kyrgyzstan, Tajikistan, 

Turkmenistan, and Uzbekistan had a Turkic-Persian history in common as evidenced by 

their similar linguistic roots, various cultural and social habits and the conviction to the 

Islam religion. For most of the 20th century, the CARs had been united in the centrally 

managed, single political, economic and infrastructure system of the SU (Suleimenov, 

2000). Final directions and decisions, e.g., on agricultural production, were taken by the 

leaders of the Communist Party, not only of the SU, but also by the leadership of the 

republics, the region and districts (Suleimenov, 2000). To increase both overall 

agricultural production and the arable area, the agricultural sector in the CARs was 

modernized. This was motivated by the unprecedented view that not the irrigable land 

was limiting for the development of the agricultural sector of the SU, but rather the 

amount of irrigation water that needed to be diverted to unexploited areas (Field, 1954). 

The well-known outcome of this vision of modernization was a centrally planned 

                                                 
1  Central Asia is also referred to as Middle Asia by Russian geographers 



General introduction 

3 

 

system of mono-cropping over large areas, and that each of the CARs became 

specialized in the production of one strategic commodity as one component of the larger 

system. Uzbekistan, for example, was consigned to produce cotton (Gossypium 

hirsutum L.) with energy gulping production systems and supported by high inputs from 

the state that also procured the commodities produced. This historic decision also 

explains the different development paths of the agricultural sectors of the CARs. Not 

only did these already begin during the Soviet era, they also indirectly were the signal 

and set the framework for the development paths pursued after independence in 1991 

(Suleimenov, 2000). 

After independence, the five CARs agreed to become part of the 

Commonwealth of Independent States (CIS). Although each republic pursued different 

development paths, land reforms initiated private land ownership in all CARs, albeit at 

different speed and to different degrees (Spoor and Visser, 2001). Owing to secondary 

soil salinization, water logging and saline shallow groundwater tables, the new land 

users, cultivating about 8 Mha of irrigated lowland areas of the CARs of which 50% lies 

in Uzbekistan, struggled to cope with the inherited soil degradation and with rising 

water demands and at the same time declining supply of water (Spoor, 1999). The tragic 

consequences of an inadequate modernization of the agricultural sector can be seen in 

the Khorezm region in northwest Uzbekistan, which is representative of the irrigated 

lowlands in the CARs. It is for this reason that the concept of ZEF (Center for 

Development Research, Bonn, Germany) for sustainable resource use envisages 

alternative uses of marginal cropland in the Khorezm region such as afforestation, rather 

than further promoting an over-exploitation of such croplands with, for example, annual 

crops. Trees play a pivotal role in ZEF’s concept of restructuring of land and water 

resources at the farm and landscape level (Martius et al., 2004). 

Once the appropriate tree species are identified, afforestation is an effective 

remedy to re-vegetate saline landscapes, reduce elevated groundwater tables and 

mitigate dryland salinization in irrigated land-use systems (Marcar and Crawford, 

2004). Therefore, indigenous tree species in the Khorezm region were screened for their 

ability to survive on drought-prone and saline sites, i.e., in resource-poor environments 

(Khamzina et al., 2006). The indicators included (1) survival rates, (2) ability to rapidly 

develop belowground biomass to assure early development, (3) aboveground biomass 
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increment, (4) rate of growth in height and trunk diameter, and (5) potential for use as 

supplementary fodder, fuelwood and construction material. A ranking of species 

considering all criteria simultaneously pointed at the high potential of Elaeagnus 

angustifolia L. to afforest marginal croplands. Although the performance of the other 

species differed by soil type and criteria considered, the overall assessment also 

indicated the potential for afforestation with Ulmus pumila L. and Populus eupharatica 

Olivier (Khamzina et al., 2006).  

When assessing the potential of trees for afforestation of degraded landscapes 

in the irrigated lowlands of Central Asia, an understanding of the relationship between 

tree species and two key ecosystem functions is compulsory, i.e., the water and nutrient 

cycles (Patabendige et al., 1992; Bell, 1999; Marcar and Crawford, 2004). Previous 

studies in the Khorezm region addressing the water cycle examined the transpiration 

capacity and water use of nine 2-4 year old tree species, which were used as a proxy for 

their potential for bio-drainage and enhancing groundwater discharge (Khamzina et al., 

2006; Khamzina et al., 2009b). Owing to differences in physiological features of the 

species and water uptake by roots, the average daily leaf transpiration varied from 4.5–

5.2 mmol m–2 s–1 in the case of Prunus armeniaca L. to a peak of 4.5–10 mmol m–2 s–1 

for E. angustifolia (Khamzina, 2006). In particular E. angustifolia, U. pumila, P. 

euphratica and P. nigra var. pyramidalis showed a high bio-drainage potential given an 

average annual stand transpiration that varied between 1250 mm (E. angustifolia) and 

670 mm (U. pumila), whilst fruit species such as P. armeniaca and Morus alba L., 

showed low bio-drainage potential. The transpiration of tree stands led to a daily cycle 

of the groundwater. During the day, significant reductions in groundwater level were 

monitored but these did not last. During the night, the groundwater used to rise again. 

Hence, a permanent lowering of the groundwater level did not occur owing to the 

recharge of the groundwater body caused by the continuous irrigation of the irrigated 

croplands in the vicinity of the afforested site (Khamzina et al., 2009b).   

The role of trees in nutrient (re)cycling is multiple. Trees serve as a nutrient 

pump taking up minerals from deeper soil layers and bringing them to the soil surface 

when shedding leaves. During the decay process, the released nutrients can contribute to 

maintaining and improving soil fertility. A comparison of the potential of E. 

angustifolia, U. pumila and P. euphratica to supplement via leaf decay the plant-soil 
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nitrogen (N) stocks in the Khorezm region (Lamers et al., 2010) showed that P. 

euphratica foliage decomposed fastest with a 61% weight loss after one year, whilst E. 

angustifolia and U. pumila leaves showed weight losses of 51% and 52%, respectively. 

Yet, despite a lower foliage decay rate, E. angustifolia had the highest potential for soil 

bio-amelioration owing to the combination of high N-leaf concentrations and the 

highest foliage production of ca. 6 t ha-1, which was almost threefold higher compared 

to the other species. The contribution to the soil-plant system by E. angustifolia was 

estimated at 97 kg N ha-1, compared to 33 kg N ha-1 by U. pumila and 23 kg N ha-1 by P. 

euphratica.  

Afforestation with (fast-growing) N2-fixing tree species (NFTs) is a preferred 

option for ecological restoration of highly salinized irrigated croplands (Brewbaker, 

1989; Peoples and Crasswell, 1992). N2-fixation can make a major contribution to 

sustainable agriculture by maintaining soil fertility, but information about the N2-fixing 

capability of trees on saline soils is sparse. Following a review, Danso et al. (1992) 

concluded that N2-fixing trees (NFTs) may capture as much as 43-581 kg of N ha-1 

annually. The authors also reported N2-fixation rates by 4-year-old Robinia 

pseudoacacia stands as high as 220 kg N ha-1 when measured by the 15N isotope 

dilution method (Danso et al., 1995). Another review estimated an annual fixation of 

112 kg N ha-1 year-1 measured in 25-year-old R. pseudoacacia stands using the 

acetylene reduction assay (Noh et al., 2010). Based on the 15N natural abundance 

method, actinorhizal E. angustifolia in the Khorezm region annually fixed 24-514 kg N 

ha-1 (depending on the age of the tree stands), which seemed to be sufficient to satisfy 

crop-N demand on the salt-affected croplands and hence to maintain growth (Khamzina 

et al., 2009a). Despite the accumulated body of evidence, including a wide range of bio-

physical (Khamzina et al., 2006) and socio-economic (Kan et al., 2008; Lamers et al., 

2008) indicators examined for assessing the potential of N2-fixing woody species for 

afforestation and for providing wooden and non-wooden benefits, options to boost the 

establishment and juvenile growth of actinorhizal E. angustifolia with the least costs 

have not been studied. Yet this is of interest for increasing ecological service provision 

and income generation of land users. Furthermore, aside from the Frankia-non-legume 

symbioses of E. angustifolia, other associations were not included, although for instance 

Robinia pseudoacacia L. (Black locust), which is a representative of a woody-legume-
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Rhizobium symbiosis, is a widespread woody legume in arid Central Asia, and is in fact 

one of the three most widely planted broadleaf tree species worldwide based on the total 

hectares established (Keresztesi, 1980). 

To boost early growth and enhance tree stand establishment of the N2-fixing 

legume (Rhizobium-legume symbiosis) and non-legume (Frankia-nonlegume 

symbiosis) tree species, various recommendations are made, which however all have 

both advantages and disadvantages. Nitrogen fertilization, for instance, effectively 

enhances early growth, but the use of N is not only expensive but also represses N2-

fixation (Fried and Broeshart, 1975). N2-fixation rates and growth of perennial plants 

can also be increased through phosphorus (P) amendments. Although this was seen to 

be highly effective in tropical regions (Balasubramanian and Joshaline, 1996; Wheeler 

et al., 1996; Sanginga, 2003), information on its impact is deficient for legumes and 

non-legume woody species grown on the impoverished and saline soils of Central Asia. 

Variations in tree N2-fixation are associated not only with the species, soil 

conditions, age and density of plantations, but also with difficulties related to a 

complete, labor-demanding harvesting of large mature trees (Boddey et al., 1995). Such 

inconveniences can be avoided by the use of lysimeters. In this way, reliable estimates 

can be gained while assessing N2 fixation based on whole trees. Accurate quantification 

of N2 fixation by woody species has not yet been undertaken in Central Asia although 

this knowledge is vital for setting up experiments, especially because the use of 

enriched 15N fertilizers for assessing N2 is resource demanding.   

Another cause for the reportedly varying amounts of N2 fixation are the 

methods used for quantifying biological nitrogen fixation (BNF) by trees (Boddey et al., 

1995), which all have certain limitations (Peoples et al., 2002). The choice of the correct 

method is key for accurate N2 quantification, which can be achieved also when using a 

combination of methods and the concurrent use of multiple reference species (Boddey et 

al., 1995). Yet, no direct comparison exists of the different methods for quantifying N2 

fixation by species home to Central Asia such as actinorhizal E. angustifolia, on which 

relatively few studies have been focused thus far, or leguminous R. pseudoacacia, on 

which hardly any research results could be found for the Central Asia region.  

Irrespective of the motivation to plant and maintain trees in a landscape, a 

judicious management is both beneficial and compulsory. Although the type of 
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management depends, among others, on the purpose of the plantations and the trees in 

the landscape, at present hardly any decision-support tools exist. Given that leaf-N 

concentrations are an appropriate indicator for improving management and optimizing 

cultivation practices of annual crops, various in-situ, non-destructive, diagnostic tools 

have been developed including the optical sensor SPAD (Soil Plant Analyses 

Development)-502 chlorophyll meter (Minolta, 1989). Despite their proven efficiencies 

in a wealth of studies (Peng et al., 1993; Balasubramanian et al., 2000; Singh et al., 

2002), their use demands a priori calibration, as the relationships between readings and 

leaf-N content are vegetation and species specific (Peterson et al., 1993). In addition, 

since leaf vegetation contains different N concentrations, which consequently give 

different SPAD-502 indices, the range of the SPAD-502 readings that accurately predict 

leaf N needs to be determined. Such relationships and calibrations are deficient not only 

for tree species in general (Moreau et al., 2004), but also especially for the species 

predominant in the landscapes of Central Asia. Once reliable relationships are identified 

between for instance the SPAD-502 readings and the tree leaf N status and these are 

calibrated, they can provide great support in tree and tree plantation management, e.g., 

selection of appropriate species, leaves and time of leaf consumption for improving and 

enriching feed diets.  

Tree leaves contain N, which is a basic component of protein (Menke et al., 

1979). Therefore, tree foliage is used worldwide for complementing feed diets 

(Devendra, 1992; Reddy and Elanchezhian, 2008). The N/crude protein-rich tree foliage 

of certain tree species also has the potential for improving the diets and health of, for 

instance, cattle in Khorezm (Lamers and Khamzina, 2010), where feed demand is 

outstripping the traditional production of wheat bran, maize, sorghum, or rice stover. 

These feedstuffs have, however, low nutritional value (Lamers and Khamzina, 2010), 

which is a major cause for the present low average milk production (6-7 l per day per 

cow) (Djanibekov, 2008). Fast-growing E. angustifolia possessed, for example, multiple 

benefits including nutritional leaves. Previous research in the Khorezm region, however, 

only provided information on the use of tree foliage per se and the most promising tree 

species (Lamers and Khamzina, 2010). The optimal timing for collecting tree leaves to 

complement dairy diets while at the same time considering nutritive and financial aspects 

has not yet been addressed. The effect of P fertilization on foliage N content and feed 
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quality is unknown either. Hence, knowledge on the N/crude protein dynamics of tree 

foliage over the growing season that could be provided for by optical sensors can help 

to determine the optimum harvesting time of tree leaves and the use of tree foliage at 

low costs for livestock holders.  

 

1.2 Research objectives 

To bridge the present gaps in the establishment, production and management of 

suggested tree plantings, specifically of N2-fixing tree species such as the actinorhizal E. 

angustifolia and the leguminous R. pseudoacacia in a resource-poor environment 

caused by soil salinization, the overarching objectives of this study were to: 

(1) Assess the effect of P applications on boosting juvenile growth, N2 fixation rates and 

foliage N content of N2-fixing tree species based on the morphological and 

physiological characteristics of the trees using the indicators total biomass 

production, growth rates, N productivity, foliage N content and the contribution of 

N2 fixation by these species to the soil-plant system;  

(2) Determine the N2 fixation rates of actinorhizal E. angustifolia in lysimeters to obtain 

accurate whole-tree estimations, and appraise four methods of measuring N2 

fixation; 

(3) Analyze the suitability of the chlorophyll meter SPAD-502 for monitoring the leaf-

N content of three tree species and generate a calibration dataset for predicting leaf-

N dynamics; 

(4) Determine the optimum harvesting time and the best admixture of N/crude protein-

rich tree leaves and common feedstuff for improving and enriching feed diets.  

 

1.3 Structure and outline of the thesis 

This thesis consists of eight chapters. Following this chapter with a general introduction 

to the problem setting and the state-of-the-art knowledge, the geographical, agro-

climatic and other key characteristics of the Khorezm region are described in Chapter 2. 

The growth of two N2-fixing trees and their N2 fixation rates as influenced by additions 

of different P levels in an open field trial are analyzed and discussed in Chapter 3. In the 

following two chapters, the results of the quantification of N2 fixation by E. angustifolia 

against two reference trees in a lysimeter trial are presented. While focusing on the 15N 
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isotope dilution method (Chapter 4), a direct comparison with the outcomes of the field 

experiments is made (Chapter 3). Secondly, as part of the appraisal of four methods for 

measuring N2 fixation, in particular the accuracy and need of financial resources were 

compared (Chapter 5). The focus in Chapter 6 is on the use of the chlorophyll meter 

SPAD-502 for quick determination of leaf-N content of three tree species, the 

calibration of the SPAD-502 readings for these species, and the elaboration of 

calibration equations for each of these species for predicting their leaf-N dynamics. 

Using a linear programming model, the application of these results allowed determining 

the optimum harvesting time of tree foliage and optimization of a feed mix based on the 

various common feeds (Chapter 7). Each of the Chapters 3-7 starts with a brief 

introduction, followed by the methodology used, the results and their discussion and 

conclusions. In Chapter 8, an overall discussion and conclusions and recommendations 

are presented followed by an outlook for the future. 
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2 STUDY REGION 

 

2.1 Geographical setting and demography 

Khorezm was already reported upon in documents on ancient and medieval times in 

Central Asia. The region used to cover a territory that today comprises Uzbekistan and 

Turkmenistan. Khorezm currently covers 605,000 ha in the northwest of Uzbekistan, 

and is located between 41.13°-42.02°N latitude, i.e., on the same latitude as cities such 

as Marseille and New York, and 60.05°-61.39°E longitude (Figure 2.1).  

 
Figure 2.1: Location of the study region, the administrative sub-districts (green 

color) and experimental site (red dot)  
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With reference to the Baltic Sea, the flat topography of the Khorezm region 

ranges between 75 and 138 m a.s.l. The region is situated on the lower reaches of the 

Amu Darya River and is part of the northern Turan lowlands of Central Asia (Tupitsa, 

2010). The distance to the present shores of the Aral Sea is about 260 km to the north 

(Shanafield et al., 2010), and the Sarykamish depression is 200 km east of the region. 

The extreme northern point of the region is the Nuronbobo wild forest (Nuronbobo 

tuqay) near Olchinn village in the administrative district Gurlan, the most southern is 

the town Tuprakkala in the administrative district Khazarasp (KRK, 2008-2011). 

Of about 605,000 ha in Khorezm, about 270,000 ha have been made suitable 

for irrigated agriculture, which forms the cornerstone of the livelihood security of ca. 

1 million rural inhabitants, i.e., about 70% of the total 1.5 million people (as of 1 July 

2008). Density is 249 persons km-2 (KRK, 2008-2011). Urgench is the capital of the 

Khorezm region with a population of 135,500 (as of 2008). 

 

2.2 Climate  

The Khorezm region is part of the Central Asian semi-desert zone, with a continental 

climate as evidenced by the large differences in seasonal daily light intensity, day length 

and temperatures (Table 2.1). Several key parameters of the prevailing climate indicate 

that the annual average temperature is about 13 oC, but in the hottest months average 

temperatures can be as high as 28oC and in the coldest months as low as -14oC. This 

indicates that tree species must be able to cope with large temperature differences over 

short periods. The main peculiarities of the region’s climate are changeable weather 

during one and the same day, air dryness, and (rare) precipitation. 

The total annual precipitation amounts to ca. 100 mm (Table 2.1), which 

mainly falls during the moist winter months and thus outside the growing season, which 

is from April till October. The 6-year frost-free period averaged 282 days (Table 2.1). 

The approximate mean annual temperature of about 130C, long-term annual 

precipitation of about 100 (MAP) mm, and potential evapotranspiration (PET) of about 

1000 mm gives an aridity indicator of 0.08 (MAP/PET), which indicates an arid 

bioclimatic zone (Gintzburger et al., 2003). 
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Table 2.1: Summary of weather and climate parameters of Yangibazar 
meteorological station (4165 N latitude, 6062 E longitude, altitude 
102 m a.s.l.), 2003-2008 

Item Unit Mean Minimum Maximum Range Std. 
Error 

Sum of effective 
temperatures (T) per 
year above 10 oC 

oC 
4383 

 
3292 4837 1545 

230 
 

No. of days with a 
daily mean T above 
10 oC  

Days 
203 

 
142 226 84 12 

Date of first day with 
mean daily T above 
10 oC  

Date 
(dd/mm) 

14/03 15/02 20/03 na na 

Date of last day with 
mean daily T above 
10 oC  

Date 
(dd/mm) 

11/11 7/11 23/11 na na 

Annual precipitation mm 113 20 212 193 29 
No. of rainy days Days 46 19 87 68 9 
No. of rain-free days Days 286 194 325 131 20 
Amount of daily 
rainfall 

mm 1.4 0.1 66.0 65.9 0.2 

Annual temperature oC 13.9 13.2 15.4 2.2 0.3 
Temperature range 
hottest month of the 
year 

oC 27.3 28.0 25.9 2.1 na 

Temperature range 
coldest month of the 
year 

oC -5.3 -14.6 -0.3 -14.3 na 

No. of frost-free days  Days 282 162 340 178 25 
Annual relative air 
humidity  

% 61.4 57.4 65.3 7.8 1.3 

Annual relative air 
humidity of those 
days with a mean 
annual day 
temperature > 10 oC  

% 52.6 46.8 55.8 9.0 1.4 

na – not available 
 

2.3 Soils  

The soils of the Khorezm region are of alluvial origin, and were formed under the 

influence of the meandering Amu Darya River (Ibrakhimov, 2005) as evidenced also by 

the ancient beds that can be identified and traced by satellite images and the 

archaeological sites in remote desert areas. The age-long impact of this river had led to 

heterogeneously stratified soils throughout the region. However, according to 

Ibrakhimov (2005), the upper soil layer generally has a silt and sandy loam texture and 

depths ranging from 2-3 m underlain by sand. According to FAO classification, the soils 
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are: 1) arenosols, gleyic and calcaric (sodic), 2) arenosol and aridic, 3) cambisol and 

calcaric, 4) fluvisol, gleyic, and humis, and 5) solonchak, takyric and arenosols 

(Ibrakhimov, 2005). Egamberdiev (2007) characterized the natural fertility of the soils 

in Khorezm as low due to low soil organic matter (0.7-1.5 g 100 g-1), total nitrogen (N) 

(0.07-0.15%), phosphorus (P) (0.10-0.18) and available potassium (K) contents.     

Soil salinity is the main concern in the irrigated areas of Khorezm. According 

to official government data (1999-2001), the whole irrigated area shows secondary 

salinization (Abdullaev, 2003) mainly caused by shallow groundwater tables (GWT), 

which vary between 0.5 m in the growing season and more than 2 m outside the 

vegetation period (Ibrakhimov, 2005). Low fertility, increasing soil salinity and elevated 

GWT are considered unfavorable for the cultivation of most agricultural crops, but 

selected trees and shrubs that show rapid root development and growth can survive 

despite these adverse conditions (Khamzina et al., 2006). 

 

2.4 Irrigation and drainage network 

An extensive irrigation network with complementary drainage water collectors in the 

Khorezm Region was constructed between 1950 and 1970 (Sinnott, 1990). The water 

from the Amu Darya is supplied to the agricultural fields through a complex hierarchy 

irrigation network consisting of main, inter-farm, and on-farm canals (Ibrakhimov et al., 

2004).  The most common method of irrigation in the region is furrow (e.g., for cotton 

cultivation) and flood irrigation (e.g., for wheat and rice production). The drainage 

system is mainly open horizontal, and all drainage water is directed towards the 

Sarykamish Depression, which is no longer linked to the Aral Sea (Conrad, 2006). 

 

2.5 Land use 

Khorezm is acknowledged as an ancient center of civilization as evidenced by the 

appearance of the word “Khorezm” in the book “Avesto”, which is one of the rare 

memorials of Uzbek culture. Reportedly, Khorezm consists of two Persian words – 

“khvar” – “the sun” and “azm” – the land, the combination of which means “sunny 

land” (Munis and Agahi, 1999). Even in the distant past, this ancient landscape was 

known for its favorable climatic and topographic conditions despite the fact that 

Khorezm has always been surrounded by deserts, i.e., the Karakum to the south and 
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southeast and the Kyzylkum to the east (Conrad, 2006). After water for irrigated crop 

production had begun to play a major role, agriculture began to bloom, which 

contributed to the upheaval of the Khiva Khanate people in 1510, due not only to 

agriculture, but also to trade, brigandage, and slavery (Tolstov, 2005). Irrigation-based 

agriculture developed during this period centered on the exploitation of small plots (0.3-

0.8 ha), which were bordered by earth banks. Trees were planted along the irrigation 

ditches to reduce evaporation (bio-drainage) (Orlovsky et al., 2000), along fields to 

protect the soil against wind erosion, and around homesteads as a shield to buffer the 

extreme weather conditions (Tupitsa, 2010). However, most trees were removed during 

the Soviet era. 

Khorezm became part of the Soviet Union in 1924 (or according to some in 

1926) and was consigned for increasing crop production, mainly cotton (Gossypium 

hirsutum L.). Agricultural production was organized through sovkhozes and kolkhozes. 

Shortly after Uzbekistan became independent in 1991, numerous land reforms were 

initiated. Although some authors argue that these reforms mainly ensured a continuation 

of the previous practices (Veldwisch and Spoor, 2008), the production setup was 

changed (Djanibekov et al., 2010). Until 2008, the different phases of the land reforms 

resulted in three main types of farming systems namely: shirkats (renamed former state 

and collective farms), which however were few in number, fermer (private farmers), 

about 19,000 in 2008, and about 240,000 dekhkan farms (household plots). These land 

reforms went hand in hand with reforms in the management of irrigation water from the 

centralized management during Soviet times to an increased responsibility for water 

management of the water users (Veldwisch and Spoor, 2008). The number of private 

farms increased to 242,313 (as of 16 March 2010). Since the land and water reforms did 

not yield the expected results, the Government of Uzbekistan pursued new land reforms 

to optimize farm size and increase economic efficiency of the farms. The initiated land 

consolidation affected both fermers and dekhkan farms (Djanibekov et al., 2010). From 

the end of 2008 onwards, for instance, the minimum size of farms2 defined in the Uzbek 

legislation was changed for cotton and wheat, gardening and horticulture production 

units. The minimum size of cotton and wheat farms was increased from 10 ha to 30 ha, 

while that of horticultural and gardening farms was increased from 1 ha to 5 ha. The 
                                                 

2  Introduction of Changes and Additions to Legislative Acts of the Republic of Uzbekistan in 
Connection with Enhancing Economic Reforms in the Agriculture and Water Sectors (2009) 
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first phase of land consolidation (2008/2009) reduced the number of private farms in 

Khorezm from 19,000 (before 2008) to around 10,000 by the end of 2008 and to about 

5,670 at the onset of 2010. The average farm area thus grew from about 13 ha in 2007 

to 24 ha in 2008, and was more than 40 ha in 2010. Through the creation of larger 

farms, land leasers can be more motivated to withdraw unproductive marginal cropland 

in favor of afforestation. This withdrawal was less likely to be expected in the case of 

small-scale farms since these depended on smaller areas for livelihood subsistence 

(Djanibekov et al., 2010). But farmers with access to larger areas are more likely 

inclined to improve the production capacities also from marginal land, which comprises 

some 15-20% of the irrigated area in Khorezm (Conrad, 2006), e.g., through 

afforestation. The present study was conducted on such a marginal cropland area in the 

Yangibazar district, where the potential of the soil for cultivating agricultural crops is 

low and in some places extremely low (Khamzina et al., 2006).   

Since the initiation of land reforms, the importance of livestock production for 

both private and dekhkan3 farms as a source of income and food has grown. However, a 

concern for the development of livestock production is the feed insufficiency due to the 

considerable decrease in the area and production of feed crops (Yusupov et al., 2010). 

The total area under pastures in Khorezm is 71,000 ha. However, within the irrigated 

area, irrigated pastures only cover 9,400 ha (Yusupov et al., 2010), which is only about 

3% of the total irrigated area of Khorezm (ca. 270,000 ha). Given the food demand of 

the estimated 624,900 cattle including 244,800 cows and 316,600 sheep and goats 

(Yusupov et al., 2010), this is insufficient to feed such a large number of livestock 

(Djanibekov, 2006). The feed deficiencies are most prominent during the offseason 

(November-April), when livestock owners feed their animals at home with wheat and 

rice straw, maize and sorghum residue and wheat bran (Djanibekov, 2006). Not only the 

quantity but also the nutritional value of these feedstuffs is insufficient to satisfy the 

feed needs. Enriched feed would be an option to increase the feed quality, but it is often 

very expensive and not readily accessible to farmers. Consequently, the feed scarcity is 

mirrored in, for example, the poor milk production of 6-7 l per day per cow (Yusupov et 

al., 2010). The introduction of fast-growing, salt-tolerant tree species in the landscape, 

for example on marginal cropland, can improve both the quantity and quality of fodder 

                                                 
3  The bulk of livestock output is produced by these small household farms 
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(Khamzina et al., 2008). However, knowledge is needed on how to optimize the feed 

ratios with tree foliage. 

 

2.6 Annual and perennial vegetation 

The state order has been maintained for strategic crops such as cotton and winter wheat 

since independence in 1991. Wehrheim and Martius (2008) defined this state order as 

”.…a set of dictated and binding rules on crop distribution over the fields, production 

targets, the supply and price of water and other inputs, product processing and, in the 

case of cotton, on its export”. However, the household and garden areas show a wide 

diversity of annual and perennial crops and species, since these cropping areas are 

exempted from the state order plans (Bobojonov et al., 2008). On these areas, farmers in 

the Khorezm region prefer to cultivate fruits and vegetables, which is possible given the 

warm climate and the extended irrigation infrastructure (Kan et al., 2008). Sericulture 

was also a widespread practice during Soviet times, and the planting of mulberry 

(Morus spp.) trees was encouraged (Worbes et al., 2006), the leaves of which serve as 

feed for the silkworm (Bombyx mori).  

Tree and forest reserves are rare in Khorezm. The present share of 3-4% of the 

land is more than 50% less than the nationwide average forest cover of 7-10% (FAO, 

2006a). Already during Soviet times, the forest reserves were converted into agricultural 

land for the production of cotton. Since the 1950s, the administration encouraged the re-

introduction of tree plantings such as tree windbreaks into the landscape, but design 

deficiencies limited the anticipated environmental benefits (Tupitsa, 2010). Instead, 

during the harsh winter months, trees are often illegally taken from the forest and tree 

reserves (Kan et al., 2008).  

More than any other country in Central Asia, except perhaps Turkmenistan, 

the double land-locked republic of Uzbekistan with a share of 80-90% of total water use 

in this region relies almost completely on water for irrigation and drinking that 

originates from outside its own territory (Conrad, 2006). This is critical in particular 

because of the large area cropped under irrigation (about 4 Mha), the aridity of the 

climate, and a high population growth and density, particularly in rural areas (ADB, 

2006). Since agriculture relies heavily on irrigation, tree plantings may compete for this 
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water source until their root system taps the groundwater for further growth and 

development (Khamzina et al., 2009b). 

 

2.7 Energy supply and use 

Despite the vast fossil fuel reserves exploited in Uzbekistan, a large proportion of the 

rural population still relies on cotton stalks, cow dung, and particularly firewood for 

satisfying domestic needs especially during the harsh winter months (Vildanova, 2006). 

Although logging is considered illegal in Uzbekistan, and licenses are needed for 

maintenance works of forests and tree reserves, illegal logging in 2004 was estimated to 

be as high as 380.7 m3 (Vildanova, 2006).  

The conversion of salt-affected cropland to afforested areas could therefore 

both arrest the presently on-going deforestation of forest reserves (Tupitsa, 2010) and 

serve as income generation for land users. These could sell high-quality wood from 

afforestation measures (Lamers et al., 2008), especially because the species 

recommended for afforestation in the Khorezm region have good firewood 

characteristics (Lamers and Khamzina, 2008). Reportedly, owing to the general high 

density and low moisture content of wood of nitrogen-fixing woody species, these 

species are already potential sources of fuelwood after 3-5 years (Brewbaker, 1989). It 

should also be noted that in particular the wood from older branches is usually the best 

component for use as fuel.  

Yet, before afforesting and exploiting mixed plantations becomes an 

acceptable practice, it has been postulated that the existing legal framework needs to be 

adapted to allow land users to convert marginal croplands into forest areas (Worbes et 

al., 2006; Kan et al., 2008). 
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3 EFFECT OF PHOSPHORUS AMENDMENTS ON NITROGEN 

FIXATION, BIOMASS ACCUMULATION AND GROWTH RATES OF 

TREES ON SALINE CROPLANDS 

 

3.1 Introduction 

Nitrogen (N) is essential for sustaining growth of annual and perennial vegetation, also 

in the salt-affected, degraded croplands in the arid regions of Central Asia. One option 

to exploit such croplands more effectively is through afforestation (e.g.,  Marcar and 

Crawford, 2004; Khamzina et al., 2006), in particular with N2-fixing tree species, which 

have the ability to grow on soils where low levels of available N prevent the growth of 

other species and vegetation. When integrated into agroecosystems and landscapes, N2-

fixers can support the restoration of nutrient stocks and soil fertility while reducing 

external inputs such as expensive N fertilizers. In intercropping systems, the sharing of 

fixed N2 with interplanted vegetation is known to occur (Van Kessel et al., 1994; 

Parrotta et al., 1996).  

The significance of the woody-legume-Rhizobium symbiosis for the 

rehabilitation of soil in arid regions with high salinity, low fertility and drought periods 

has been frequently reported (e.g.,  Brewbaker, 1989; Peoples and Crasswell, 1992). 

Rhizobium-tree legume symbioses, which are able to fix appreciable amounts of N2 

under arid/semiarid and saline conditions, provide a cheap fertilizer substitute and this 

option has therefore been promoted for land reclamation and landscape improvement in 

such regions (e.g.,  Brewbaker, 1989; Peoples and Crasswell, 1992). The role of 

leguminous woody species in food, feed, fiber, and fuelwood production has also been 

recognized in a number of studies (Brewbaker, 1989; MacDicken, 1993). For instance, 

in Australia, trees of the genera Acacia provide high-quality animal fodder, fuelwood, 

charcoal, timber and gums, aside from their contribution to soil improvement (e.g.,  

Brockwell et al., 2005). Yet little is known about the woody-legume-Rhizobium 

symbiosis with tree species in arid Central Asia such as, for instance, Robinia 

pseudoacacia L., a widespread tree species in this region. 
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Worldwide, actinorhizal4 interactions (Frankia-nonlegume symbioses) 

contribute the most to N inputs in forests, fields and disturbed sites in the landscape, 

particularly in temperate and tropical regions. They therefore are recognized as being 

suitable for the reclamation of disturbed soils (Paschke, 1997). During the symbiosis 

with N2-fixing actinomycetes of the genus Frankia, actinorhizal species can fix 

ecologically significant amounts of N2 in woody root nodules (Paschke, 1997). Such 

species are generally woody species, with the exception of two sub-shrubs in the genus 

Datisca. Despite the relatively sporadic occurrence, the contribution of fixed N2 to 

natural and managed landscapes by actinorhizal symbioses appears to be at least 

comparable to the relatively well-reported Rhizobium-legume contributions. The genera 

Alnus, for instance, was estimated to fix 12 to 200 kg of N ha-1 year-1 and those of 

Hippophae associations 27 to 179 kg of N ha−1 year−1 (Baker and Mullin, 1992). In 

various studies, the biological nitrogen fixation (BNF) potential was assessed as high 

for actinorhizal plants such as the genera Casuarina and Alnus, which have been studied 

most extensively (Brewbaker, 1989; Danso et al., 1992). Despite the species’ 

widespread presence in the natural landscapes in Central Asia, studies on the 

actinorhizal symbiosis by Elaeagnus angustifolia L. from the Elaeagnaceae family are 

in their infancy and this species is still underrepresented in (actinorhizal) literature. 

Recent findings in Uzbekistan indicated the opportunities of actinorhizal E. angustifolia 

for use on degraded land despite the large variation in annually fixed N2 amounts 

(Khamzina et al., 2009a), which increased from 24 in the first year to 514 kg ha-1 year-1 

in the third as quantified by the 15N abundance technique in an open field trial.  

Findings to date suggest that N2-fixing E. angustifolia has the potential to be 

self-sufficient in N on the nutrient-exhausted irrigated croplands in Central Asia 

(Khamzina et al., 2009a). It is, however, unclear how to enhance juvenile growth of E. 

angustifolia or R. pseudoacacia at the lowest costs. This is of paramount importance for 

rapid income generation for land users, so they can profit from the sale of useful 

byproducts such as fuelwood, fruits and eventually timber (Lamers et al., 2008). Also 

the ecological service provision by these trees would be rendered at an earlier time. 

Nitrogen amendments would increase early growth and enhance tree stand 

establishment, but such a strategy is expensive and represses N2 fixation (Fried and 
                                                 

4  The term “actinorhizal” originates from the words roots “actino” indicating the Frankia actinomycete 
and “rhiza” indicating the plant roots hosting the symbiosis. 
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Broeshart, 1975) owing to the inhibitory effect of nitrate on both nodulation and 

nitrogenease activities (Streeter, 1988). Hence, this could be counterproductive. Some 

authors (e.g.,  Valladares et al., 2002) concluded that either high fertilization rates or 

inoculation can be recommended to enhance seedling growth of N2-fixers, but that both 

methods are thus mutually exclusive. BNF by trees can be enhanced not only through 

the inoculation with selected symbiotic N2-fixing bacteria, but also through appropriate 

management practices aiming at alleviating soil constraints such as deficiencies in 

limiting nutrients (Dommergues, 1995). Various edaphic factors affect N2 fixation, such 

as excessive soil moisture, drought, soil acidity and deficiencies in calcium, 

molybdenum and boron, as well as phosphorus in acid soils or iron and zinc in alkaline 

soils (Mulongoy et al., 1992; Dommergues, 1995).  

N2-fixing annual and perennial plants have in general a high need for P 

(Marschner, 1986), and consequently BNF rates increase with P applications 

(Balasubramanian and Joshaline, 1996; Wheeler et al., 1996). On low P soils in West 

Africa, as little as 30 kg P ha-1 enhanced the growth of woody legumes (Sanginga, 

2003). But information on the impact of P amendments and suitable P rates on 

symbiotic N2 fixation by perennial species on the impoverished and saline soils of 

Central Asia is scarce. This is true for legumes (Rhizobium-legume symbiosis) and non-

legumes (Frankia-nonlegume symbiosis). The salt-affected, degraded croplands in 

Central Asia suffer from water stress (be it in abundance or in short supply), or soil 

salinity. In saline environments, BNF is hampered mainly by osmotic moisture 

withdrawal from the nodules. The low soil P contents of these soils have an immediate 

impact on N2 fixation, biomass accumulation and growth rates of the actinorhizal 

E. angustifolia or of the legume R. pseudoacacia.     

Tools for plant growth analysis have been reported for annual and perennial 

vegetation (e.g.,  Evans, 1972; Hunt, 1982). In the case of deciduous trees such as 

E. angustifolia and R. pseudoacacia, total biomass is seasonal, and hence a growth 

analysis based on the relative growth rate (RGR) of the entire biomass carries the risk of 

underestimating the RGR of the truly perennating part of the tree material (Hunt, 1990). 

Consequently, in the case of perennial plants, RGR estimates need to be complemented 

with the unit production rate (UPR in mg g-1 day-1), which indicates the rate of dry 

weight production of a tree (or tree stand) per unit of perennating weight. The UPR 
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indicates the productive efficiency of the perennating biomass, which is known to 

decline with time (Dudney, 1974). Moreover, N productivity should be considered 

when analyzing and comparing growth performance (Lambers et al., 1998), e.g., 

between N2–fixing species and non-fixing reference species.  

Given the low soil P contents in the salt-affected, marginal croplands in 

Central Asia, an assessment was made of the impact of P amendments on the symbiotic 

performance of two N2-fixing tree species and on the consequent production efficiency 

of the perennating and total biomass of these species compared to the performance of a 

non-fixing reference species. The objectives were: (1) to assess the effect of different P 

rates on the seasonal N2 fixation by actinorhizal E. angustifolia and leguminous R. 

pseudoacacia grown on salt-affected agricultural land, (2) to quantify the contribution 

of N2 fixation by two N2-fixing tree species to the plant-soil system, (3) to evaluate the 

influence of P amendments on biomass production, relative growth rates and N 

productivity of these species compared to the non-fixing reference species G. 

triacanthos, and (4) to assess the suitability of the two N2-fixing and the reference 

species for the afforestation of salt-affected croplands and for improving the landscape.  

 

3.2 Materials and methods 

3.2.1 Description on the study site 

The research was conducted on 1.5 ha of degraded agricultural cropland in the 

Yangibazar district of the Khorezm region, located at 41°65′N, 60°62′E and 102 m 

altitude (Figure 2.1). The region has a continental climate with cold to very cold winters 

and very hot, dry summers. A weather station, installed in the northwestern part of the 

experimental site recorded at 30-min intervals: (i) air temperature, (ii) relative air 

humidity, (iii) energy balance between incoming and outgoing short- and long-

wave infra red radiation, (iv) incoming shortwave radiation, (v) wind speed at 2-m 

height, and (vi) wind direction. A tipping-bucket rain gauge was used to monitor 

precipitation at each event. Annual precipitation during the study years 2006, 2007 and 

2008 (Figure 3.1), which mostly occurs as rain and snowfall during the cold season 

(November-March) was lower than the long-term mean precipitation of 100 mm by 47, 

51 and 64 %, respectively, which was much lower than the potential evapotranspiration 

of 1200-1500 mm (Conrad et al., 2007).  
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Figure 3.1: Monthly mean air temperature and precipitation at the Yangibazar 
experimental site in 2006, 2007 and 2008 

 

The soil at the experimental site was an alluvial silt loam, traditionally used for 

irrigated meadows (Khamzina et al., 2006). The degree of soil salinity during 2006-

2008 varied from moderate to strong (Table 3.1). Soil fertility was poor at the onset of 

the experiment as reflected in the low humus content (<1%), and low soil nitrogen (N), 

potassium (K) and phosphorus (P) concentrations, the latter being important for BNF 

(Table 3.1). Based on plant-available minerals in the plough layer (0-40 cm), a soil with 

an available P2O5 concentration ranging from 0-15 mg kg-1 and/or with exchangeable 

K2O ranging from 0-100 mg kg-1 is classified as very low according to the local 

evaluation of soil fertility (Musaev, 2001). Based on this soil fertility classification, the 

soils in the experiment showed a low and very low fertility throughout the entire study 

period. The varying soil available P (P2O5) contents over the sampling periods may 

have been caused by the sampling procedure (see section 3.2.3 below). The decrease in 

exchangeable K2O at the end of the study period, although statistically insignificant 

(Appendix 10.1), is likely due to tree uptake. 

The groundwater table (GWT) at the onset of the 2006, 2007 and 2008 

growing seasons averaged respectively 1.1, 1.4 and 1.3 m below the soil surface, with 

an average EC of 2.3 dS m-1. Throughout the growing seasons of 2006 and 2007 the 
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rooting depths of the trees were insufficient to tap the GWT. During these first two 

seasons tree development was sustained by drip irrigation of 80 mm per year. 

 

Table 3.1: Electrical conductivity (EC, dS m-1), humus content (%), concentration 
of total N (%), available P, exchangeable K (mg kg-1), and Cl, Na, SO4, 
Ca (cmol kg-1) in 1-m soil layer at the onset and end of each growing 
season. Within a column, means followed by the same letter are not 
significantly different at P<0.05 according to the Tukey post-hoc test 

Time EC Humus N P2O5 K2O Cl- Na+ SO4
-2 Ca+2  

May 2006 6.7 c 0.5 a 0.04 ab 7.0 b 109 a 0.5 a 1.9 b 2.9 b 2.05 b 

Oct 2006 5.9 c - 0.04 ab 11.9 ab 107 a 0.6 a  1.8 ab 2.6 b 1.61 b 

May 2007 9.7 ab 0.6 a 0.04 ab 10.4 ab   96 ab 0.9 a  3.2 ab  4.0 ab 2.03 b 

Oct 2007 10.6 a 0.6 a   0.05 a 7.7 b 104 ab 0.8 a  2.6 ab 3.4 b 2.08 b 

May 2008 10.7 a 0.6 a 0.04 ab 12.6 a 102 ab 0.8 a  2.8 ab 3.6 b  2.19 ab 

Oct 2008 7.5 bc 0.6 a 0.04 ab 9.7 ab  82 b 0.9 a 3.3 a 5.7 a 3.34 a 

ANOVA, probability > F(=) 

Sign. <0.0001 0.196 0.015 0.052 0.004 0.083 0.029 <0.0001 <0.0001 

Note: Borderline significant 0.05<P<0.1; significant: 0.001<P<0.05; highly significant: P<0.001  
 

 

3.2.2 Experimental design 

To assess the effects of P amendments on symbiotic performance and consequent tree 

growth, a 2-factorial field experiment was conducted over three consecutive years 

(2006-2008). The field trial included three P levels (i) “high-P” (the recommended 90 

kg P ha-1), (ii) “low-P” (50% of the recommended 90 kg P ha-1), and (iii) the “nil” 

treatment (meaning no P applied, which served as the control, 0-P). Phosphorus was 

applied to three tree species, the actinorhizal Russian olive (Elaeagnus angustifolia L.), 

the leguminous black locust (Robinia pseudoacacia L.) and the non-fixer honey locust 

(Gleditsia triacanthos L.) as simple super phosphate (SSP; 16% P2O5) with the 

equivalent of 6.9 kg of pure P per 100 kg of SSP (P2O5 x 0.436 = P). Since tree fertilizer 

recommendations in Uzbekistan were developed for fruit species only (MAU, 1982), 

these guidelines for P amendments were adopted for the experiment. However, to 

encourage juvenile growth and minimize cost, the SSP was not broadcasted as 

recommended but instead locally applied, which is considered a more suitable 

application mode for fertilization of trees (Wray, 2001; Gilmann and Rosen, 2004). 

Based on the recommended 90 kg P ha-1 for a stand of 2860 fruit trees ha-1, per planting 
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hole 31.7 g of P was applied. Trees with the 0-P treatment did not receive P during the 

entire study period.  

The trees were fertilized in March 2006 and April 2007. In 2006, P was placed 

in the planting hole of 50 cm depth prepared in advance to host a sapling. The fertilizer 

was mixed with part of the excavated soil and placed at the bottom of the hole before 

planting the tree sapling. In the second growing season 2007, a mixture of P and soil 

was applied into a 20-cm deep circle of 20-cm radius around each already established 

tree. Then this circle was backfilled with soil. 

Each treatment was repeated four times. In March 2006, one-year-old saplings 

of all three species were transplanted from a tree nursery stock into the experimental 

plots 1 m apart in rows spaced 1.75 m (Figure 3.2), resulting in a stand density of 5,714 

trees ha-1. The trees at the beginning and end of each plot were considered border trees 

and therefore were excluded from in-depth measurements. The entire trial consisted of 

48 experimental plots, each containing one row of 11 trees. However, from these 48 

plots only 36 were considered further, since 12 plots were foreseen as “security” plots. 

This is recommended in particular for forestry experiments (Coe et al., 2003) in case, 

for instance, low survival rates in the trial plots would necessitate transplantation. Since 

none of the anticipated calamities occurred throughout the entire study period, these 12 

plots were excluded from all measurements. During planting, 6 saplings of each species 

were analyzed separately for initial mean over-bark diameter, measured at 10 cm above 

the soil surface with a calliper, for height measurement with a measuring tape, and the 

for initial dry mass. After transplanting the saplings into the experimental plots, the 

trees were drip irrigated during 2006 and 2007 with 80 mm year-1 (covering about 15% 

of evaporative demand). The emitters were installed about 10 cm from the tree basis. 

The amount of irrigation water was controlled through measuring valves. In 2008, 

irrigation was stopped as the trees started to rely on the groundwater; the GWT 

fluctuated during the growing seasons between 1.3 and 1.8 m.    
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Figure 3.2: Experimental layout showing experimental plots, tree species, and 
treatments 
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3.2.3 Soil and groundwater sampling and analyses 

Soil (in 0.2 m layers down to 1 m depth) was sampled at the end of each growing season 

from all 36 experimental plots and prepared for chemical analysis. The soil was sampled 

between the trees and thus outside the area where P was applied in 2006 and 2007. 

Statistical analyses showed that the differences within each sampling period were 

insignificant for the P treatments and tree species (Appendix 10.1). The findings were 

therefore averaged over the 1-m soil profile and over the 36 plots (Table 3.1) for each 

sampling period. The soil organic matter content was analyzed according to Tyurin 

(1975) and total N was determined using the Kjeldahl method. Available P (P2O2) was 

measured with a colorimeter in ammonium carbonate extract (Protasov, 1977). 

Exchangeable K (K2O) was determined by flame photometry after extraction with 1% 

ammonium carbonate solution. In addition, twice a month during the growing season, 

soils from all 36 experimental plots were sampled in 0.2 m layers down to 1-m depth 

and analyzed for soil EC and moisture content. The EC of the soil water paste (1:1 ratio) 

was measured with a portable EC meter (Shirokova et al., 2000) and converted into ECe 

using the relationship [ECe=EC1:1·3.6] as proposed for sandy loam soils in Khorezm. 

Soil moisture was measured gravimetrically by oven drying at 103 °C  2 °C to constant 

weight in a forced air convection oven. Samples were weighed before and after drying 

with a digital balance to the nearest mg. 

The GWT was permanently monitored through eight observation wells 

installed at 2.2 m depth. The GW level was registered every ten days during when the 

GW samples were collected. These were analyzed for EC with a portable EC meter 

(Shirokova et al., 2000) and converted to into ECe as previously described.   

 

3.2.4 Determination of dry matter and biomass accumulation 

At the end of the three growing seasons, two trees in each of the 36 plots were cut at 

ground level and separated into leaves, twigs, stems and fruits. Following the harvest of 

the aboveground fractions, the tree roots were completely excavated and separated into 

coarse (Ø>3 mm) and fine (Ø<3 mm) roots and nodules. The roots were washed and 

freed from soil and weighed with a digital scale to the nearest mg. Coarse root length 

was measured with a measuring tape while the fine root length was determined with the 

modified Newman line-intersect method (Tennant, 1975). All above- and belowground 
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fractions were placed in paper bags and oven dried at 103 °C for 72 hours to constant 

weight. The initial weight of the trees (mean of 6 trees per species) measured in the 

beginning of 2006 was subtracted from the total biomass of the trees at the end of the 

same year. Thereafter, the dry matter (DM) production of all tree species was converted 

from g tree-1 to kg ha-1 using the stand density of 5,714 trees ha-1. The relative 

relationship of below- and aboveground DM was expressed as root to shoot ratio (RSR).   

 

3.2.5 Height and diameter 

The initial height and diameter of the planted saplings were determined at the onset (one 

week after planting) of the first growing season 2006. Thereafter, tree height and 

diameter were measured fortnightly throughout the three growing seasons, excluding 

the four winter months (November-March). The height was measured from the soil 

level to the highest vegetative point with a telescope measuring stick to the nearest cm. 

Concurrently, the over-bark stem diameter was measured to the nearest mm at 10 cm 

above the stem base (diam10) using a digital tree caliper. The measurement points for 

diameter had been permanently marked on the tree stems at the first measuring date and 

were used throughout the entire study period of three years.  

 

3.2.6 Estimating the symbiotic fixation of the N2-fixing tree species 

To estimate the end-of-season N2 fixation by E. angustifolia and R. pseudoacacia, 

leaves, twigs, stems, coarse and fine roots and nodules of the harvested trees of both N2-

fixers and the reference species G. triacanthos were sampled separately for the three P 

application levels in four replications. Due to the small size of the tree saplings in 2006, 

the fractions were separated into leaves, twigs and fine roots only. The sampled tree 

parts were transported to the laboratory in paper bags and oven dried at 60 °C for 72 

hours to constant weight. The bark was not separated from the stem. Thereafter, the 

dried samples were finely ground in a mill to pass through a 2-mm mesh screen and 

analyzed for N and 15N natural abundance with an ANCA mass spectrometer (SL/20-20, 

SerCon, UK).   
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The N2-fixation of E. angustifolia and R. pseudoacacia was quantified with 

the 15N natural abundance method according to Shearer and Kohl (1986): 

 

  

(3.1)

 

where %Ndfa is the proportion of N derived from atmospheric N2, δ
15Nref is the natural 

abundance of the non-fixing reference species G. triacanthos, and δ15Nfixer is the δ15N of 

the N2-fixing E. angustifolia and R. pseudoacacia. The parameter B is the 15N value of 

the same N2-fixing species grown in an N-free culture. Since the B values were 

unavailable for the examined species grown in Central Asia, they needed to be derived 

from secondary sources. For each year, %Ndfa of E. angustifolia was calculated using a 

weighted mean of δ15N based on whole-plant B values, which ranged from -1.41 to -2.0 

as previously reported for actinorhizal species (Domenach et al., 1989; Tjepkema et al., 

2000). As was done by Khamzina et al. (2009a) for foliar %Ndfa by E. angustifolia, the 

minimal field-observed foliar δ15N of -2.67 as reported by Peoples et al. (2002) was 

used as the B value. For the estimation of foliar as well as whole-tree %Ndfa of 

leguminous R. pseudoacacia, the B value of -1.35 and -2, respectively, were used based 

on the value reported specifically for legume species by Shear and Kohl (1986). The 

annual rates of N2 fixation (expressed in kg ha-1 year-1) by E. angustifolia and R. 

pseudoacacia were calculated using the estimated %Ndfa, the annually accumulated N 

content, and a tree density of 5,714 trees ha-1 according to: 

 

 Ndfa (kg ha-1) = (%Ndfa · total Nfixer) / 100 (3.2)

 

For calculating N2 fixation for the whole tree, a weighted mean (rather than an 

arithmetic mean of individual parts) was used based on the following equation (3.3): 

 

WM Ndfa (kg ha-1) =  

%NdfaL·NL + %NdfaT·NT + %NdfaS·NS + %NdfaCR·NCR + %NdfaFR·NFR + NdfaN·NN   

(3.3)(NL + NT + NS + NCR + NFN + NN) 

%Ndfa = 
(δ15Nref – δ15Nfixer)  

(δ15Nref – B)  
 100 
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where %Ndfa is the proportion of N derived from atmospheric N2, N is the total N 

yield, whilst L, T, S, CR, FR, and N stand for leaves, twigs, stem, coarse roots, fine 

roots and nodules, respectively.    

 

3.2.7 Growth rates 

 Unit production rate (UPR) was calculated according to Hunt (1982; 1990) as:  

  

                               Π = (W2-W1)/(t2-t1) · (lnWP2-lnWP1)/(WP2-WP1)                         (3.4) 

 

where W1 and W2 are the initial and subsequent dry weight of trees, t1 and t2 are the 

initial and subsequent time of harvest, and WP1 and WP2 are the rates of dry weight 

production of trees expressed per unit of perennating structure. 

Similarly, the relative growth rate (RGR) was estimated over the variables 

height and diameter while accounting for the variable time as:   

 

       RGRH  (in mm mm-1 d-1):  Relative height growth rate (lnH2 - lnH1)/(t2 - t1)        (3.5) 

 

      RGRD (in mm mm-1 d-1):  Relative diameter growth rate (lnD2 - lnD1)/(t2 - t1)      (3.6) 

 

where H1 and H2 are the initial and subsequent height, and D1 and D2 the initial and 

subsequent diameter (diam10) at the time of harvest at t1 and t2.  

The determination of nitrogen productivity (NP) followed the relation 

suggested by Lambers et at. (1998): 

 

 NP = RGR/PNC (3.7)

 

where RGR (mg g-1 day–1) is the relative growth rate and PNC is the plant N 

concentration, i.e., total plant N per total plant mass.   
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3.2.8 Statistical analyses 

Descriptive statistics including the (least square) means and standard deviation of 

measured tree variables were computed each year for eight individual trees per 

treatment. All variables were tested for normal distribution visually and by using the 

Kolmogorov-Smirnov test and normalized by square-root transformations when 

necessary. Mean separation tests through analyses of variance (ANOVA) were 

conducted using transformed data, but data presented are the untransformed means as 

suggested by Steel and Torrie (1980). In case of occasional missing values, least square 

means are reported. Similarly, owing to occasional missing values, the Tukey post-hoc 

test was used to assign year, species and treatments to statistically different groups. The 

significance level was set at P<0.1 unless mentioned otherwise. All statistical analyses 

were performed with SPSS 17.0. Under the assumption of equal variances, a student’s t-

test was carried out to examine differences between foliar and whole-tree %Ndfa and 

total fixed N2 values. 

 

3.3 Results 

3.3.1 Impact of P amendments on nitrogen fixation of N2-fixing tree species 

The end-of-season foliar and whole tree 15N natural abundance values of both N2-fixing 

E. angustifolia and R. pseudoacacia were negative and significantly different from the 

non-fixing G. triacanthos when averaged over the years and treatments (Table 3.2). 

Furthermore, the differences in foliar and whole-tree δ15N between the two N2-fixing 

species were significant, with E. angustifolia having the highest negative values both 

for foliar and whole-tree δ15N. When averaged over all species and P treatments, the 

δ15N in 2008 was significantly higher than in 2006 and 2007. The differences between 

the much lower values in the earlier years were insignificant. The δ15N values were not 

affected by P amendments. 

Due to a significant species*year interaction (Table 3.2), findings were further 

disaggregated (Table 3.3). In 2006, the differences between δ15N among tree fractions 

of the two N2-fixing species were insignificant, but leaves of the reference tree species 

G. triacanthos showed significantly higher 15N abundance values than all other tree 

fractions examined. From all tree fractions analyzed in 2007, the twigs, stems and 

nodules of E. angustifolia had the lowest 15N abundance. In 2008, the nodules of E. 
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angustifolia were most depleted in 15N, followed by fine roots. In 2007, the stems of R. 

pseudoacacia had the lowest 15δN whereas the leaves of this species had the highest 

value. Similar to E. angustifolia, the 15N depletion was the highest in the nodules of R. 

pseudoacacia in 2008. Fine roots of the reference species G. triacanthos showed the 

highest 15N abundance value in 2007, whereas in 2008, the δ15N among fractions of this 

species did not vary significantly (Table 3.3). 

 

Table 3.2: Least square means of the end-of-season foliar and whole-tree δ15N 
values as affected by species, year and phosphorus application. Within a 
column segments delineated by each factor (species, year, treatment), the 
means followed by the same letter (a, b, c) are not significantly different 
at P<0.1 according to the Tukey post-hoc test 

 

Factor Variable Foliar mean Whole-tree mean 

  Δ15N 
Species Elaeagnus angustifolia -1.77 c -1.81 c 
 Robinia pseudoacacia -0.87 b -1.48 b 
 Gleditsia triacanthos  2.21 a  1.89 a 
Year 2006 -0.11 a -0.31 a 
 2007 -0.08 a -0.32 a 
 2008 -0.63 b -0.95 b 
P treatment 0-P -0.17 a -0.58 a 
 Low-P -0.34 a -0.64 a 
 High-P -0.32 a -0.53 a 
 ANOVA, probability > F(=)                    
Species 
Year 
P treatment 
Species*year  
Year*P treatment 
Species*P treatment 

                                   < 0.0001 
                                   < 0.0001 
                                     0.147          

                                    < 0.0001  
                                     0.510 
                                     0.457 

< 0.0001 
< 0.0001 
   0.193 
< 0.0001 
   0.641 
   0.543 

Note: Borderline significant 0.05<P<0.1; significant: 0.001<P<0.05; highly significant: P<0.001  
 

The overall results showed that the non-N-fixer G. triacanthos is a suitable 

reference tree species given its constant positive 15N values, thus indicating no N2 

fixation both on the basis of whole trees (Table 3.2) and fractions (Table 3.3).  

 

3.3.2 Impact of P amendments on nitrogen concentrations 

When combined over the years, the weighted mean of N concentrations accumulated 

over all fractions varied considerably among tree species, with the highest values in N2-

fixing E. angustifolia and R. pseudoacacia and the lowest in the non-fixing G. 
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triacanthos (Table 3.4). When differentiated by fractions, the two N2-fixers had 

statistically either similar N concentrations in some fractions (e.g., in leaves and fine 

roots), or R. pseudoacacia had lower (e.g., in twigs) or higher N (e.g., in stems, coarse 

roots) concentrations than E. angustifolia.  

 

Table 3.3: δ15N in tree fractions of E. angustifolia, R. pseudoacacia and G. 
triacanthos at the end of the 2006, 2007 and 2008 growing seasons. 
Within a row, means followed by the same letter are not significantly 
different at P<0.1 according to the Tukey post-hoc test 

Year Species Tree fractions 

  Leaves Twigs Stems Fine roots Coarse roots Nodules 

2006 E. angustifolia -1.41 a -1.31 a - -1.16 a - - 

 R. pseudoacacia -0.86a -0.93 a - -1.03 a - - 

 G. triacanthos  2.54 a  1.13 b -  0.89 b - - 

2007 E. angustifolia -2.15 ab -2.33 a -2.50 a -1.68 b -1.75 b -2.33 a 

 R. pseudoacacia -0.73 d -1.52 bc -2.33 a -1.27 ab -1.98 cd -1.83 cd 

 G. triacanthos  2.76 ab  1.94 c  2.12 bc  3.05 a  1.79 c  na 

2008 E. angustifolia -1.73 ab -1.60 ab -1.72 ab -2.06 b -1.55 c -2.81 a 

 R. pseudoacacia -1.03 c -1.94 b -1.61 bc -1.85 bc -1.43 cd -2.52 a 

G. triacanthos  1.32 a  1.78 a  1.80 a  2.00 a  1.41 a  na 

 ANOVA, probability > F(=) 

Factor 2006 

< 0.0001 

< 0.0001 

< 0.0001 

2007 

< 0.0001 

< 0.0001 

< 0.0001 

2008 

< 0.0001 

< 0.0001 

< 0.0001 

Species 

Fractions 

Species*fractions 

Note: Borderline significant 0.05<P<0.1; significant: 0.001<P<0.05; highly significant: P<0.001 
 

Both on the basis of the whole tree and the tree fractions, the highest N 

concentrations were found with the high-P treatment (Table 3.4). Nitrogen 

concentrations in the control (0-P) trees and their fractions were always significantly 

lower than with high-P except for the concentrations in the stem. The concentrations 

with low-P did not differ from 0-P and high-P. On a whole-tree basis, the differences in 

N concentrations were insignificant between years, whereas the N concentrations in 

fractions varied differentially between the years. Hence the overall findings indicated 

that due to N2 fixation, N concentrations with high-P significantly increased in all 

fractions but particularly in leaves and fine roots (both 18%) compared to P-0. 
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Table 3.4: Least square means of nitrogen concentrations (%) in tree fractions as 
affected by species, level of phosphorus application and years. Within a 
column segment delineated by each factor (species, treatment, year), 
means followed by the same letter are not significantly different at P<0.1 
according to the Tukey post-hoc test 

Factor Variable Leaves Twigs Stems Coarse roots Fine roots Weighted 
mean 

  N concentration, %
Species E. angustifolia  2.76 a 0.93 a 0.55 b 1.40 b 1.99 a 1.61 a 
 G. triacanthos 1.38 b 0.56 c 0.50 c 0.67 c 0.73 b 0.80 b 
 R. pseudoacacia 2.64 a 0.87 b 0.63 a 1.75 a 1.99 a 1.63 a 

 P value <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 
  N concentration, %
P treatment 0-P 2.06 b 0.76 b 0.54 b 1.21 b 1.45 b 1.25 b 
 Low-P 2.29 a 0.77 b 0.57 a 1.25 b 1.54 b 1.34 ab 
 High-P 2.43 a 0.82 a 0.56 b 1.36 a 1.72 a 1.44 a 
 P value 0.01 0.02 0.06 0.007 0.013 0.12 

  N concentration, % 
Year 2006 2.14 b 0.86 a na na 0.98 b 1.32 a  

 2007 2.49 a 0.68 c 0.55 a 1.31 a              1.83 a 1.37 a 
 2008 2.15 b 0.81 b 0.57 a 1.24 b 1.90 a 1.33 a 
 P value <0.0001 <0.0001 0.17 0.09 <0.0001 0.85 

Note: Borderline significant 0.05<P<0.1; significant: 0.001<P<0.05; highly significant: P<0.001. na – 
not available 

 

The analysis also showed that compared to 0-P, high-P significantly increased 

leaf N content of E. angustifolia, while the effect of high-P was not confirmed for R. 

pseudoacacia (Table 3.5).     

 

3.3.3 Impact of P amendments on N2 fixation 

When averaged over all years and treatments, Ndfa (%) as well as the amount of N2 

fixed (kg ha-1) by E. angustifolia was significantly higher than by R. pseudoacacia. At 

all measuring times, the Ndfa (kg ha-1) with high-P was significantly higher than with 

low-P and 0-P when combined over all years and species. The exception was foliar 

%Ndfa, which significantly increased with high-P compared to 0-P. When compared on 

a whole-tree basis (weighted means) the Ndfa (kg ha-1) was significantly different for all 

P treatments, with the highest Ndfa with high-P and the lowest with 0-P. The foliar 

%Ndfa increased over years and peaked in 2007 while the whole-tree weighted mean of 

%Ndfa increased over years and peaked in 2008 (Table 3.6). The Ndfa (kg ha-1) based 

on the foliar as well as the whole-tree weighted means increased in the order of: 

2006<2007<2008 (Table 3.6). 
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Over three years, high-P significantly increased the foliar as well as whole-tree 

%Ndfa of E. angustifolia when compared to 0-P. In the case of R. pseudoacacia, the 

foliar %Ndfa was not affected by P additions, whereas the whole-tree N2 fixation 

significantly increased with low-P and high-P (Figure 3.3).  

 

Table 3.5:  
 

Least square means of tissue nitrogen concentration (%) as affected by 
years, species and phosphorus application interactions. Within a 
column, means followed by the same letter are not significantly 
different at P<0.1 according to the Tukey post-hoc test 

Interaction/ 
Variable 

Leaves Twigs Stem Coarse 
roots 

Fine 
roots 

Weighted 
mean 

Year*Species  N concentration, % 

2006 Elaeagnus angustifolia 3.05 a 0.97 a na na 1.33 a 1.79 a 
 Gleditsia triacanthos 1.27 c 0.67 b na na 0.44 b 0.80 c 
 Robinia pseudoacacia 2.09 b 0.94 a na na 1.18 a 1.41 b 
 P value <0.0001 <0.0001 - - <0.0001 <0.0001 
2007 E. angustifolia 2.97 a 0.86 a 0.62 a 1.46 b 2.20 a 1.62 a 
 G. triacanthos 1.50 b 0.40 b 0.40 b 0.62 c 0.91 b 0.77 b 
 R. pseudoacacia 3.00 a 0.78 a 0.63 a 1.84 a 2.39 a 1.73 a 
 P value <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 
2008 E. angustifolia 2.25 a 0.95 a 0.48 b 1.35 b 2.46 a 1.50 a 
 G. triacanthos 1.37 b 0.60 b 0.60 a 0.72 c 0.83 b 0.82 b 
 R. pseudoacacia 2.82 a 0.89 a 0.63 a 1.65 a 2.40 a 1.68 a 
 P value <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 
Overall  P value <0.0001 0.21 <0.0001 0.02 <0.0001 0.11 
Year*P treatment       
2006 0-P 1.89 b 0.86 a na na 1.03 a 1.26 a 
 Low-P 2.22 b 0.85 a na na 0.94 a 1.34 a 
 High-P 2.31 a 0.87 a na na 0.98 a 1.39 a 
 P value 0.04 0.98 - - 0.89 0.78 
2007 0-P 2.30 b 0.66 a 0.53 a 1.31 a 1.70 b 1.30 a 
 Low-P 2.48 b 0.68 a 0.56 a 1.28 a 1.72 b 1.34 a 
 High-P 2.68 a 0.70 a 0.56 a 1.33 a 2.08 a 1.47 a 
 P value 0.08 0.91 0.83 0.97 0.06 0.58 
2008 0-P 2.00 a 0.75 b 0.54 a 1.11 b 1.63 b 1.21 a 
 Low-P 2.15 a 0.79 b 0.59 a 1.22 b 1.98 b 1.35 a 
 High-P 2.29 a 0.90 a 0.58 a 1.39 a 2.09 a 1.45 a 
 P value 0.55 0.10 0.41 0.001 0.01 0.22 
Overall  P value 0.99 0.75 0.94 0.64 0.65 0.97 
Species*P treatment       
E. angustifolia 0-P 2.49 b 0.91 a 0.55 a 1.35 a 1.89 a 1.52 a 
 Low-P 2.70 b 0.92 a 0.56 a 1.38 a 2.09 a 1.62 a 
 High-P 3.07 a 0.95 a 0.53 a 1.48 a 2.00 a 1.70 a 
 P value 0.01 0.77 0.66 0.14 0.68 0.54 
G. triacanthos 0-P 1.26 a 0.53 a 0.46 a 0.57 b 0.60 b 0.71 a 
 Low-P 1.40 a 0.57 a 0.52 a 0.75 a 0.68 ab 0.81 a 
 High-P 1.47 a 0.56 a 0.52 a 0.70 ab 0.91 a 0.87 a 
 P value 0.16 0.79 0.51 0.09 0.03 0.12 
R.pseudoacacia 0-P 2.43 a 0.82 b 0.60 a 1.72 ab 1.87 b 1.54 a 
 Low-P 2.75 a 0.83 b 0.64 a 1.61 b 1.86 b 1.60 a 
 High-P 2.74 a 0.96 a 0.65 a 1.91 a 2.24 a 1.76 a 
 P value 0.33 0.05 0.18 0.07 0.07 0.40 
Overall  P value 0.49 0.44 0.69 0.11 0.71 0.98 
na – not available  
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Table 3.6: Least square means of nitrogen fixation (Ndfa %, kg ha-1) as affected by 
species, level of phosphorus application and years. Within a column segment 
delineated by each factor (species, treatment, year) means followed by the 
same letter are not significantly different at P<0.1 according to the Tukey 
post-hoc test 

Factor Variable Foliar Whole-tree  Foliar Whole-tree  
  Ndfa (%) Ndfa (kg ha-1) 
Species E. angustifolia 84 a 87 a 209 a 285 a 
 R. pseudoacacia 59 b 82 b   44 b   57 b 
P treatment 0-P 69 b 77 b   89 b 113 c 
 Low-P 71 ab 84 a 120 b 169 b 
 High-P 75 a 85 a 169 a 230 a 
Year 2006 57 c 68 c   17 c   26 c 
 2007 82 a 87 b   77 b 121 b 
 2008 76 b 92 a 284 a 365 a 
  ANOVA, probability > F(=) 
Year  < 0.0001 < 0.0001 < 0.0001 < 0.0001 
Species  < 0.0001 < 0.0001 < 0.0001 < 0.0001 
P treatment     0.074 < 0.0001 < 0.0001 < 0.0001 
Year*species  < 0.0001 < 0.0001 < 0.0001 < 0.0001 
Year*P treatment     0.698    0.939    0.021 < 0.0001 
Species*P treatment     0.183    0.750    0.089 < 0.0001 
Note: Borderline significant 0.05<P<0.1; significant: 0.001<P<0.05; highly significant: P<0.001  
 

Due to a significant year*treatment interaction in the amount of N2 fixation 

(kg ha-1) based both on foliar and weighted whole-tree means (Table 3.6), these 

parameters were disaggregated and analyzed according to species in each year and 

treatment (Table 3.7).  

0

20

40

60

80

100

0-P Low-P High-P 0-P Low-P High-P 0-P Low-P High-P 0-P Low-P High-P

Foliar Whole-tree Foliar Whole-tree

%
N

d
fa

   a           b           b    a           a b         a   a            a           a       a            b           b

R. pseudoacaciaE. angustifolia
                     P  value
Species      <0.0001
Treatment  <0.0001

 

Figure 3.3: Nitrogen fixation (%Ndfa) of E. angustifolia and R. pseudoacacia with 
three levels of P application (0-P, low-P and high-P) based on foliar and 
whole-tree 15N natural abundance referenced against G. triacanthos over 
three years. Vertical bars indicate standard deviations of the means 
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Table 3.7: Least square means in 2006, 2007 and 2008 of foliar and whole-tree 
nitrogen fixation (kg ha-1) by E. angustifolia and R. pseudoacacia 
according to three levels of P application. Within a column delineated 
by each factor, means followed by the same letter are not significantly 
different at P<0.1. The overall means of Ndfa within a column and each 
year followed by different capital letter are significantly different at 
P<0.1 according to the Tukey post-hoc test 

 

Species 2006 
 P treatment Foliar Whole-tree 
  Ndfa (kg ha-1) 

Elaeagnus angustifolia 0-P  14 b 25 b 
Low-P 34 b 53 a 
High-P 43 a 64 a 

Overall means  30 C 48 C 
 2007 

Elaeagnus angustifolia 0-P   79 b 103 b 
 Low-P 119 ab 195 a 
 High-P 168 a 269 a 

Overall means  122 B 190 B 
 2008 

Elaeagnus angustifolia 0-P  370 b 445 b 
 Low-P 433 b 599 b 
 High-P 618 a 807 a 

Overall means  474 A 617 A 
 2006 

Robinia pseudoacacia 0-P  1 b 2 b 
Low-P 2 b 4 b 
High-P 3 a 9 a 

Overall means  2 C 5 C 
 2007 

Robinia pseudoacacia 0-P  24 b 30 c 
 Low-P 32 b 49 b 
 High-P 42 a 78 a 

Overall means  33 B 53 B 
 2008 

Robinia pseudoacacia 0-P    47 b   72 b 
 Low-P   97 a 111 ab 
 High-P 142 a 155 a 

Overall means  95 A 113 A 
 ANOVA, probability > F(=) 

Year  < 0.0001 < 0.0001 
Species  < 0.0001 < 0.0001 
P treatment  < 0.0001 < 0.0001 
Year*species  < 0.0001 < 0.0001 
Year*P treatment      0.021 < 0.0001 
Species*P treatment      0.089    0.040 

       Note: Borderline significant 0.05<P<0.1; significant: 0.001<P<0.05; highly significant P<0.001  
 

The foliar Ndfa (kg ha-1) by E. angustifolia with high-P in 2006 was 

significantly higher than with low-P and 0-P. In 2007 and 2008, this was essentially the 

same. On the other hand, the whole-tree Ndfa (kg ha-1) by E. angustifolia estimated with 

high-P and low-P in 2006 and 2007 was significantly higher than with 0-P. With time, 
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the effect of the higher P rate became increasingly evident, and in 2008, the Ndfa (kg 

ha-1) was significantly higher with high-P, exhibiting a N2 fixation of as high as 807 kg 

ha-1. This amounts to an average of about 270 kg ha-1 year-1. The overall means of Ndfa 

showed a significant increase in N2 fixation over the years both in leaves and the whole 

tree. The whole-tree Ndfa in 2008 was ca. 23% higher than that of the foliar Ndfa.    

In 2006 and 2007, R. pseudoacacia had significantly higher amounts of N2 

fixed in the leaves with high-P, whilst the difference in N2 fixation between low-P and 

0-P was insignificant. The same tendency was observed in 2006 when estimated on a 

whole-tree basis. In 2008, the foliar Ndfa with high-P and low-P was significantly 

higher compared to 0-P. The whole-tree Ndfa differed significantly among the P 

treatments, showing the highest values with high-P in 2007, whereas after three years 

there was a significant difference only between high-P (155 kg ha-1: average 52 kg ha-1 

year-1) and 0-P, the latter being the lowest (72 kg ha-1: average 24 kg ha-1 year-1). The 

difference between low-P and 0-P was insignificant. The foliar as well as the whole-tree 

N2 fixation by R. pseudoacacia increased significantly over years and peaked in 2008 

(Table 3.7). The whole-tree Ndfa in 2008 was ca. 19% higher than that of the foliar 

Ndfa.    

The end-of-season Ndfa (%, kg ha-1) of E. angustifolia, estimated with the 

student’s t-test, revealed a significant difference between foliar and whole-tree N2 

fixation over three years when referenced against G. triacanthos (P(T<=t)=0.014 and 

P(T<=t)=0.018, respectively), whereas for R. pseudoacacia the difference for %Ndfa 

was insignificant (P(T<=t)=1.137). However, Ndfa (kg ha-1) by the leguminous species 

estimated on the whole-tree basis was significantly higher than that estimated based on 

leaves (P(T<=t)=0.012). 

 

3.3.4 Impact of P application on biomass production, relative growth rates and 

N productivity 

Biomass production 

 The biomass production of the three tree species differed significantly when values 

were combined over three years and three P amendments and compared on the basis of 

tree fractions and whole trees (Table 3.8).  
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The highest biomass accumulation was observed in the N2-fixer E. 

angustifolia, which was 81% higher than that of the other N2-fixer R. pseudoacacia and 

97% higher compared than that of the non-fixer G. triacanthos (Table 3.8). The bulk of 

the total DM was accumulated in the aboveground fractions and amounted to 93%  of 

the total biomass in E. angustifolia, 81% in G. triacanthos and 83% in R. pseudoacacia. 

When combined over the three species and three years, the high-P treatment had a 

significantly higher total DM production compared to 0-P and low-P, whereas the 

differences between 0-P and low-P were statistically insignificant (Table 3.8).  

There was a clear positive effect of P rates on leaves (P=0.009), twigs 

(P=0.004), stump (P=0.005) and aboveground biomass (P=0.0011). Except for the fine 

roots, biomass production of all tree fractions increased over time (Table 3.8). 

 

Below- and above-ground biomass partitioning 

The root/shoot ratio (RSR) of E. angustifolia declined with time (Table 3.9). In 2006, 

this species produced relatively more belowground DM, as suggested by the highest 

RSR of 0.43. In the following two years, the growth of E. angustifolia was shifted 

towards relatively more aboveground DM with a lower RSR of 0.12 in 2007 and 0.08 in 

2008. A similar tendency was observed for R. pseudoacacia and G. triacanthos during 

the establishment year, although the RSR of these two species was significantly higher 

than that of E. angustifolia. In 2007, the RSR of G. triacanthos and R. pseudoacacia 

declined, indicating once more a relative favoring of aboveground DM. In 2008, the 

RSR values were similar to those in 2007 for G. triacanthos, whereas for R. 

pseudoacacia there was a small increase of 15%. Phosphorus amendments did not affect 

the RSR in the species, which was consistent over the years.   

   

Conventional growth assessment parameters 

The growth assessment based on the unit production rate (UPR) and the conventional 

parameters favored by foresters such as percentage increase in height (RGRH) and 

diameter (RGRD) showed significant differences among years, species and P 

amendments (Table 3.10). 
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Table 3.9: Root/shoot ratios of three tree species according to the study years and 
tree species. Within a column and each year, means followed by the same 
letter are not significantly different at P<0.05 according to the Tukey 
post-hoc test 

 

Year Species Root/Shoot ratio 
2006 E. angustifolia 0.43 b 
 G. triacanthos 2.77 a 
 R. pseudoacacia 2.00 a 
2007 E. angustifolia 0.12 a 
 G. triacanthos 0.15 ab 
 R. pseudoacacia 0.17 a 
2008 E. angustifolia 0.08 a 

 G. triacanthos 0.15 ab 
 R. pseudoacacia 0.20 b 
 ANOVA, probability > F(=) 

Year  < 0.0001 
Species      0.001 
P treatment      0.875 
Year*species  < 0.0001 
Year*P treatment      0.976 
Species*P treatment      0.868 

Note: Borderline significant 0.05<P<0.1; significant: 0.001<P<0.05; highly significant: P<0.001  
 

Phosphorus applications did not significantly affect the UPR of E. angustifolia 

in all three years. However, in 2006, RGRH and RGRD with high-P were significantly 

higher than with 0-P. In 2007, the highest RGRH was with high-P as well as with low-P, 

but in 2008 the high-P treatments exhibited superior RGRH. The UPR for the non-fixer 

G. triacanthos decreased over the years, showing a great difference between high-P and 

0-P in 2006. The RGRH and RGRD values were significantly higher with high-P in 

2006, 2007 and 2008, except for RGRH in 2008. In 2006, R. pseudoacacia showed the 

highest UPR with high-P and the lowest with 0-P. The same was observed for RGRH 

and RGRD. In 2007, though the lowest UPR was observed with high-P, the low-P and 0-

P values were statistically similar. In the following year, the high-P again showed the 

highest and 0-P the lowest values. The relative growth in height and diameter of this 

species was not affected by P amendments in 2007. 
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Table 3.10: Species means of unit production rate (UPR) and relative growth rate in 
height (RGRH) and diameter (RGRD) according to P treatments in 2006, 
2007 and 2008. Within a column and each tree species, values followed 
by the same letter are not significantly different at P<0.05 according to 
the Tukey post-hoc test 

 

Species P treatment UPR 
(mg g-1 d-1) 

RGRH 
(mm mm-1 d-1) 

RGRD 
(mm mm-1 d-1) 

 2006  
E. angustifolia        0-P 2.30 a 0.029 b 0.002 b 
        Low-P 2.21 a   0.040 ab  0.002 ab 
        High-P 2.26 a 0.044 a         0.003 a 
G. triacanthos        0-P 1.21 b 0.006 b   0.0005  b 

        Low-P 1.65 a 0.009 b    0.0008 ab 
        High-P 1.78 a 0.019 a  0.0010 a 

 R. pseudoacacia        0-P 1.34 c 0.012 b 0.002 b 
        Low-P      1.53 b   0.019 ab  0.002 ab 
        High-P 1.91 a 0.025 a 0.003 a 

 2007 
E. angustifolia        0-P 0.55 a 0.024 b 0.004 a 
        Low-P 0.53 a 0.037 a 0.004 a 
        High-P 0.60 a 0.041 a 0.005 a 
G. triacanthos        0-P      0.45a 0.011 c 0.002 b 
        Low-P      0.21b 0.028 b 0.002 b 

        High-P   0.33 ab 0.053 a 0.004 a 
R. pseudoacacia        0-P 0.64 a 0.043 a 0.004 a 

        Low-P 0.64 a 0.042 a 0.004 a 
        High-P 0.54 b 0.051 a 0.005 a 
 2008  

E. angustifolia        0-P 0.34 a 0.028 b 0.003 a 
        Low-P 0.38 a 0.028 b 0.004 a 
        High-P 0.35 a 0.038 a 0.005 a 
G. triacanthos        0-P 0.12 a 0.028 a 0.001 b 
        Low-P 0.20 a 0.029 a 0.002 a 
        High-P 0.12 a 0.028 a 0.002 a 
R. pseudoacacia        0-P 0.13 b 0.028 a 0.003 a 

        Low-P 0.29 a 0.038 a 0.003 a 
        High-P 0.25 a 0.039 a 0.003 a 
 ANOVA, probability > F(=) 

Year  <0.0001 <0.0001 <0.0001 
Species  <0.0001 <0.0001  <0.0001 
P treatment  <0.0001 <0.0001 <0.0001 
Year*species  <0.0001 <0.0001   0.014 
Year*P treatment  <0.0001   0.177   0.646 
Species*P treatment  <0.0001   0.780  0.171 

Note: Borderline significant 0.05<P<0.1; significant: 0.001<P<0.05; highly significant: P<0.001  
 

Growth analyses based on nitrogen productivity 

Nitrogen productivity (NP), which often is defined as the rate of weight increase per 

unit leaf N per time, is a useful indicator in growth analyses, as it depends on relative 
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growth rates (Lambers et al., 1998). It is also considered an indicator of N investment 

by trees (vegetation) in foliage. This means that trees with higher NP have invested 

relatively more in foliage development than, for example, in roots or stems, and NP is 

therefore also a useful complement to R/S analyses (see section Below and 

aboveground biomass partitioning). The NP differed significantly among tree species 

over all years, E. angustifolia being superior. There was, however, no P effect on NP in 

E. angustifolia in 2006 and 2008, whilst the effect was inconsistent in G. triacanthos 

(Table 3.11). In contrast, a strong P effect on NP was observed in R. pseudoacacia in 

2006, where high-P increased NP significantly compared to low-P and 0-P. In 2007 and 

2008, NP with both P rates was higher than with 0-P (Table 3.11). This indicated that 

the increased growth of R. pseudoacacia was related to the increased N2 fixation caused 

by P amendments.   

   

Table 3.11: Nitrogen productivity (NP) of three species according to P treatments in 2006, 
2007 and 2008. Within a column and each tree species, values followed by the 
same letter are not significantly different at P<0.05. Species overall means 
within a column followed by the same capital letter are not significantly 
different at P<0.05 according to Tukey post-hoc test  

  2006 2007 2008 
Species P treatment NP (mg g-1 day-1) 
E.  angustifolia        0-P 6.94 a  2.37 ab 1.92 a 

       Low-P 6.91 a 2.32 b 2.03 a 
       High-P 6.93 a 2.41 a 1.95 a 

Overall mean   6.93 A   2.37 A  1.97 A 
G. triacanthos        0-P 5.88 b 2.21 a 0.95 b 

       Low-P 6.50 a 1.40 b 1.58 a 
       High-P 6.63 a 1.89 a 0.90 b 

Overall mean   6.34 B  1.83 B 1.14 C 
R. pseudoacacia        0-P 6.37 b 2.33 b 1.01 b 

       Low-P 6.11 c 2.45 a 1.79 a 
       High-P 6.76 a 2.45 a 1.64 a 

Overall mean   6.55 B  2.41 A  1.48 B 
  ANOVA, probability > F(=) 

Year  <0.0001 
Species  <0.0001 
P treatment  <0.0001 
Time*species  <0.0001 
Time*P treatment  <0.0001 
Species*P treatment   0.031 

Note: Borderline significant 0.05<P<0.1; significant: 0.001<P<0.05; highly significant: P<0.001  
 

In summary, the combined findings (Table 3.12) showed that compared to 0-P, 

high-P significantly increased N2 fixation by the actinorhizal E. angustifolia and the 
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leguminous species R. pseudoacacia. Total aboveground biomass production of E. 

angustifolia increased with high-P by more than 33%, whereas total biomass increased 

by more than 25%, but these differences were insignificant. Although total aboveground 

biomass increased with high-P by 70% and total biomass by 57% with R. pseudoacacia, 

these differences were also statistically insignificant. In comparison to 0-P, high-P 

significantly increased N concentrations in the foliage of E. angustifolia, and in the 

twigs and fine roots of R. pseudoacacia. Finally, with high-P, the UPR and NP of R. 

pseudoacacia increased significantly and also the relative growth rate in height (RGRH) 

of E. angustifolia. 

 

Table 3.12 Overall assessment of impact of high-P amendments compared to 0-P on 
selected biophysical and growth parameters after three years 

Parameter Unit Elaeagnus 
angustifolia 

Gleditsia 
triacanthos 

Robinia 
pseudoacacia 

N concentration in leaves % + - - 

N concentration in twigs % - - + 

N concentration in fine roots % - + + 

Ndfa % + na + 

Ndfa  kg ha-1 + na + 

Total biomass t ha-1 - + - 

UPR mg g-1 d-1 - - + 

RGRH mm mm-1 d-1 + - - 

RGRD mm mm-1 d-1 - + - 

NP mg g-1 d-1 - - + 

Symbols indicate that the level of the parameter was statistically significant (+) or not (-) between high-P 
compared to 0-P treatments. na – not applicable 
 

3.4 Discussion 

3.4.1 Effect of P on N2 fixation 

Phosphorus is one of the minerals known to affect N2 fixation and, along with N, P-

deficiency is a major yield-limiting factor in many regions of the world (Pereira and 

Bliss, 1989). The access to P is essential for nodulation, N2 fixation and plant growth 

(Marschner, 1986; Dommergues, 1995). Even small additions of P significantly increase 

plant nodule production as well as rates of N2 fixation, and may even double the 

nitrogenease activity (Lynd et al., 1984). N2 fixation by the Frankia-actinorhizal 
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symbiosis is limited by low available P in the soil. Sanginga (1989), for instance, 

observed increased amounts of N2 fixed by Casuarina equisetifolia after adding P to the 

P-deficient soil.  

N2 fixation (Ndfa in % and kg ha-1) in E. angustifolia, which was estimated in 

this study both on a foliar and whole-tree basis, was the highest with high-P and the 

lowest with 0-P in all study years, which confirmed the effect of P on N2 fixation also 

by this actinorhizal species. Moreover, a 4-year-old stand of E. angustifolia with high-P 

fixed between 64 (in the first year) and 807 kg N ha-1 (after three years) or an average 

270 kg N ha-1 year-1of atmospheric N2 as estimated from the whole-tree 15N abundance 

values (Table 3.7). When subtracting the values of a given year from those of the 

previous year, which yields the annual N2 fixation amount, values ranged from 64–538 

kg ha-1 year-1 with high-P and from 25–342 kg ha-1 year-1 with 0-P. The annual N2 

fixation values are higher than the lowest (24 kg ha-1 year-1) and highest (514 kg ha-1 

year-1) values reported by Khamzina et al. (2009a) for  E. angustifolia grown under the 

same environmental conditions, but without P amendments. The higher amounts of N2 

fixed could be attributed to the addition of P to the P-deficient soils. This conclusion is 

also supported by the annual N2 fixed by E. angustifolia with 0-P, which ranged from 

25-342 kg ha-1 year-1, which corresponds to the earlier reported values of 24-514 kg ha-1 

year-1 (Khamzina et al., 2009a) for E. angustifolia without P fertilization. Also, the 

average amounts of N2 fixed with high-P (about 270 kg N ha-1 year-1) fall in the range 

previously estimated for this species. Compared to 0-P, E. angustifolia also fixed 

considerable amounts of N2 with low-P, but the effect of this P amendment was 

inconsistent, and sometimes showed significantly higher and sometimes equal values 

compared to 0-P.  

Since in low-P soils, the Frankia-Casuarina association required higher P 

levels than those needed for annual plant growth (Sanginga et al., 1989), it is likely that 

the low-P amounts applied were insufficient to obtain a consistent effect over the study 

years. In contrast, the amounts of P added with high-P gave consistently higher N2 

fixation rates. This may also be seen from the whole-tree based %Ndfa values estimated 

over the three-year period, where high-P additions increased %Ndfa by E. angustifolia 

from 85% (0-P) to 91%.  
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The Rhizobium-tree legume symbioses are reportedly able to fix between 43 

and 581 kg of N ha-1 (Zahran, 1999), but most research findings refer to species of the 

genera Acacia, Albizia and Cliricidia, and the age of the stands is not always indicated. 

Quantitative estimates of BNF by the leguminous R. pseudoacacia under arid 

conditions such as those prevailing in the Khorezm region are lacking. A 4-year-old R. 

pseudoacacia stand fixed between 9 (after one year) and 155 kg N ha-1 (after three 

years) with high-P, whereas with 0-P the amount of N2 fixed ranged between 2 (after 

one year) and 72 kg ha-1 (after three years). When subtracting the values of a given year 

from those of the previous year, the annual N2 fixation by R. pseudoacacia with high-P 

ranged between 9 and 77 kg ha-1 year-1 and with 0-P between 2 and 42 kg ha-1 year-1. 

Danso et al. (1995) reported a N2 fixation by 4-year-old R. pseudoacacia stands in 

Austria as high as 220 kg N ha-1, measured with the 15N isotope dilution method. This 

amount exceeds by far the total amount after three years with high-P in our study 

region. Such a difference may have been due to the elevated soil salinity at the study 

site (6-11 dS m-1), which is known to suppress N2 fixation (Galiana et al., 2004), or to 

the method of P application used. Yet, with high-P, N2 fixation (kg ha-1) increased by 

ca. 53% and %Ndfa from 76% (0-P) to 85%. This is in line with previous studies with 

leguminous species (Luyindula and Haque, 1992; Binkley et al., 2003). With high-P, the 

production potential of both the actinorhizal E. angustifolia and the leguminous species 

R. pseudoacacia could thus be exploited and increased on salt-affected croplands.    

To obtain accurate estimates of the contribution of BNF it is necessary to 

consider all plant fractions rather than only individual tree fractions (Danso et al., 1995). 

Our results confirmed that foliar estimates of Ndfa underestimated the actual N2 fixation 

ability of trees, especially when referring to the amounts of N2 fixed. 

A selection of appropriate non-fixing reference plants for accurate 

measurements of N2 fixation with the 15N abundance method is crucial. The reference 

species G. triacanthos used in this study depended purely on soil N for nutrition and 

had positive δ15N values. According to Hogberg (1997), a minimum difference of 5% is 

required between the 15N signals of the reference plants and N2 fixers, which was met in 

case of G. triacanthos. The 15N natural abundance values of the latter species differed 

significantly from the two N2-fixing species examined, which exhibited negative δ15N. 

This is a common phenomenon that occurs in efficient N2-fixing systems as argued by 
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Boddey et al. (2000). Hence, this significant difference in δ15N of the N2-fixers and non-

fixer met the requirements of the 15N abundance method. It is recommended by some 

authors to include, when possible, more than one reference species to increase the 

accuracy of quantification of N2 fixation with the 15N abundance method (Fried et al., 

1983). However, G. triacanthos trees grew under the same conditions as the two N2-

fixing species and yielded the positive δ15N values and N2 fixation rates of both N2-

fixers, which were in line with the rates previously reported (Danso et al., 1992; Danso 

et al., 1995; Zahran, 1999; Khamzina et al., 2009a).  We therefore consider the 

quantification of N2 fixation against one species to be acceptable and trustworthy.   

 

3.4.2 Phosphorus effect on biomass and growth rates 

A sole application of high-P significantly increased the total biomass of the reference 

non-N-fixer G. triacanthos. Phosphorus fertilization of woody perennials is mostly 

recommended for commercially useful fruit species such as oilpalm (Taryo-

Adiwigandaa et al., 2006), but in such cases mainly the impact of P amendments on 

fruit production has been reported. Oliet et al. (2005) recommended amendments of 

organic and/or inorganic fertilizers, including P, to nursery-grown tree saplings of the 

leguminous species Acacia salicina Lindl. to ease the well-known transplant stress. 

Especially on nutrient-poor soils in semiarid conditions, such additions increased long-

term plantation establishment (Oliet et al., 2005). Despite the knowledge gap on the 

impact of P on non-fruit species, and certainly for the species home to Central Asia such 

as G. triacanthos, the higher P application significantly increased the total biomass of 

this species on the salt-affected croplands in semi-arid Uzbekistan over that of the 

control.  

It has been reported that high N2 fixation rates are mirrored also in higher 

biomass production of perennial crops although others reported no significant increase. 

Binkley et al. (2003), for instance, noted that despite having doubled the amount of N2 

fixed by seedlings of Facaltaria moluccana (Miquel) Barneby and Grimes, the biomass 

production increase was insignificant. Despite the substantial increases in the various 

biomass fractions, these increments were statistically insignificant for all trees examined 

in this experiment.  
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An ANOVA of growth revealed not only an increase in N2 fixation with high-

P, but also an increase in N concentrations in leaves of E. angustifolia, in twigs and fine 

roots of R. pseudoacacia (Table 3.5) and in the parameters favored by forestry 

physiologists such as UPR and NP of R. pseudoacacia and the relative growth rate in 

height (RGRH) of E. angustifolia. But an ANOVA analysis did not detect a consistent 

effect of high-P on all species and over all years despite relatively large increases in 

total biomass in E. angustifolia and R. pseudoacacia. These inconsistencies could be in 

part explained by the relatively high standard deviations indicating that the number of 

replicates used or the number of trees harvested had been too small. A larger sample 

size can lead to increased accuracy of the parameters estimates (Steel and Torrie, 1980). 

While the accuracy of some parameter estimates therefore may be debatable, 

an impact of P on parameters such as tree height in E. angustifolia was evident. 

Although the growth of trees in height precedes the growth in stem diameter, estimates 

of diameter growth often are considered more reliable than estimates of height growth 

because the measurement points for diameter growth monitoring are permanently 

marked on the stems. On the other hand, height growth was measured from the soil 

level to the highest vegetative point with a telescope measuring stick, which is also 

considered sufficiently accurate unless the trees are taller than the measuring stick 

(MacDicken et al., 1991).  

There is a consensus that high growth rates of trees cannot be expected in a 

low-resource environment such as that at the experimental site (Table 3.1). But in such 

an environment, vegetation including tree species with high growth potential will grow 

faster than vegetation with a slow growth characteristics (Lambers et al., 1998). The 

RGRH of E. angustifolia was generally higher for all P treatments and in all years 

compared to those of the other two species. Although with high-P the RGRH of the 

species declined from 0.044 to 0.038 (mm mm-1 d-1) over the three study years, the 

estimated RGRH was still of the same order of magnitude as the RGRH of E. angustifolia 

previously estimated for this species in the same study region in experiments without P 

fertilization (Lamers et al., 2006). On the other hand, the RGRH of E. angustifolia with 

high-P was in general (much) higher in all years than the estimated RGRH for other tree 

species in this arid environment, especially in the second study year of the above-

mentioned study.  
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The outcomes of the present study along with the findings of Lamers et al. 

(2006) in the same study region underlined that P amendments increased N2 fixation of 

both actinorhizal E. angustifolia and the leguminous R. pseudoacacia and can improve 

early (sapling) growth. However, the initial hypothesis that underpinned the 

experiments with P amendments was not entirely supported by the empirical evidence. 

Although the effect of high-P certainly increased N2 fixation, these effects were not 

converted into consistent increased growth and biomass production. There are several 

possible explanations for these findings.  

(1) The absolute amounts of P applied were insufficient, or the P applied was occluded 

by Ca, which is a common mineral in the soils of Central Asia (Pirahunov, 1977). 

When occluded as Ca3(PO4)2, which is likely to occur under (slightly) alkaline 

conditions as monitored at the experimental site, P becomes unavailable to the trees 

or even could have led to Ca deficiency, which hence could have reduced growth. 

This perhaps could have occurred with low-P given the rather inconsistent findings 

with this treatment, but not with regard to the high-P amendments. The results with 

high-P showed, for instance, a significant increase in the UPR and NP of R. 

pseudoacacia and in the RGRH of E. angustifolia.   

(2) The P application method as practiced in the second season was less effective than 

assumed, which is also indicated by the increase in soil P in the second season 

(Table 3.1). Given that mineral P is less mobile in the soil than, for instance, N 

(Lambers et al., 2006), a localized P application (P-fertilizer placement) is generally 

recommended for tree fertilization (Darr and West, 1996). This is particularly 

necessary in arid climate conditions under which it has been monitored that roots 

preferably grow vertically (Khamzina et al., 2008). It may thus have been possible 

that the tree roots in the second growing season had less access to the P applied than 

assumed. On the other hand, the high N2 fixation rates measured also in the second 

and third study years indicated that N2 fixation had been boosted consistently with 

high-P but inconsistently with low-P. 

(3) Perhaps N had not been the most limiting growth factor at this stage of tree growth 

on the salt-affected soils. Trees, just as other plants, show a functional response to 

limiting growth factors or to those in shortest supply (Lambers et al., 2006). Hence, 

plants invest in those parts that are needed to acquire the limited resource, and this 
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occurs at the expense of extending those plant components that are in need of the 

next resource in short supply. In other words, in the case of N-stress, plants would 

react by allocating more biomass to the roots (to acquire the N) than to the leaves (in 

need of N). Yet, the general decline in RSR in both E. angustifolia and R. 

pseudoacacia over the study years does not support this interpretation, thus 

indicating therefore the absence of N stress. Furthermore, the postulation that N was 

not in short supply was supported also by the absence of typical N-deficiency 

symptoms such as chlorotic foliar starting from the older leaves. Given all the 

parameters observed and measured, it is still unclear which other parameter could 

have been in short supply, if at all. 

(4) A probable explanation is that the tree species examined in this study behaved 

similar to many fruit species with respect to storing and mobilizing N. In general, 

annual and perennial herbaceous and woody species satisfy their N demand for 

growth and development by an uptake of N as nitrate, ammonium, or organic N 

(Gessler et al., 1998; Nasholm et al., 1998), or by the translocation of N sources 

stored as proteins and amino acids (Wetzel et al., 1989; Sagisaka, 1993; Stepien et 

al., 1994), particularly in the perennial organs such as coarse roots, stem and bark, 

or trunk (Millard, 1996; Dong et al., 2002; Frak et al., 2002). Whereas N storage in 

deciduous woody species predominantly occurs at the end of a growing season in 

autumn, while during springtime N is remobilized (Tagliavini and Millard, 2005) to 

satisfy the N demand for the development of newly growing shoots and leaves 

without relying on soil N in the rooting zone during this growth stage (Dong et al., 

2002). Thus trees, in contrast to annual crops, may rely on the remobilization of the 

internal N sources, which may have been accumulated during previous years. Given 

that the highest N concentrations at the end of the growing seasons were found in 

the leaves and woody, perennial organs (coarse and fine roots) irrespective of years, 

species and P applications, N remobilization could have satisfied the N demand at 

the onset of the growing seasons.  

 

In order to elucidate the possible reason or combination of reasons for the 

inconsistencies, the first explanation could be eliminated by an application of higher P 

rates, the second with a different P application method, whereas the third would demand 
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an intensive monitoring of various parameters presently excluded as they were beyond 

the scope of this study. The fourth reason would demand an intensive monitoring and 

analyses of the xylem sap at different periods of the year, but this was also beyond the 

scope of this study. 

Despite the absence of a consistent impact of P amendments, the ability of 

both E. angustifolia and R. pseudoacacia to be self-sufficient in N with high-P on the 

impoverished and saline soils of the croplands in arid Uzbekistan was increased, as 

previously postulated (Khamzina et al., 2009a), and high-P increased various growth 

parameters. This renders indeed both species suitable for the afforestation of such soils 

in the irrigated croplands of Uzbekistan.   

 

3.5 Conclusions 

Nitrogen-fixing trees play an important role in the rehabilitation of degraded soils and in 

promoting soil fertility of managed landscapes. The results showed that also the 

actinorhizal E. angustifolia, on which relatively few studies have focused thus far, as 

well as the leguminous R. pseudoacacia, on which no information was found, 

maintained their ability to fix N2 in the impoverished and saline soils prevailing in the 

irrigated areas of Uzbekistan. This was substantiated by the overall percentage of N2 

derived from atmosphere (%Ndfa) of 87% and 82% for E. angustifolia and R. 

pseudoacacia, respectively, over a three-year period.     

The growth of N2-fixing trees is often limited by a low supply of soil P, mainly 

because P deficiency may limit N2 fixation by these trees. An alleviation of P soil 

deficiencies through P fertilization increased N2 fixation by E. angustifolia with 81% 

when compared to the control without P amendments. With a P application of about 90 

kg P ha-1 (high-P), R. pseudoacacia doubled N2 fixation in comparison to trees without 

P applications (0-P). The amounts of N2 fixed with high-P ranged from 64-807 kg ha-1 

and 9-155 kg ha-1 in E. angustifolia and R. pseudoacacia, respectively.   

Despite a significant effect of P on N2 fixation, this was not mimicked in a 

significant increase in biomass as analyzed by a standard ANOVA. But that P additions 

not only increased N2 fixation but also boosted growth of both N2 fixers was revealed by 

the analyses of various growth rate parameters (e.g., increase in height and stem 

diameter) that are recommended particularly for analyzing the growth performance of 
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perennial woody vegetation (Lambers et al., 1998). Hence, when relative growth rates 

were used in the analyses rather than absolute growth rates, a significant effect of high-

P was observed on the UPR and NP for the leguminous tree species R. pseudoacacia 

and on the RGRH of the actinorhizal species E. angustifolia. This confirms that research 

on forestry should include such an approach to the analysis.  

The findings thus confirmed not only that both the actinorhizal N2-fixing E. 

angustifolia and the leguminous species R. pseudoacacia have the potential to be self-

sufficient in N on the low-fertile and degraded croplands in arid Uzbekistan, but also 

that even small additions of P (as low as 32 g P tree-1) could increase N2 fixation and 

consequently the productivity of plantations. When taking into account the N2- fixing 

ability and the amounts of N, which the species examined added to the plant-soil 

system, E. angustifolia along with R. pseudoacacia are good candidates for the 

rehabilitation of the salt-affected croplands to the benefit of people and the 

environment. Furthermore, P fertilization bolstered the foliage N content of in particular 

E. angustifolia and indirectly therefore also the feed quality (see Chapters 6, 7). 

The symbiotic performance of actinorhizal E. angustifolia and leguminous R. 

pseudoacacia was estimated with the 15N natural abundance method, but it is often 

recommended to include more than one reference species. In addition, this method has 

the reputation of being the most reliable among other methods for quantifying N2 

fixation. Yet, for accurate estimations, the collection of all tree fractions is necessary, 

which is often problematic in the case of older trees in open field trials (Boddey et al., 

2000). Given these potential limitations for quantifying N2 fixation by E. angustifolia, a 

lysimeter experiment was concurrently conducted, which allowed harvesting the entire 

trees and comparing and verifying the N2 fixation rates with those by E. angustifolia in 

the field trial. In addition, two reference trees were used to increase the accuracy of the 

methods used in the lysimeter trial (Chapter 4), which was also designed to appraise 

four different methods for quantifying N2 fixation (Chapter 5). Due to logistical reasons, 

these verification studies did not include R. pseudoacacia, for which few reference 

values for Central Asian regions were available, either.   
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4 QUANTIFICATION OF SYMBIOTIC NITROGEN FIXATION BY 

ELAEAGNUS ANGUSTIFOLIA L. ON SALT-AFFECTED IRRIGATED 

CROPLANDS USING TWO 15N ISOTOPIC METHODS   

 

4.1 Introduction 

Land degradation has become a global concern in the 21st century owing to its adverse 

economic, social and environmental impacts. Worldwide, the areas vulnerable to land 

degradation amount to about 33% of the global land surface (WMO, 2005), of which 

the irrigated lowlands of Central Asia, including Uzbekistan, are considered as very 

severely affected (Lal, 2000). The on-going land degradation in Uzbekistan is caused by 

soil salinization, rising saline groundwater tables, frequent droughts, and human-

induced water erosion (Saigal, 2003; Ibrakhimov et al., 2007). In Khorezm, an 

administrative district of Uzbekistan that is representative for the irrigated lowlands in 

Central Asia, about 20% of the irrigated land has already been classified with a ‘bonitet’ 

(soil quality) index of 40 and lower, which is the threshold for marginal land (Martius et 

al., 2004). Responsible are not only high soil salinity levels, saline and shallow 

groundwater tables, but also deficiencies in soil nitrogen (N), the latter being considered 

the most limiting factor for crop growth and biomass production in the Khorezm region 

(Kienzler et al., 2007).  

Nitrogen-fixing trees (NFTs) can rehabilitate degraded soils (Dommergues, 

1995; Masutha et al., 1997). Hence, the afforestation with multipurpose trees and shrubs, 

in particular the actinorhizal Elaeagnus angustifolia L. (Russian olive), has been 

proposed to make economic use of degraded croplands within the irrigated areas of the 

Khorezm region (Khamzina et al., 2006; Lamers et al., 2006). The established small-

scale forests with this salt-tolerant, fast-growing, multipurpose tree species can provide 

useful products such as timber, fuelwood (Lamers and Khamzina, 2008) and leaf fodder 

(Djumaeva et al., 2009). Yet little is known about the ecological benefits of this species, 

such as its contribution through N2 fixation to soil fertility. Ample evidence exists on 

the atmospheric N2 fixed by leguminous crops, but much less information is available 

on NFTs, particularly on species grown in the irrigated croplands of Central Asia. 

According to a review of studies in tropical regions (Danso et al., 1992), NFTs may fix 

as much as 43-581 kg of N ha-1 annually. The annual amount of N2 fixed by E. 
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angustifolia in Uzbekistan varies from 24-514 kg ha-1 year-1 (Khamzina et al., 2009a). 

However, the trees studied were in an open field trial, and the estimates were partly 

based on the analyses of leaves alone and partly on the total N in the trees, which 

perhaps are the reasons for the reported high inter-annual variations.  

Variations of N2-fixation by trees are associated not only with the species, age 

and density of plantations, and soil conditions, but also with the wide variety of 

methods used to quantify biological nitrogen fixation (BNF) (Boddey et al., 1995). The 

acetylene reduction assay (Hardy et al., 1968; Roskoski, 1981) and the ureide assay 

methods (Herridge et al., 1994; Peoples et al., 1996) are based on indirect, qualitative, 

yield-dependent criteria. The total-N-difference method (Gauthier et al., 1985; Ndoye 

and Dreyfus, 1988a) requires reference species that acquire the same amount of N from 

the soil as the N2-fixer (Unkovich et al., 2008; Khamzina et al., 2009a). For the 

estimation of BNF in trees, 15N isotope methods are widely used, since they provide 

yield-independent and time-integrated estimates of the percentage of N derived from 

atmospheric N2 (%Ndfa) (Peoples et al., 2002). The 15N isotope techniques depend on 

differences in isotopic composition of the sources of N available for growth such as soil, 

groundwater and fertilizer N, as well as atmospheric N2 (Bergensen and Turner, 1983). 

There are two approaches: The natural 15N-natural-abundance technique (15NNAT) 

exploits the slight 15N enrichment of available soil N to differentiate it from atmospheric 

N, whereas the 15N-enrichment technique (15NET) amplifies the enrichment of soil N by 

adding 15N-enriched amendments such as fertilizers. The 15NET has proved to be an 

effective and straightforward approach for measuring BNF by trees in plantations and 

under field conditions (Baker et al., 1992b; Boddey et al., 1995b).  
15N methodologies require the comparison of the N2-fixer with non-fixing 

reference plants grown in a soil fertilized with similar 15N backgrounds, enriched or not. 

The addition of only small amounts of 15N materials to the N2-fixing plant is suggested 

to prevent inhibition of N2 fixation, but these amounts must still be sufficient to ensure a 

proper growth of the reference plants. The A-value (AV) method deals specifically with 

cases where, unlike the 15NET, higher doses of 15N are applied to the non-fixer than to 

the N2-fixer (Fried and Broeshart, 1975). The 15NET requires also that all species absorb 

their N from the same N sources, which makes the application of the enriched fertilizer, 

the uniform distribution of the amendments and the selection of satisfactory reference 
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plants crucial (Witty, 1983; Danso et al., 1992; Chalk and Ladha, 1999). Although the 
15NET has experienced widespread field application, the violation of the various key 

assumptions has led to considerable errors in the estimation of BNF by trees (Anhar, 

2005). This holds true in particular for large, deep-rooting trees growing in soils that 

were not uniformly labeled with 15N, causing a differential extraction from various soil 

depths with differently labeled N pools. When using the 15NET in an open system, 

labeled fertilizer can be lost during salt leaching or irrigation (Sanginga et al., 1989; 

Boddey et al., 2000). Also, the volatilization of 15N-enriched fertilizer applied as an 

aqueous solution to the soil surface turned out to be a source of considerable errors 

(Sanginga et al., 1996). Furthermore, to estimate the total amount of N2 fixed, an 

assessment of the total dry matter yield as well as total N in the plant is needed, which is 

time and resource consuming to obtain in perennial vegetation (Boddey et al., 1995; 

Boddey et al., 2000).   

The aim was therefore: (1) to quantify the whole-tree %Ndfa (percentage of N 

derived from atmospheric N2) and total N2 fixed by E. angustifolia using the 15NET and 

AV methods, and (2) to compare these two methods. 

 

4.2 Materials and methods 

4.2.1 Description of the study sites 

In 2007 and 2008, a lysimeter trial was conducted on the experimental site of the 

Urgench State University located at 41°33´ N latitude, 60°36´ E longitude at an altitude 

of 101 m asl in Khorezm, Uzbekistan. During the growing seasons, the mean air 

temperature was approximately 17°C with minimum and maximum daily temperatures 

ranging from -8°C to 43°C, respectively. The mean annual rainfall of 100 mm fell 

mostly outside the growing season. The mean relative air humidity varied between 26% 

and 86% over both years. 

 

4.2.2 Experimental design 

Preparation of the lysimeters: In 2007, twelve and in 2008 twenty closed-bottom steel 

lysimeters of 120 cm (depth) x 50 mm (diameter) were painted on the inside and outside 

and placed into soil openings of 1 m depth so that ca. 20 cm remained above the soil 

surface. The distance between lysimeters within a row was 1 m and the distance 
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between rows was 1.75 m. Gravel (34 kg) was thoroughly washed and filled into each 

lysimeter as a bottom layer to accommodate drainage. A tin plate with a diameter of 50 

cm was cut at both sides in a herringbone pattern and placed on top of the gravel 

followed by cloth and paper, which avoided a mix-up of the soil particles with the 

gravel. A polyethylene pipe of 125 cm length and 25 mm diameter was placed into a 

hole made at a right angle to the edges of the tin plate and close to the rim of the 

lysimeter to assure an equal distribution of the irrigation water that was applied from 

below. To settle the soil inside the lysimeters, irrigation water was added via the 

polyethylene pipe during three consecutive days prior to planting. To prevent leaching 

losses of 15N, closed lysimeters were used.  

Selection and planting of trees: To quantify BNF by E. angustifolia, the tree species 

Honey locust (Gleditsia triacanthos L.) and Siberian elm (Ulmus pumila L.) were 

selected as references. Saplings were grown in a nursery of ca. 0.5 ha size on a gleyic 

calcaric arenosol. Prior to seedbed preparation, this area was ploughed, chiseled, and 

leveled. Trees were fertilized according to the recommendations in Uzbekistan (MAU, 

1982), i.e., N was applied at the equivalent of 120 kg N ha-1 in three doses: 60 kg N ha-1 

before soil preparation and 30 kg N ha-1 each at 3 and 4 months after seeding. 

Phosphorus (P) was applied at the equivalent of 90 kg P ha-1 as 60 kg P ha-1 before soil 

preparation and 30 kg P ha-1 three months after seeding. Fertilizers were applied at the 

bottom of the 15 cm deep irrigation furrows and incorporated manually. The saplings 

were irrigated at least 10 times during each growing season. Shortly before 

transplanting the one- and two-year old saplings into the lysimeters, 10 of each species 

in 2007 and 14 of each in 2008 were selected for average size (diameter and height of 

the stem), extracted, cleaned from the soil, and transplanted bare-rooted into the 

lysimeters at a density of one sapling per lysimeter. The saplings were planted in three 

replications. Each lysimeter was selected randomly. From the remaining saplings, the 

initial mean overbark diameter was measured at 10 cm above the soil surface with a 

calliper, the height measured with a measuring tape, and the initial dry mass was 

determined following oven-drying. The 2-year-old saplings in 2008 were larger than the 

1-year-olds used in 2007 (Table 4.1). 

Soil characteristics: The soil used to fill the lysimeters in 2007 and 2008 was extracted 

according to the existing soil layers from the Yangibazar Research Station of the 
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Urgench State University: a first layer of 0-25 cm, a second of 25-65 cm and a third of 

65-110 cm. The excavated soil layers were air-dried separately, thoroughly sieved (6 

mm) to remove stones and unwanted debris, and placed into the lysimeters according to 

the soil horizon strata in the field. The average weight of the soil in the lysimeters was 

260 kg constituting a total volume of 0.24 m3. 

 

Table 4.1: Means (n=6) of stem diameter, height and dry matter of three tree species 
at the onset of 2007 and 2008. Values in brackets are standard deviations 
of the means 

Year 2007 2008 

Species Elaeagnus  
angustifolia  

Gleditsia 
triacanthos 

Ulmus 
pumila  

Elaeagnus  
angustifolia  

Gleditsia 
triacanthos  

Ulmus 
 pumila  

Diameter 
(mm) 

6.9 (±1.7) 6.2 (±1.4) 5.5 (±0.5) 11.3 (±0.4) 10.0 (±2.7) 8.0 (±0.5) 

Height 
(cm) 

78.8 (±18.5) 69.3 (±4.7) 51.3 (±9.8) 111.6 (±16.7) 89.4 (±15.7) 108.3 (±15.0) 

Dry matter 
(g) 

28.3 (±11.4) 16.4 (±6.0) 7.7 (±1.6) 59.1 (±7.0) 30.7 (±3.3) 20.6 (±2.3) 

 

The soil was predominantly of a silt-loam texture (Khamzina, 2006). Physical 

and chemical soil characteristics in 2007 are given in Table 4.2. In 2008 (data not 

shown), soil characteristics were similar to those in the previous year except for the 

chloride, sodium and sulphate concentrations, which in the top 25 cm were 2.5 times 

higher. Since the tree roots were positioned below this layer, an influence on the overall 

tree growth was not expected. Soil fertility in both years was poor as evidenced by the 

low soil organic matter and NPK concentrations. Electrical conductivity (EC) over the 1 

m soil layer was 9.8 dS m-1, indicating severe soil salinity according to Abrol et al. 

(1988). The soil-organic carbon concentration was analyzed according to Tyurin (1975), 

and total N was determined using the Kjeldahl method. Available P was measured with 

a colorimeter in an ammonium carbonate extract (Protasov, 1977). 

Application of 15N fertilizer (15NH4 
15NO3): The soil placed in the lysimeters was labeled 

with 15N-enriched ammonium nitrate (35% N, 5 atom % 15N excess), applied twice 

during the 2007 and 2008 growing seasons. The first fertilization occurred 46 days after 

transplanting (DaT) the one-year-old saplings in 2007 and two-year-old saplings in 

2008 from the nursery into the lysimeters. In 2007, the 15N-labeled fertilizer was applied 

to all trees at the rate of 4 g N per lysimeter (10.384 g ammonium nitrate), 

corresponding to 20 kg N ha-1, which was three times lower than the recommended 
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annual rate of 60 kg N ha-1 for trees in Uzbekistan (MAU, 1982). Since the initial soil-N 

content was low (Table 4.2), and since the rate of 4 g N per lysimeter could have been 

insufficient for the growth of the larger reference trees in 2008 (Table 4.1), a second 

treatment was added. In addition to the 4 g N, in 2008 12 g N (31.151 g ammonium 

nitrate) per lysimeter was used for comparison, which equaled the recommended rate of 

60 kg N ha-1 for trees. The treatments with 4 g N contained 0.575 g 15N per lysimeter, 

whilst the 12 g N treatments contained 1.725 g 15N. Given the potential inhibitory effect 

of high rates of N fertilization on N2 fixation in leguminous plants (Sanginga et al., 

1996), the rate of 12 g N was not added to the N2-fixing E. angustifolia. Because of the 

different amounts of 15N applied to the N2-fixer and non-fixer, the AV method was used 

to estimate the N2 fixation amount (Fried and Broeshart, 1975).  

 

Table 4.2: Physical and chemical soil characteristics in lysimeters (0-110 cm) in 2007. 
Values in brackets are standard deviations of the means 

Parameter Soil depth (cm) 
 0-25 25-65 65-110 
Bulk density (g cm-3) 1.2 (±0.0) 1.5 (±0.0) 1.5 (±0.0) 
pH 7.8 (±0.1) 7.9 (±0.1) 7.8 (±0.2) 
Dry residue (%) 0.2 (±0.1) 0.1 (±0.0) 0.1 (±0.0) 
Soil organic matter (%) 0.9 (±0.2) 0.7 (±0.2) 0.4 (±0.1) 
Total N (mg kg-1) 0.26 (±0.02) 0.22 (±0.01) 0.16 (±0.09) 
P2O5 (mg kg-1) 17.6 (±9.5) 14.1 (±8.8) 8.3 (±3.2) 
K2O (mg kg-1) 120 (±31) 101 (±23) 92 (±25) 
Cl- (cmol kg-1) 1.9 (±0.2) 0.3 (±0.0) 0.5 (±0.3) 
Na+ (cmol kg-1) 3.3 (±1.4) 0.6 (±0.1) 0.5 (±0.1) 
SO4

-2 (cmol kg-1) 6.2 (±2.3) 0.7 (±0.1) 0.7 (±0.1) 
 

In both years, the 15N fertilizer was applied twice, 50% in May and 50% in 

July. The fertilizer was weighed with a precision balance to the nearest mg and added to 

a plastic bottle, which contained one liter of distilled water. The bottles were thoroughly 

shaken for two hours to ensure that the fertilizer was completely dissolved and mixed 

evenly. Every lysimeter received one liter of this solution, which was added through the 

polyethylene pipe. To attain an equal distribution of the 15N throughout the soil profile 

in the lysimeter, 10 l of irrigation water were added through the same pipe immediately 

after applying the fertilizer solution (Figure 4.1).  

Management: Saplings were irrigated fortnightly with 15 l of desilted irrigation water. 

In July, the hottest month of the year, this amount was increased to 20 l. The soil 
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surface in the lysimeters was continuously cleared of weeds to avoid undesirable 

competition for 15N. The weeds were placed on top of the soil in each lysimeter and 

after air-drying incorporated into the soil.  

 

 

 

Figure 4.1: Illustration of the application procedure of fertilizers with water leading 
to a homogenous distribution of the 15N enriched fertilizer over the soil 
profile in the lysimeter 

 

4.2.3 Plant and soil measurements 

Harvest and sample preparation:  At 135 DaT, 12 trees (3 species x 4 replicates) in 

2007 and 20 trees (3 species x 4 replicates for 4 g N, and 2 species x 4 replicates for 12 

g N) in 2008 were harvested for above- and belowground dry matter (DM) 

determination. Trees were cut at the level of the soil surface, aerial fractions were 

separated into leaves, twigs (2 mm) and stem (>2 mm), and belowground fractions 

into coarse (>2 mm) and fine roots (2 mm). The fresh mass of each tree fraction 

was weighed immediately after harvest with a portable electronic scale to the nearest 

0.01 gram. Above- and belowground parts were placed in separate paper bags and oven 

-dried at 50 ºC for 72 hours until constant weight. These dried samples were ground to 

pass through a 2-mm sieve and analyzed for %N and %15N using an ANCA mass 

spectrometer (SL/20-20, SerCon, UK).   
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Soil sampling: The soil in the lysimeters was sampled in 0.2 m layers down to 1 m 

depth. Soil samples were air-dried, finely ground in a mill and analyzed for %N and 

%15N using the ANCA mass spectrometer (SL/20-20, SerCon, UK). 

 

4.2.4 BNF estimates 

The percentage of N derived from atmospheric N2 (%Ndfa): %Ndfa of E. angustifolia 

using the 15NET was calculated from whole-tree atom %15N excess according to the 

equation (FAO/IAEA, 2001): 

 

 

 

 

(4.1)

 

where ‘atom %15N excess’ is the value of the samples after subtracting %15N 

atmosphere (standard, 0.3663 %15N). This was calculated for both reference species, 

i.e., ‘atom % 15N non-fixer’ was either based on G. triacanthos or on U. pumila.  

For the estimation of %Ndfa of E. angustifolia with the AV method (Fried and 

Broeshart, 1975), the equation as outlined by Hardarson et al. (1991) was used: 

 

 

   

 

(4.2)

 

 

where %Ndff fixer is the percentage N derived from the fertilizer applied to the fixer, 

%Nddf non fixer is the percentage N derived from fertilizer by the non-fixer, and n is 

the amount of fertilizer applied to the N2-fixer divided by the amount of fertilizer 

applied to the non-fixer.  

Total amount of N2 fixed: The amount of N2 fixed by E. angustifolia, using both 

reference species, was calculated according to: 

 

% Ndfa =  1 - 
n · %Ndff non fixer 

100 + %Ndff fixer  
n 

- 1 
%Ndff fixer 1 

% Nda =  1 - · 100 
Atom % 15N excess fixer 

Atom % 15N excess non fixer 
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(4.3)

                         

The DM production and N accumulation of E. angustifolia was converted 

from g tree-1 as observed in one lysimeter to kg ha-1 by assuming a density of 5,000 

trees ha-1. 

 

4.2.5 Statistical analyses 

Weighted means are presented with ±1 standard deviation. One-way analysis of 

variance (ANOVA) was used to analyze differences in atom % 15N excess and %Ntot in 

trees and soil as well as the differences in above- and belowground biomass among the 

tree species. When significant (P<0.05) differences were found, the Tukey post-hoc test 

was used to compare individual treatment means. The student’s t-test, while assuming 

equal variances, was used to examine differences between foliar and whole-tree atom % 
15N excess, %Ndfa and total fixed N2 values. In the 2008 data set, outliers occurred in 

the third replicate of both reference tree species. To avoid distortions in data 

interpretation, these outliers were replaced by the mean value of the first and second 

replicate. Statistical analyses were performed with SPSS 15.0. 

 

4.3 Results  

4.3.1 Total dry matter production and tissue nitrogen content in 2007 and 2008 

The homogeneity in sapling size, as observed at the onset of both study seasons (Table 

4.1), allowed the comparison of the species as a response to their growth in the 

lysimeters. In 2007, G. triacanthos produced significantly lower total DM (ca. 73 g tree-

1) than E. angustifolia and U. pumila, which produced 134 and 125 g tree-1, respectively, 

in the 4 g N treatment (Figure 4.1). In the same fertilizer treatment in 2008, two-year-

old E. angustifolia saplings produced significantly more DM (223 g tree-1) than both 

reference species. In contrast, the DM of 59 g tree-1 of the two-year-old G. triacanthos 

in 2008 was 19% lower than that of the one-year-old G. triacanthos saplings in 2007. 

To a lesser extent, the same was observed for two-year-old U. pumila saplings, which in 

2008 had a 22% lower total DM production than in 2007.  

Amount of N2 fixed = 
100 

%Ndfa· total N in fixer 
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For accurate estimates of N2 fixation with the 15NET method, it is essential 

that the reference and N2-fixing plants use soil N of identical 15N enrichment (Boddey et 

al., 2000). To achieve that, among others root biomass and its distribution over the soil 

horizons of the N2-fixing and reference plants need to be similar so that the same soil 

volume is explored. In 2007, this requirement was met (Figure 4.1). In 2008, the root 

DM of G. triacanthos (17 g tree-1) and U. pumila (28 g tree-1) was nearly 4- and 2-fold 

lower, respectively, than that of E. angustifolia (66 g tree-1). In addition, the root 

distribution of G. triacanthos was restricted mainly to the top 45-cm soil horizon, whilst 

the roots of E. angustifolia were distributed over the entire 98 cm depth of the lysimeter. 

In contrast, with 12 g N, in 2008 the two-year-old G. triacanthos and U. pumila trees 

produced a root biomass similar to that of E. angustifolia. In addition, the root 

distribution of G. triacanthos and U. pumila trees of 77 and 83 cm, respectively, was 

more similar to that of E. angustifolia; total root DM was respectively 75% and 56% 

higher compared to the root growth of the same species in the 4 g N treatment. 

The reduced overall tree production and root DM production of G. 

triacanthos, and to a lesser extent U. pumila in the 4 g N treatment, was thus caused by 

a N deficiency, which had not impacted the N2-fixer E. angustifolia. Since the criterion 

that reference plants and N2-fixer should assimilate the same ratio of labeled N was not 

met as assumed for the 4 g N treatments in 2008 (because of large difference in root 

biomass and differences in root distribution), the findings of the 4 g N treatments in 

2008 were unsuitable for the 15NET method. Instead, in the second year, the AV method 

was used to assess the BNF, thus only the 12 g N treatment was used.   

The highest N accumulation in E. angustifolia occurred in the leaves (ca. 4.8 

kg ha-1 in 2007 and ca. 6.1 kg ha-1 in 2008). Additionally, all other fractions in E. 

angustifolia accumulated ca 3.3 kg ha-1 in 2007 and ca 15.2 kg ha-1 in 2008, which 

confirms that not just the leaves but the whole tree needs to be considered for assessing 

the total amount of N2 fixed (Boddey et al., 2000). 

 

4.3.2 Atom %15N excess and %Ntot in plants and soil  

In 2007 and 2008, the atom %15N excess values were significantly (P<0.05) lower in E. 

angustifolia than in the reference trees when all tree fractions were pooled (Table 4.2). 

In both years, U. pumila had significantly higher %15N excess values compared to E. 
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angustifolia and G. triacanthos. Elaeagnus angustifolia accumulated significantly more 

N compared to both reference species in 2007 and 2008.  
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Figure 4.1: Above- and belowground dry matter production in 2007 and 2008 of 
three tree species and according to nitrogen (N) fertilizer applied. 
Vertical bars represent standard deviations. The values with the same 
letter are not significantly different for species in each year and fertilizer 
treatment 

 

The differences in atom %15N excess in soil were insignificant between soil 

depths horizons at harvest in 2007 (Figure 4.2a) and 2008 (data not shown), irrespective 

of N rates applied, thus confirming the effectiveness of the enrichment application 

method used. The %Ntot, on the other hand, was highest in the upper 0-60 cm and lower 

in the 60-100 cm horizon in 2007 (data not shown); most importantly, however, no 

significant differences in atom %15N excess were found between the different soil 

depths in 2008 (Figure 4.2b). 
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Table 4.2: Atom %15N and %Ntot combined over all tree fractions of N2-fixing and two 
reference tree species in 2007 with 15NET and in 2008 with AV method. 
Values within a column followed by the same letter are not significantly 
different at P<0.05 according to the Tukey post-hoc test; values in brackets 
are standard deviations of the means 

 

Tree species 2007 2008 

 Atom% 15N excess 
Elaeagnus angustifolia 1.194 (±0.592) c 0.501 (±0.114) c 
Gleditsia triacanthos 2.029 (±0.917)  b 1.507 (±0.113) b 
Ulmus pumila 3.171 (±0.355) a 2.044 (±0.116) a 

 Ntot (%) 
Elaeagnus angustifolia 1.5 (±0.9) a 1.9 (±0.3) a 
Gleditsia triacanthos 1.0 (±0.5) b 1.4 (±0.4) b 
Ulmus pumila 1.0 (±0.3) b 1.4 (±0.4) b 
 

4.3.3 Proportion of N derived from atmospheric N2 (%Ndfa) in E. angustifolia 

Using the 15NET on the 2007 total biomass dataset, the %Ndfa of E. angustifolia 

amounted to 79% and 68%, with U. pumila and G. triacanthos as reference species, 

respectively. In 2008, the %Ndfa of E. angustifolia obtained with the AV method was 

80% and 68%, respectively, when relating to the same reference tree species in 12 g N 

treatment.  
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Figure 4.2 a/b: End of season atom %15N excess in soil in 2007 (a) and %Ntot means 
in soil in 2008 (b) at different depths in lysimeters for N2-fixing E. 
angustifolia and reference species G. triacanthos and U. pumila. 
Horizontal bars represent standard deviations 

 

The differences between foliar and whole-tree atom %15N of E. angustifolia, 

estimated with the student’s t-test, were insignificant in 2007 (P(T<=t)=0.919) and 

2008 (P(T<=t)=0.766). The same was true for the differences in foliar and whole-tree 
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atom %15N of the reference species U. pumila (in 2007: P(T<=t)=0.532; in 2008: 

P(T<=t)=0.814) and G. triacanthos (in 2007: P(T<=t)=0.528 and in 2008: 

P(T<=t)=0.134). Similarly, the differences in foliar %Ndfa and whole-tree %Ndfa 

values of E. angustifolia in 2007 with the 15NET were not significant compared to G. 

triacanthos (P(T<=t)=0.921) nor to U. pumila (P(T<t)=0.919). Furthermore, the 

different amounts in foliar %Ndfa and whole-tree %Ndfa values of E. angustifolia in 

2008 as determined with the AV method were insignificant against both reference 

species (G. triacanthos: P(T<=t)=0.766; U. pumila: P(T<=t)=0.766). 

 

4.3.4 Total amount of N2 fixed 

The amount of N2 fixed by E. angustifolia with the 15NET in 2007 was 5.49 (±1.30) kg 

ha-1 when referenced against G. triacanthos and 6.41 (±1.50) kg ha- 1 when referenced 

against U. pumila.  In both cases, the bulk (60%) of the fixed N2 was located in the 

leaves. According to the AV method, the total amount of N2 fixed in 2008 was higher 

than in 2007 due to the higher growth rate of the trees. The estimated BNF differed 

according to the reference trees. The total amount of N2 fixed by E. angustifolia was 

14.57 (±1.31) kg ha-1 when referenced against G. triacanthos and 16.04 (±1.45) kg ha-1 

when referenced against U. pumila.  

The estimates of the total amount of N2 fixed reveal a significant difference 

between foliar and whole-tree N2 fixed in both years when related to U. pumila 

(P(T<=t)=0.014 in 2007 and P(T<=t)=0.001 in 2008) as well as when related to G. 

triacanthos (P(T<=t)=0.001 in 2007 and P(T<=t)=0.0003 in 2008), suggesting that the 

whole-tree N2 fixed provided more accurate estimates of the total N contribution to the 

system. 

 

4.4 Discussion 

4.4.1 Dry matter production and suitability of 15N methods 

The amount of 4 g N applied to the one-year-old saplings apparently sufficed to avoid N 

deficiency for the growth of both reference species in 2007. Indeed, there were no visual 

symptoms of N stress such as yellow leaves or premature leaf drop. In 2008, the overall 

growth of the two-year-old G. triacanthos and U. pumila trees with the 4 g N 

application was lower compared to that of both species with a 12 g N supplement. The  



Quantification of nitrogen fixation by Elaeagnus angustifolia in lysimeters 

65 

 

4 g N application did not constrain the growth and DM production of the N2-fixing E. 

angustifolia in either year. Both reference species with the 4 g N treatment in 2008 were 

N-limited owing to their larger size and thus increased N demand. Under such 

conditions the 15NET method should not be applied. The AV approach is in such cases 

more reliable, as it was developed to deal with different 15N application levels (Fried 

and Broeshart, 1975).   

 

4.4.2 Accuracy of measurements of N2 fixation 

Lysimeters will not accommodate trees for a longer period without constraining root 

growth. To bypass this potential hurdle, in the present study the trees in the lysimeters 

were compared each season but at two different growth periods using one- and two-

year-old saplings. On a tree basis, two-year-old E. angustifolia trees in an open field 

trial in Uzbekistan fixed amounts of N2 (about 4 g tree-1) comparable to those measured 

in this lysimeter study (Khamzina et al., 2009a). The difficulties associated with 

harvesting larger trees for obtaining total DM (Boddey et al., 2000) could thus be 

avoided by the use of lysimeters. Not only was it possible to estimate the total dry 

matter of the trees, the method also allowed assessing the amount of N2-fixed based on 

both individual fractions and the entire tree. Moreover, the simple technique of using a 

polyethylene pipe in a lysimeter through which water and labeled 15N fertilizer could be 

supplied from below effectively ensured a uniform distribution of the 15N fertilizer 

throughout the soil profile.   

The selection and number of appropriate reference plants is critical for estimating 

BNF, since these factors affect the accuracy of the 15N isotopic methods (Sanginga et al., 

1989a; Chalk and Ladha, 1999; Boddey et al., 2000b). In the absence of appropriate non-

fixing isolines, the use of several uninoculated reference species has become a common 

procedure (e.g. Ndoye and Dreyfus, 1988; Sanginga et al., 1989a; Danso and 

Kumarasinghe, 1990). The non-nodulating legume G. triacanthos and the non-N-fixing U. 

pumila used in this study fulfilled the main requirement of reference species (Fried et al., 

1983) as both relied solely on soil N. The use of lysimeters avoided the possible cross 

contamination that may occur between N2-fixer and non-fixer in open-field trials 

(Sanginga et al., 1989). Given the insignificant differences in the distribution of atom % 
15N excess across all soil layers in the lysimeters (Figure 4.2a), the distribution can thus be 
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considered as homogeneous. Based on this, the pattern of N assimilation by all tree species 

must have been similar, thus meeting the chief criteria for applying 15N isotopic methods 

(Fried et al., 1983; Witty, 1983). 

 

4.4.3 %Ndfa by E. angustifolia 

The %Ndfa by E. angustifolia depended on the reference species against which it was 

measured. When referenced against U. pumila and G. triacanthos in 2007, the %Ndfa 

by E. angustifolia was 79% and 68%, respectively. The AV method used in 2008 

yielded %Ndfa of 80% and 68% with the same reference trees, similar to the results of 

2007. According to FAO/IAEA (2001), %Ndfa estimates higher than 70% provide 

results with less error, whereas for %Ndfa values of 30% and below, the accuracy of the 
15NET is considered insufficient. Since our findings ranged from 68-79% in 2007 and 

from 68-80% in 2008, the values obtained fell within the acceptable margin of errors. 

Parrotta et al. (1994) postulated that a well-targeted foliar sampling could be as 

accurate to determine tissue 15N-enrichment as whole-tree sampling. In such cases, a 

random sampling of the foliage over the entire canopy is required. Since differences in 

values of atom %15N excess between foliar and whole-tree in the lysimeters were 

insignificant in both 2007 and 2008, the present findings confirm those of Parrota et al. 

(1994) that leaves can be taken for the estimation of %Ndfa. 

 

4.4.4 Amounts of N2 derived from BNF 

We observed highly significant differences between the estimated amounts of foliar and 

whole-tree N2 fixed by E. angustifolia in both years. This underscores the necessity to 

use the total biomass including roots and nodules as previously suggested to obtain 

accurate estimations of the total N2 fixed (Sanginga et al., 1996; Khan et al., 2002). 

The values obtained with the one- and two-year-old E. angustifolia saplings in 

this lysimeter study were relatively low when compared to the values reported for different 

two-year-old NFTs (Sanginga et al., 1989; Parrotta et al., 1994). In 2007 and 2008, the 

amount of N2 fixed by the one-year-old E. angustifolia in the lysimeters amounted to ca. 6 

and 16 kg ha-1 year-1, respectively, when U. pumila was used for comparison and ca. 5 and 

15 kg ha-1 year-1 for G. triacanthos. Even with these small amounts, the N2-fixing E. 

angustifolia has the potential to be self-sufficient in N when planted in the salt-affected 
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irrigated croplands in Central Asia as was previously concluded in open-field studies and 

with older trees of the same species (Khamzina et al., 2009a). 

 

4.5 Conclusions 

N2 fixation by E. angustifolia was quantified in lysimeters for saline soils, as these 

predominate in the irrigated croplands of Central Asia. The 15NET shows a high 

accuracy and reliability with one-year-old trees when using low doses of enriched 15N 

fertilizer. However, for the two-year-old trees this amount of 15N fertilizer was 

suspected insufficient for a proper growth of the reference species, especially given the 

low initial soil fertility. The application of higher amounts of 15N fertilizer to the 

reference trees overcame this limitation, and BNF estimates were possible using the AV 

method. This method yielded similar outcomes as 15NET and is thus considered 

accurate and reliable to deal with different 15N application levels. 

The amount of N2 fixed by one- and two-year-old E. angustifolia saplings grown 

in lysimeters was low compared to that reported previously (Khamzina et al., 2009a) and 

in the open field (see section 3.3.3), but still realistic given the salinity levels of the soil 

used in the lysimeters. The amounts of N2 fixed confirm that E. angustifolia can be used as 

part of a larger set of strategies to exploit salt-affected irrigated croplands of Central Asia.  

The lysimeter trail was designed also for comparing four different N2 fixation 

quantification methods with the aim to identify the most suitable one while taking into 

account not only the accuracy of the N2 fixation quantification findings, but also potential 

costs (see Chapter 5).  
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5 AN APPRAISAL OF FOUR METHODS FOR QUANTIFYING THE 

END-OF-SEASON N2 FIXATION RATES OF E. ANGUSTIFOLIA L. 

GROWN IN LYSIMETERS 

 

5.1 Introduction  

With 6.8 billion, the global population has now more than doubled since 1945 and is 

projected to reach about 9 billion by 2050 (US Bureau of census, 2010). To sustain the 

production of food, feed, fiber and fuel for the growing population, sufficient soil 

nitrogen (N) must be accessible as this mineral is a major component of protein and 

chlorophyll (Madakadze et al., 1999) and thus indispensable for the growth of natural 

and domestic vegetation. Although the highest N amounts are fixed in the earth’s crust 

(Mengel and Kirkby, 1982), the sole source of soil N is atmospheric diatomic N 

(Barbarick, 1996).  

Before the manufacturing of N fertilizers through the Haber-Bosch process, 

atmospheric N2 had entered the soil through lightning and precipitation, crop remnants and 

its decomposition, manure, or biological nitrogen fixation (BNF) by annual and perennial 

vegetation. The global amounts of N2 fixed through BNF reached about 140x106 metric 

tons per year from agricultural, forest and non-agricultural lands combined, which was 

twice as much as the total N2 fixation by non-biological processes (Deacon, 2003).  

Since the discovery of the BNF process by Beijerinck and others between 1895 

and 1904 (Chung and Ferris, 1996), researchers have aimed at understanding the essence 

of the BNF process and quantifying the amount of N added to the soil-plant system. A 

wide range of techniques has been explored with annual and perennial vegetation and the 

methods presently available for measuring BNF are based on (1) increment in N yield and 

plant growth; (2) N balance; (3) acetylene reduction (based on the enzyme nitrogenase 

activity) and (4) the use of stable isotopes of N (see e.g. Hardy et al., 1968; Fried and 

Broeshart, 1975; Fried and Middelboe, 1977; Bergensen and Turner, 1983).  

For the time-integrated measurements of N2 fixation and the quantification of the 

percentage of N derived from the atmosphere (%Ndfa) under field conditions, the total N 

difference (ND) (Munroe and Davies, 1974), 15N enrichment (15NE) (McAuliffe et al., 

1958), 15N natural abundance (15NA) (Shearer and Kohl, 1986), and A-value (AV) (Fried 

and Broeshart, 1975) methods have been considered most suitable. But irrespective of the 
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availability of the numerous methods for measuring BNF, no method could be singled out 

yet as being the ‘correct’ way to quantify N2 fixation by plants (e.g. Peoples et al., 2002; 

Azam and Farooq, 2003).  The amount of N2 fixed depends on environmental factors, 

including soil type, soil nutritional status, plant species and varieties, water availability and 

temperature (Ledgard and Steele, 1992), which may explain the wide variation in reported 

findings for the amount of N2 fixed and the %Ndfa of species. But variations are also 

caused by the methods used for measuring N2 fixation, which is particularly true for N2-

fixing tree (NFT) species (Boddey et al., 1995). 

In general, BNF methods require a detectable and measurable increase in the 

total N content in the soil-plant system. However, because of relatively low additions to 

an already big pool of N, obtaining realistic estimates of BNF are often cumbersome 

especially with perennial vegetation (Boddey et al., 1995) due to difficulties in 

quantifying the total dry matter production of trees and bushes. Their perennial nature, 

large size with often extended root systems, and the large tree-to-tree and nodulation 

variations within a tree stand render the system unsuitable for simple sampling 

techniques (Boddey et al., 1995). Also inter-seasonal and inter-annual differences in 

nodulation have led to the large variations in reported values (Wong et al., 1989; 

Fownes and Anderson, 1991). Before selecting any method, clear goals and objectives 

for measuring BNF must be formulated. Equally important is an assessment of the 

financial resources and materials constraints. For instance, the use of 15N to quantify 

BNF may very well give the most accurate quantification, but is associated with high 

costs for the 15N fertilizer and sample analyses (Boddey et al., 1995). Therefore, the use 

of more than one reference species and/or the simultaneous use of several methods are 

recommended, as they not only will complement each other but also can increase the 

accuracy of the quantification.  

The treatments in the lysimeter trial to quantify the BNF of actinorhizal 

Elaeagnus angustifolia L. by using the 15NE and AV methods (see Chapter 4), included 

also a control without 15N-labeled fertilizer applications. This control treatment allowed the 

comparison of the findings of the two isotopic methods with the total ND and 15NA 

method. In all four methods, Gleditsia triacanthos L. and Ulmus pumila L. served as 

reference. The aim of this component was thus to estimate and compare the end-season N2 

fixation rates of E. angustifolia in four different ways. 
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5.2 Materials and methods 

During 2008, a lysimeter trial was conducted on the premises of the Urgench State 

University in the Khorezm region of Uzbekistan (41°33´ N latitude, 60°36´ E longitude, 

101 m altitude). From leaf flushing in March to harvest in October 2008, the mean air 

temperature was approximately 17°C. The mean annual rainfall of 100 mm fell mostly 

outside the study period.  

For the experiment, 24 closed-bottom steel lysimeters of 120 (depth) x 50 cm 

(diameter) were assigned completely randomly to positions in a 20 by 20 m sized bare 

field with a spacing of 1 m by 1.75 m distance in the soil at 1 m depth (ca. 20 cm 

remained thus above the soil surface). Each lysimeter was filled first with 34 kg gravel, 

which was covered with a tin plate of 50 cm in diameter, and then by cloth and paper. A 

polyethylene pipe (length: 125 cm length; diameter 25 mm) was positioned into a hole 

in the tin plate to assure an equal distribution of the irrigation water, which was applied 

from below. 

 

5.2.1 Treatments: species and fertilizer application 

The lysimeter trial was designed as a two-factorial experiment. To quantify the BNF by 

E. angustifolia, two non-N-fixing tree species served as reference: Honey locust 

(Gleditsia triacanthos L.) and Siberian elm (Ulmus pumila L.). In addition, three N 

fertilizer applications were used: (i) a control with no fertilization and (ii) 4 g N per 

lysimeter (10.384 g ammonium nitrate corresponding to 20 kg N ha-1), which was 

applied as 15N enriched ammonium nitrate (15NH4 
15NO3, 35% N, 5 atom % 15N excess). 

While this application allowed employing the 15NE method for quantifying N2 fixation, 

given the initial low soil N content (see Chapter 4, Table 3.1) this rate was assumed to 

be insufficient to sustain the growth of the two-year-old reference trees. Therefore a 

third treatment was added: 12 g N per lysimeter (31.151 g ammonium nitrate, 

corresponding to the recommended rate of 60 kg N ha-1 for trees in the study region 

(MAU, 1982). Since high rates of N fertilization may delay N2 fixation in leguminous 

plants (Sanginga et al., 1996), the rate of 12 g N was not added to N2-fixing E. 

angustifolia. The AV method (Fried and Broeshart, 1975) could thus be used to 

calculate the N2 fixation rate in this case.  
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The design covered thus two N treatments for the N2-fixing E. angustifolia and 

three N treatments for the two reference species G. triacanthos and U. pumila. Each of 

these treatments was replicated three times. Each of the 24 lysimeters hosted one two-

year-old nursery-grown seedling.  

The 15N fertilizer was applied as a split application: half in May (46 days after 

transplanting (DAT) and half in July (120 DAT). Prior to these applications, the fertilizer 

was weighed with a precision balance to the nearest mg and added to a plastic bottle with 1 

liter of distilled water. The bottles were thoroughly shaken for two hours to obtain an even 

mix, which was then added through the polyethylene pipe to each lysimeter. To enhance 

the uniform distribution of the 15N applied over the soil profile in the lysimeter, 10 l of 

irrigation water were added through the same pipe immediately after applying the N-

fertilizer solution. The detailed description is given in Chapter 4. 

 

5.2.2 Soil characteristics 

The silt-loam texture soil (Khamzina, 2006) in the lysimeters stemmed from the 

Yangibazar Research Station of the State Urgench University. The soil was extracted 

according to its field layers that appeared at 0-25 cm, 25-65 cm 65-110 cm, air-dried, 

thoroughly sieved (6 mm) and placed into the lysimeters according to the same soil 

strata in the field. The average soil weight in the lysimeters was ca. 260 kg. The soil 

organic matter content (see Chapter 4, Table 4.2), as analyzed according to Tyurin 

(1975), was low as were the contents of N, determined by the Kjeldahl method, and 

available P as measured with a colorimeter in an ammonium carbonate extract 

(Protasov, 1977).   

 

5.2.3 Plant and soil measurements 

At 135 DaT, above- and below-ground dry matter (DM) was determined of all 24 trees 

(N-fixer: 1 species x 2 treatments x 3 replicates; reference: 2 species x 3 treatments x 3 

replicates). Following their cutting at the soil surface, the fresh weight of the leaves, 

twigs (  2 mm), stems ( >2 mm), coarse ( >2 mm) and fine roots (  2 mm) 

was immediately determined with a portable electronic scale to the nearest 0.01 gram. 

All fractions were separately placed in paper bags, oven-dried at 50ºC for 72 hours until 

constant weight, ground to pass through a 2 mm sieve and analyzed for %N and %15N 
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using an ANCA mass spectrometer (SL/20-20, SerCon, UK). The DM production and N 

accumulation of E. angustifolia was converted from g tree-1 in one lysimeter to kg ha-1 

by assuming a density of 5,000 trees ha-1, which was close to the stand density of the 

same species in a concurrently conducted field experiment.  

At harvest, the soil in the lysimeters was sampled in 0.2 m layers and these 

samples were air-dried, finely ground in a mill and then analyzed for total N and %15N 

using the ANCA mass spectrometer (SL/20-20, SerCon, UK).   

 

5.2.4 Data processing and methods used for BNF quantification 

Following the chemical analyses of all tree fractions (leaves, twigs, stem, fine and 

coarse roots), the relevant data sets were used to estimate the BNF capacity of E. 

angustifolia by the total ND, 15NA, 15NE and AV methods referenced against G. 

triacanthos and U. pumila.  

 

Total N difference method 

The amount of N2 fixed by E. angustifolia according to the total ND method was 

estimated as: 

 

 N2 fixed = (N yield fix) – (N yield ref)  (5.1)

 

where N yield fix is the total N content of the N2-fixer E. angustifolia and N yield ref is 

the total N content of the reference non-N-fixing species, i.e. G. triacanthos and U. 

pumila.    

 
15N natural abundance technique 

The %Ndfa by E. angustifolia was quantified according to Shearer and Kohl (1986) (for 

details, see Chapter 3, Equation 3.1).   

 
15N isotope-based quantification methods  

The %Ndfa of E. angustifolia with the 15N enrichment method was computed according 

to (FAO/IAEA, 2001) (for details, see Chapter 4, Equation 4.1). For the estimation of 

%Ndfa of E. angustifolia with the AV method (Fried and Broeshart, 1975), the equation 
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as outlined by Hardarson et al. (1991) was used (for details, see Chapter 4, Equation 

4.2). The amount of N2 fixed by E. angustifolia, using both reference species, was 

calculated for the last three methods according to Equation 4.3 (see Chapter 4).  

 

5.2.5 Statistical analyses 

With the analysis of variance (ANOVA), the differences were analyzed in a whole-tree 

based N2 fixation (%Ndfa, kg ha-1) measured with ND, 15NA, 15NE atom and AV 

methods as well as between the above- and below-ground biomass of three tree species 

under different methods. When significant (P<0.05) differences were found, the Tukey 

post-hoc test was used to compare individual treatment means. Statistical analyses were 

performed with SPSS 15.0.  

 

5.3 Results and discussion 

The challenge to accurately quantify the N2 fixation (%Ndfa, kg ha-1) of a tree has 

motivated researchers worldwide to experiment with various methods (Table 5.2). 

 

5.3.1 The total nitrogen difference method (ND) 

The amount (kg ha-1) of the whole-tree based N2 fixation by E. angustifolia according to 

the total ND method was about 14 kg N2 ha-1 when referenced against both G. 

triacanthos and U. pumila (Table 5.3). The differences of N2 fixed between the ND and 

the AV method was ca. 1 kg ha-1 for G. triacanthos and 2 kg ha-1 for U. pumila (Table 

5.3) but these differences were statistically not significant from the AV and nor the 15NE 

(only for U. pumila) methods. This indicated on the one hand the suitability of the ND 

method in lysimeter studies since it involved much lower costs for enriched fertilizers 

and laboratory equipment. But on the other hand, the difference of 1 to 3 kg ha-

1 compared to three methods equaled to 7-14%, which could be unacceptable when 

aiming at the quantification of the N2 fixation for large areas.  

It is assumed that the N present in the reference plants represents the amount 

of soil mineral N that was available for plant growth during the observation period. 

While assuming further that the N2-fixing species assimilates the same amount of soil N 

as the non-fixer, the difference in N content between the two species is assumed to be 

due to N2 fixation. The ND method is thus a simple, straightforward method that 
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quantifies BNF at low costs. It is argued, however, that this method gives reliable 

estimates of N2 fixation mainly under conditions of low soil N and in case of large 

differences in N yield between the N2-fixer and the non-N-fixing control (e.g. LaRue 

and Patterson, 1981). The precondition that the N2-fixing species and reference plants 

have similar root uptake activity and patterns, may be questioned when the latter is a 

completely different species (Rennie and Rennie, 1983). When the total ND method 

lacks precision, it is primarily due to the widely divergent N acquisition pattern of the 

N2-fixer and non-fixers (Azam and Farooq, 2003). 

Our lysimeter results confirmed those of Broadbent (1982), Rennie (1984), 

and Mueller and Thorup-Kristensen (2002), showing that the BNF quantification by the 

total ND method can be in good agreement with the 15N-determined values for N2 

fixation. This can be explained not only by the similar root traits of E. angustifolia and 

the reference plants, in particular of U. pumila (see Chapter 4), but also by the accuracy 

in determining soil N in lysimeters and the entire dry matter mass of the trees, and by 

avoiding soil N losses, which is often a complicating factor in open field experiments 

(Boddey et al., 2000).  

Very recent research results suggested that the traditional total ND procedure 

can be improved by accounting for both inter-specific root interactions and soil N loss 

for the estimation of BNF in legume/non-legume intercropping systems (Yu et al., 

2010). However, the suggested improved total ND method requires that the amount of 

soil mineral N (Nmin) available to the N2-fixer and the reference plants is the same at 

the same time (Herridge et al., 2008). This requirement could not be verified with the 

data sets from the present lysimeter study. 

 

5.3.2 The 15N abundance method (15NA) 

Following their extended review of methods to quantify the BNF by trees and shrubs, 

Boddey et al. (1995; 2000) and also many others (e.g. Baker et al., 1992; Chalk and 

Ladha, 1999) argued that the 15NE and 15NA methods, when correctly applied and used, 

provided the most accurate amount of symbiotic N2 fixation. The comparison, however, 

showed that according to the 15NA method, the %Ndfa by E. angustifolia varied 

between 0.4 and 2.9% when referenced against G. triacanthos and U. pumila, 
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respectively, and that the amount varied between 0.008 when referenced against G. 

triacanthos and 0.05 kg ha-1 when compared to U. pumila (Table 5.3). The estimates of 

the whole-tree based N2 fixation by E. angustifolia, were thus both in terms of %Ndfa 

and quantity (kg ha-1) not only much lower than those of the ND, 15NE and AV methods 

and irrespective from the reference species G. triacanthos and U. pumila, but also 

indicated hardly any N2 fixation according to the 15NA method. 

 

Table 5.3: Estimates of the whole-tree based end-of-season N2 fixation (Ndfa) by E. 
angustifolia (%Ndfa, kg ha-1) with the total N-difference (ND), 15N 
natural abundance (15NA), 15N enrichment (15NE), and A-value methods 
(AV) referenced against G. triacanthos and U. pumila. Values between 
brackets are standard deviations of the means (n=3). Means in the same 
column followed by the same letter are not significantly different at 
P<0.05 according to the Tukey post-hoc test 

Method G. triacanthos U. pumila 
 N2 fixation (Ndfa) 

 % kg ha-1 % kg ha-1 
ND na 14 (±4) a na 14 (±3) a 

15NA 0.4 (±0.0) b  0.008 (±0.01) b 2.9 (±0.1) c 0.05 (±0.0) b 
15NE -0.3 (±0.0) b -0.08 (±03) b    58 (±3) b 12 (±2) a 

AV 68 (±5) a  15 (±2) a    80 (±2) a 16 (±2) a 

na- not available 
 

The ability of the actinorhizal E. angustifolia to produce nodules in saline soils 

of the study region Khorezm and consequently fix N2 was suggested already by 

Khamzina et al., (2006). More recent findings demonstrated that the N2-fixing E. 

angustifolia had the potential to be self-sufficient in N when grown in the salt-affected 

irrigated croplands in this region, fixing between 24 kg ha-1 in the first year and 514 kg 

ha-1 in the third year, depending, among others, on the age and density of the E. 

angustifolia plantations (Khamzina et al., 2009a). Given that the E. angustifolia saplings 

in the present lysimeters grew under similar bio-physical conditions, originated from the 

same nursery and grew on the soil stemming from the same site as previously examined 

(Khamzina et al., 2009a), it is unrealistic to assume that the two-year-old E. angustifolia 

saplings in our study did not fix N2 as suggested by the results of the 15NA method. This 

argument is supported by the findings of the other three methods used in this lysimeter 
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study, indicating that E. angustifolia fixed between 12 and 16 kg N2 ha-1 while the 

%Ndfa varied between 58% and 80%. 

The 15NA method is applicable when the 15N of the N derived from BNF and 

that from the soil by the N2-fixer can be separated (Boddey et al., 2000). Only then BNF 

can be estimated as the differences in atom %15N of soil available N and atmospheric 

N2. This does not require the use of costly fertilizers as needed with the 15NE and AV 

methods (Table 5.4).  

 

Table 5.4: Financial resources spent (in USD) for quantifying N2 fixation with total 
nitrogen difference (TND), 15N natural abundance (15NA), 15N enrichment 
method (15NE) and A-value (AV) techniques in 2008  

Cost of enriched 
15N fertilizer

No. of 
samples Plant 15N Soil 15N Total N

Total amount 
spent (in USD)

TND - 3 9 27
15NA - 3 19 57
15NE 4 g 40* 3 2280

12 g 120* 3 6840

AV 4 g 40* 3 2280

12 g 120* 3 6840

----------19---------

----------19---------

Chemical analyses

Method

----------19--------

----------19--------

* The price for 1 g of 15N fertilizer was 10 USD at the study year 2008 
 

The estimation of BNF by the 15NA method requires, however, knowledge 

about the B value (Equation 5.2), which is the amount of N2 fixed by the N2-fixer in N-

free conditions (Shearer and Kohl, 1986). In the absence of an accurate B value (in ‰) 

for E. angustifolia species indigenous to the study region Khorezm, we used a whole-

tree B value of -1.41 ‰ which had been determined for actinorhizal tree species 

(Domenach et al., 1989; Tjepkema et al., 2000). However, while using this reported B 

value, our estimates of N2 fixation with the 15NA method showed only very low N2 

fixation. To obtain similar BNF quantities as estimated with the other methods used, the 

B value would have needed to be around 0, which is a value reported by several other 

authors (Boddey et al., 2000). Boddey et al. (2000) ascribed this discrepancy to the fact 

that various reported B values have been derived from single-tree fractions rather than 

the obligatory examination of the entire set of fractions, including roots, shoots and 



An appraisal of four methods for quantifying nitrogen fixation 

78 

 

nodules. Since our lysimeter results were in line with the previous findings (Khamzina 

et al., 2009a), indicating the potential of E. angustifolia to fix atmospheric N2, it seems 

very likely that the choice of the B value from the literature leads to erroneous results. 

The findings of the 15NA method should thus be interpreted with caution as long as the 

B value has not been specifically determined for the local E. angustifolia. 

 

5.3.3 The 15N enrichment (15NE) and the A-value (AV) methods 

To the best of our knowledge, the 15NE and the AV methods had not been used for the 

quantification of the amount of diatomic N fixed by E. angustifolia in the arid regions 

and under the salt-affected croplands in the irrigated systems of Central Asia. This is 

likely caused by the practical difficulties involved in quantifying N2 fixation by NFTs 

due to their perennial nature and large size (Boddey et al., 1995) as well as the high 

costs of fertilizer and plant tissue analyses. The 15NE method involves an enrichment of 

the soil by adding equal amounts of 15N enriched fertilizer to the N2-fixing and non-N-

fixing reference species. The differences in derived 15N between the N2-fixer and non-

fixer(s) are then used to calculate the amounts of N2 fixed.  

A distinct advantage of the 15N isotope dilution technique to estimate the 

amount of BNF is its ability to give an integrated estimate of N2 fixation over a growing 

season or even beyond. More importantly, it can, in contrast to all other methods, 

distinguish between soil, fertilizer and fixed N2 in field-grown crops (Danso, 1988). 

Although the 15NE method is considered one of the most robust methods to quantify N2 

fixation in perennial vegetation (e.g. Boddey et al., 2000), its use is often restricted by 

the high costs of the 15N fertilizer and sample analyses (Table 5.4). Moreover, both the 

AV-method and 15NE methods involve not only the use of costly 15N fertilizer (Table 

5.4) but require reference plants, which ideally should mimic the root-growth 

characteristics of the N2-fixer. The latter could be achieved in particular in the presence 

of a non-nodulating host, which is not always available. 

An additional consideration with the 15NE method is the dilemma that high 

doses of 15N fertilizer may potentially depress N2 fixation by the N2-fixer (Fried and 

Broeshart, 1975), whilst low doses may be insufficient to support the good growth of 

the non-fixing reference species, especially in soils with low N contents. Although in 

such cases different amounts of enriched N fertilizer can be applied to the N2-fixer and 
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non-fixer, this contradicts one of the key assumptions of the 15NE method. 

Consequently, to bypass this potential N dilemma, a slightly higher dose is applied to 

the non-fixer, whereas the N2-fixer receives a lower quantity. The AV method was 

designed to deal with such cases (Fried and Broeshart, 1975) and was applied in this 

study in the case of G. triacanthos as a reference plant. When this species was used as a 

reference to estimate the fixation of E. angustifolia with the 15NE method without the 

application of extra N to the trees, the %Ndfa and N2 fixed (kg ha-1) values were 

negative (Table 5.3), meaning that the low amount of 15N fertilizer applied did not 

suffice for its proper growth (Table 5.5) and the rooting patterns between the N2-fixer 

and reference plants diverged (see Chapter 4). 

 

Table 5.5: Total dry matter production in 2007 and 2008 according to the nitrogen (N) 
fertilizer applied. Values between brackets are standard deviations of the 
means (n=3). The values with the same letter are not significantly different 
for species within each year and fertilizer treatment. Means in the same 
column followed by the same letter are not significantly different at P<0.05 
according to the Tukey post-hoc test 

Tree species 2007 2008 2008 
 4 g 4 g 12 g 

Elaeagnus angustifolia 134 (±7) a 233 (±21) a na 
Gleditsia triacanthos   73 (±5) b 59 (±8) c 131 (±9) a 
Ulmus pumila 125 (±6) a      103 (±5) b 154 (±7) a 
 na -  not available 

 

5.4 Conclusions 

The comparison of the end-of-season N2 fixation rates of E. angustifolia with four 

different procedures referenced against U. pumila grown in lysimeters demonstrated no 

significant differences in the whole-tree based N2 fixation measured with the ND, 15NE 

and AV methods. In case of the second reference G. triacanthos, there was an 

agreement between the ND and AV techniques only. Based on previous results showing 

that U. pumila was the most suitable of the two reference species because of its almost 

similar root growth characteristics as N2-fixing E. angustifolia (see Chapter 4), and 

given that the AV method allowed the addition of small amounts of enriched 15N 

without inhibiting tree growth in the lysimeters (see Chapter 4), it is very likely that the 

AV method with U. pumila as a reference gave the most accurate findings. Yet, in case 

financial, human and material resources are restricted, the use of the total ND method in 
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combination with lysimeters can be a feasible alternative, but then the facilities for dry 

matter and total N determination need to be warranted. As long as the B value necessary 

for the employ of the 15NA is not determined for the symbiotic associations of soil 

organisms and the N2-fixing E. angustifolia grown on salt-affected croplands in arid 

regions, the findings of this method should be interpreted with caution.  

It is not only beneficial to boost N2 fixation but also to become aware of the 

leaf N dynamics of trees and plantations during the growing season, especially because 

N2 fixation tends to increase foliar N content, such as for E. angustifolia (see Chapter 

3). Therefore, options were examined to monitor leaf N dynamics during the season 

with the use of optical sensors (see Chapter 6). 
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6 EFFICIENT USE OF THE SPAD-502 CHLOROPHYLL METER FOR 

MONITORING FOLIAR NITROGEN DYNAMICS OF TREE SPECIES 

 

6.1 Introduction

Nitrogen (N) is the most used nutrient in crop production as evidenced by a substantial 

increase in its worldwide consumption and trade in the past decades (Craswell et al., 

2004). Yet, when improperly managed, applied N is released from the soil-crop system 

and in turn becomes a major source of environmental concern. A judicious N 

management avoids not only unnecessary expenses for N fertilizers but also excessive 

N amendments, which may contaminate surface and groundwater bodies (Shapiro et al., 

2006) or contribute to reducing emissions of N-containing greenhouse gases that often 

originate from N amendments (Parry, 1990). An efficient N management is thus of 

benefit to the land users and the environment, which has been a major motivation for 

the change in the N-application paradigm towards increasing N-use efficiency.  

Nutrient deficiencies and toxicities are routinely diagnosed by standardized 

plant tissue tests based on pigment extraction and spectrophotometric determination 

(Munson, 1998). Undoubtedly, these are trustworthy methods, but they also necessitate 

considerable resources such as material, owing to the sophisticated laboratory 

equipment, and space, funds and time, since delays through tissue sampling and 

processing often prevent timely and corrective responses. The change in the paradigm 

of N fertilizer applications has triggered the call for cheap and easy-to-use methods and 

tools for real-time N management (Inada, 1963).  

Given the role and functioning of N in leaves and the consequent change in 

leaf color in case of N deficiencies or toxicities, these spectral properties have inspired 

researchers to develop leaf color charts (Furuya, 1987) or optical sensors such as the 

SPAD (Soil Plant Analyses Development)-502 chlorophyll meter (Minolta, 1989). The 

latter instrument uses an in-situ, non-destructive means to indirectly determine total leaf 

chlorophyll content (SPAD indices are combined chlorophyll a + b content), and thus 

can be repeated on the same leaves. The portable (225 g weight) meter exposes a leaf 

spot of 6 mm2 to light during a short period and measures the transmission of red light 

with a wavelength of 650 nm, which is absorbed by the chlorophyll, and the 

transmission of infrared light at 940 nm, which is not absorbed. Since higher leaf 
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chlorophyll contents absorb more light, which results in decreasing light transmittance 

(Havlin et al., 2005), and while assuming that the difference between the amount of 

light emitted by the source and that received by the sensor/detector is considered the 

portion of light absorbed, the captured signal is converted into an electrical signal that is 

displayed by the SPAD-502 as dimensionless numbers (usually between 1-99). 

Although the amount of light passing through the leaf is inversely proportional to the 

chlorophyll content, for reasons of convenience the display shows the opposite: the 

higher the reading, the higher the chlorophyll contents. Hence, based on the spectral 

reflectance ratio of the two light emitting diodes (LED), the SPAD-502 meter quantifies 

the leaf color. Since leaf chloroplasts contain about 70% of the leaf N (Madakadze et 

al., 1999), leaf chlorophyll and N contents are closely correlated (Wood et al., 1993; 

Richardson et al., 2002). 

The SPAD-502 meter was developed in the early 1960's (Inada, 1963) 

particularly for improving N management in rice (Oryza sativa L.) (e.g. Peng et al., 

1993; Singh et al., 2002). Owing to the high correlations between the SPAD-502 

readings and the leaf chlorophyll and N status, the chlorophyll meter consequently has 

been used for numerous annual crops including maize (Zea mays L.) (Dwyer et al., 

1994), barley (Hordeum vulgare L.) (Wienhold and Krupinsky, 1999), cotton 

(Gossypium histutum L.) (Wood et al., 1992), and winter wheat (Triticum aestivum L.) 

(Jifon et al., 2005). The successful use of the SPAD-502 in annual crops was an impetus 

for its use in woody and perennial vegetation such as apple (Neilsen et al., 1995) and 

cottonwood tree (Populus deltoides Bartr. ex Marsh.) (Moreau et al., 2004), as the 

necessity of N-management in tree plantations had also been recognized (e.g. Moreau et 

al., 2004).  

In contrast, various studies show a much lower goodness-of-fit between leaf-

greenness readings and leaf-N status in several horticultural crops such as strawberry 

(Fragaria x ananassa) (Himelrick et al., 1993) and potatoes (Solanum tuberosum L.) 

(McLaskey, 1997) and with trees such as red maple (Acer rubrum L.) (Silbey et al., 

1996). Until now, research has not provided an answer to the question why these 

correlations are weaker; in perennial crops these may have been caused by leaf position 

and sampling time and techniques (Loh et al., 2002) or by irradiance and weather 

conditions given that the SPAD-502 values tended to decrease with increasing 
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irradiance (Hoel and Solhaug, 1998). Most explanations for lower goodness-of-fit 

indicate, however, differences in leaf anatomy, e.g., leaf thickness. Moreover, the 

relationship between SPAD-502 values and chlorophyll/N content varied between 

simple linear and curvilinear (Dwyer et al., 1994; Moreau et al., 2004; Esfahani et al., 

2008), underlining that calibration curves can be parameterized as non-linear equations 

(Richardson et al., 2002; Uddling et al., 2007). 

Nevertheless, from the numerous findings it has been concluded that 

regression relationships are crop, species, cultivar and even hybrid specific (Peterson et 

al., 1993). This implies that outcomes cannot be transferred from one plant to another, 

but that site-, plant- and species-specific calibrations are necessary to determine the 

relationships between the SPAD-502 readings and the N content for predicting the leaf-

N status (Balasubramanian et al., 2000; Richardson et al., 2002; Singh et al., 2002). 

Since no studies exist that have determined the relationship between SPAD-502 

readings and leaf-chlorophyll and N content of tree species home to the lower reaches of 

the Amu Darya in Central Asian Uzbekistan, the objectives therefore were to (1) 

determine the feasibility of using the SPAD-502 for monitoring the leaf N content of 

three tree species considered for afforesting salt-affected croplands, (2) generate a 

calibration dataset for a rapid and inexpensive assessment of leaf N status, and (3) 

identify the range of the SPAD-502 readings for three local tree species that would 

allow prediction of N dynamics and thus support tree plantation management.  

 

6.2 Materials and methods 

6.2.1 Study sites 

All measurements were conducted at two research sites in the Khorezm region of 

Uzbekistan: a 4-year-old tree plantation in the Yangibazar district located at 41°65´ N 

latitude, 60°62´ E longitude and 102 m altitude (further referred to as Experiment 1), 

and a 5-year-old tree plantation at the experimental site of the Urgench State University 

located at 41°33´ N latitude, 60°36´ E longitude and 101 m altitude (Experiment 2). For 

comparison and validation of the relationships between the SPAD-502 readings and tree 

leaf chlorophyll and N content, two factors were decisive: 1) the same tree species had 

to be grown on both locations and 2) the trees had to be of different ages (trees in 

Experiment 2 were two years older). This allowed establishing a “false time series”.  
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During 2008 when data was collected for the validation, the mean air 

temperature was approximately 17°C with minimum and maximum daily temperatures 

ranging from -8°C to 43°C, respectively. The annual precipitation amounted to 100 mm 

and fell mostly outside the tree-growing period. The mean relative air humidity varied 

between 26% and 86% throughout the year. 

 

6.2.2 Experimental design 

Experiment 1: In March 2006, treatments were arranged in a completely randomized 

block design with four replications on 0.5 ha of marginalized land. The selected tree 

species, namely Russian olive (Elaeagnus angustifolia L.), honey locust (Gleditsia 

triacanthos L.) and black locust (Robinia pseudoacacia L.), were subjected to two 

levels of phosphorus (P) application and compared to a control without P application 

(see Chapter 3). These fertilizer treatments included the addition of half (50%) the rate 

and the full rate (100%) of the recommended P rate (90 kg ha-1) as single super 

phosphate (SSP). In the below-described analyses, the effect of different levels of P 

additions on the SPAD readings of tree foliage was excluded, and hence the focus is on 

the control treatment with no P amendments. Each experimental plot consisted of one 

row of 11 trees, transplanted as 1-year-old saplings from the tree nursery into the 

experimental plots. The trees were planted at 1-m distance in rows spaced 1.75 m, 

resulting in a density of 5,714 trees ha-1. Given the young age of the trees, they did not 

interfere with each other during the entire three-year-study period from March 2006 till 

October 2008. Watering was ensured via drip irrigation at 80 mm per growing season, 

which was stopped after two years as the roots started tapping the groundwater. The soil 

in Experiment 1 (Table 6.1a) was classified as gleyic and calcaric Arenosols (ISEAM, 

2001). During the growing seasons 2006 and 2008, the groundwater level fluctuated 

between 1.5 and 1.8 m.  

Experiment 2: A 0.2 ha site was selected for comparison and validation of the 

results in Experiment 1. Trees had been planted in 2005 at the same spacing as in 

Experiment 1. The 13 lines consisted of 30 trees of 10 species that were used for 

calibration, including E. angustifolia, G. triacanthos and R. pseudoacacia. The 

individual trees were considered replicates. The soil type was the same as that in 

Experiment 1 (Table 6.1b). During the growing seasons, the groundwater level 
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fluctuated between 1.4 and 1.8 m. During the first two years of tree establishment, the 

entire plantation was furrow irrigated, but after 2006 the trees tapped the groundwater. 

 

Table 6.1: Physical and chemical characteristics of the soil in 2008 in Experiment 1 
(a) and Experiment 2 (b) 

(a) 
Parameter Soil depth (cm) 
             0-25            25-65         65-110 

Bulk density (g cm-3) 1.2 (±0.0) 1.5 (±0.0) 1.5 (±0.0) 
pH 7.6 (±0.3) 7.6 (±0.2) 7.7 (±0.2) 
Dry residue (%) 0.2 (±0.1) 0.2 (±0.0) 0.1 (±0.0) 
Soil organic matter (%) 1.1 (±0.0) 0.7 (±0.0) 0.6 (±0.0) 
P2O5 (mg kg-1) 14.4 (±2.9) 10.3 (±3.7) 10.1 (±5.2) 
K2O (mg kg-1) 192 (±11)         101 (±8) 87 (±8) 
Total N (%) 0.07 (±0.00) 0.05 (±0.00) 0.04 (±0.00) 
Total P (%) 0.13 (±0.02) 0.15 (±0.01) 0.15 (±0.01) 
Total K (%) 0.73 (±0.06) 0.77 (±0.04) 0.82 (±0.05) 

(b) 
Parameter Soil depth (cm) 
             0-30            30-60        60-110 

Bulk density (g cm-3) 1.7 (±0.0) 1.7 (±0.0) 1.7 (±0.0) 
P2O5 (mg kg-1) 32.5 (±2.5) 29.1 (±2.5) na 
K2O (mg kg-1) 193 (±33) 180 (±24) na 
Total N (%) 0.05 (±0.00) 0.04 (±0.00) na 
Total P (%) 0.09 (±0.01) 0.09 (±0.01) na 

 

6.2.3 SPAD-502 measurements 

In Experiment 1, two trees per species were randomly selected within each of the four 

control plots for measuring the leaf chlorophyll content with the SPAD-502 meter at 14-

day intervals. Three small, medium and large sized leaves (in total nine leaves per tree) 

were measured between the midrib and the leaf margin. The measurements started in 

May, when leaves began flushing, and ended in September, before natural leaf shed. 

The measurements were carried out for three consecutive years (2006, 2007, and 2008). 

Prior to each use, the SPAD-502 was calibrated following the instructions provided by 

the manufacturers.    

 

6.2.4 Sampling of leaves for SPAD-502 calibration 

For the elaboration of the calibration curves, leaf material was collected from three tree 

species. Healthy and fully expanded leaves with visible differences in leaf “greenness” 
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were selected to maximize the calibration range database. Three SPAD-502 readings 

were taken between the midrib and the leaf margin of 10 leaves of each of the three 

species and averaged. Following these measurements, the 30 leaves with the same 

characteristics were picked from the trees between 8:00 and 9:00 am, the petioles were 

detached, and the leaves placed in polyethylene bags and transported to the laboratory in 

a refrigerated box. The bags were then stored in a stationary freezer at -10°C until 

analysis for total N using the Kjeldahl method and for chlorophyll a + b according to 

Lichtenthaler (1987). 

 

6.2.5 Monitoring foliage N content with SPAD-502 and validation of results 

Several functional forms were tested to identify the best goodness-of-fit and to describe 

the relationships between the SPAD-502 values and total chlorophyll content (mg g-1), 

total chlorophyll and N content (mg g-1), and the SPAD-502 values and total N content. 

When using the established equations obtained for the midseason (July 2008), based on 

the SPAD-502 measurements the leaf-N status could be derived at any other period. For 

validation of the calibration equations that were derived from regressing total N content 

with the SPAD-502 readings of E. angustifolia, G. triacanthos and R. pseudoacacia in 

Experiment 1, the equations were used to calculate the leaf-N content of the same tree 

species based on their measured SPAD-502 values at Experiment 2. Next, these 

simulated N values were compared with the leaf-N values of Experiment 2 as 

determined by spectrophotometric analyses. 

 

6.2.6 Statistical analyses 

One-way analysis of variance (ANOVA) was used to analyze differences in the SPAD-

502 values for three tree species in Experiment 1 over three years. When significant 

(P<0.05) differences were found, the Tukey post-hoc test was used to compare 

individual means. Coefficients of determination (R2) were computed for all tree species 

by regressing the SPAD-502 readings with leaf total chlorophyll content, leaf total 

chlorophyll with N content, and the SPAD-502 readings with leaf total N content. 

Statistical analyses were performed with SPSS 15.0 and SAS 9.2 software. The root 

mean squared error (RMSE) and relative root mean squared error (RRMSE) was used 
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for determining the differences between the predicted N values and those determined by 

spectrophotometric analyses, where 
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6.3 Results 

6.3.1 Regression types and calibration equations 

Although the R2 of the linear relationship between total leaf chlorophyll and N contents 

and their corresponding SPAD-502 readings varied between 0.62 and 0.78 for the three 

species (Table 6.2a, b, c), they still had a lower predictive value than the calibration 

lines based on the second-degree polynomial models (Equation 6.3), which in all cases 

provided the highest R2 for all relationships of interest (Table 6.2a, b, c). Hence, in all 

cases, the polynomial regression types were used as calibration equations, which 

differed among the tree species (Figure 6.1). 

 

 y = [a + bx +cx2] (6.3)  

 

where y is total N content, a, b and c are linear and curvilinear coefficients, respectively, 

and x is the SPAD-502 reading.   

The SPAD-502 readings showed significant goodness-of-fit with total leaf 

chlorophyll content for all three tree species (Figure 6.1a). The total leaf chlorophyll 

content of the three species was highly correlated with total leaf-N content (Figure 

6.1b). SPAD-502 values are also highly and significantly correlated with the total N 

content in the leaves of all three species, although the R2 (0.76) for G. triacanthos is 

12% lower compared to the other two tree species, but still relatively high (Figure 6.1c).  
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Table 6.2: Functional relationships and their coefficients of determination (R2) 
between the SPAD-502 readings and total leaf chlorophyll content (a), 
total leaf chlorophyll and nitrogen content (b), and the SPAD-502 
readings and total leaf nitrogen content (c) of three tree species 

a) 

Species Linear Logarithmic Exponential Polynomial

Elaeagnus angustifolia 0.69 0.63 0.69 0.88
Gleditsia triacanthos 0.77 0.80 0.73 0.83
Robinia pseudoacacia 0.78 0.82 0.72 0.87

Regression type

  R2

b) 

Species Linear Logarithmic Exponential Polynomial

Elaeagnus angustifolia 0.73 0.70 0.69 0.74
Gleditsia triacanthos 0.62 0.60 0.73 0.73
Robinia pseudoacacia 0.69 0.69 0.64 0.79

Regression type

  R2

c) 

Species Linear Logarithmic Exponential Polynomial

Elaeagnus angustifolia 0.71 0.67 0.78 0.87
Gleditsia triacanthos 0.76 0.76 0.77 0.76
Robinia pseudoacacia 0.78 0.82 0.72 0.86

Regression type

  R2

Based on these correlations, the calibration equations for predicting N content 

were established for each tree species (Table 6.3). 

 

Table 6.3: Second-degree, polynomial calibration models and range of the SPAD-
502 readings for predicting nitrogen content and nitrogen dynamics of tree 
foliage; x is the SPAD-502 reading and y is total nitrogen content 

Species Calibration equation Range SPAD-502 readings 

E. angustifolia y = 499.23 - 14.584x + 0.1138x 2 
62-88

G. triacanthos y = -61.974 + 2.8801x - 0.0162x
2

31-51

R. pseudoacacia y = -45.984 + 4.0641x - 0.0433x 2 26-48
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Figure 6.1: Relationships between the SPAD-502 readings and total chlorophyll content (a), between 
total chlorophyll and total nitrogen content (b), and between the SPAD-502 readings and 
total nitrogen content (c) in leaves of three tree species in Experiment 1. Statistical 
significance: R2 – coefficient of determination;  *P<0.05; **P<0.01; ***P<0.001 
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6.3.2 Validation of results 

The validation of the calibration equations established for Experiment 1 show that the 

spectrophotometrically determined leaf N content matches very well the findings of the 

indirectly predicted leaf-N content irrespective of the three tree species grown at 

Experiment 2, as evidenced by RMSE values of 25 mg g-1 dry matter (DM) and 10% for 

E. angustifolia, 11 mg g-1 DM and 16% for G. triacanthos, and 17 kg g-1 DM and 10% 

for R. pseudoacacia (Table 6.4).   

 

Table 6.4: Comparison of simulated and empirically (laboratory findings) 
determined tree-leaf nitrogen content of three species in July 2008. 
STDEV = standard deviation (mg g-1), CV = coefficient of variation (%), 
RMSE = Root Mean Squared Error (mg g-1), RRMSE = Relative Root 
Mean Squared Error (%) 

Species
Parameter Observed mean Simulated mean
Total N content (mg g-1) 50 52

STDEV (mg g-1) 13 14
CV (%) 26 27

RMSE (mg g-1)
RRMSE (%)
Species

Total N content (mg g-1) 21 23

STDEV (mg g-1) 4 4
CV (%) 19 17

RMSE (mg g-1)
RRMSE (%)
Species

Total N content (mg g-1) 38 41

STDEV (mg g-1) 6 6
CV (%) 16 15

RMSE (mg g-1)
RRMSE (%)

Elaeagnus angustifolia

***********  25 *********

Robinia pseudoacacia

**********  14 *********

**********  10 **********

**********  10 **********

Gleditsia triacanthos

**********  11 *********

**********  16 *********

 

 

6.3.3 Simulating N dynamics of tree foliage for 2006, 2007 and 2007 

The accuracy of the validation findings allowed the prediction of the N dynamics over 

the 2006, 2007 and 2008 growing seasons using the measured SPAD-502 values and 

calibration equations established for the three tree species at site 1 (Table 6.5). The 
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SPAD-502 values and the N content of the tree leaves for all tree species tended to 

increase over years (Table 6.5a, b).  

 

Table 6.5: Measured SPAD-502 readings and simulated nitrogen content of leaves 
of three tree species in Experiment 1. ± indicates standard deviation; 
within a column means followed by the same letter are not significantly 
different at P<0.05 according to the Tukey post-hoc test 

 

a)  
Species SPAD-502 readings 
 2006 2007 2008 

E. angustifolia 60 ± 8 a 67 ± 7 a 71 ± 9 a 

G. triacanthos 32 ± 3 b 32 ± 4 b 35 ± 4 b 

R. pseudoacacia 29 ± 5 b 35 ± 5 b 36 ± 5 b 

b)    
Species Predicted N content, mg g-1 

 2006 2007 2008 
E. angustifolia 39.07 ± 9.51 a 42.41 ± 6.28 a 52.42 ± 13.71 a 

G. triacanthos 13.96 ± 3.27 b 15.99 ± 3.89 b 23.02 ± 4.13 b  

R. pseudoacacia 33.91 ± 6.80 a 38.24 ± 3.82 a 41.08 ± 5.52 a 

 

6.4 Discussion 

6.4.1 Functional relationships 

The efficiency and design of optical chlorophyll meters such as the SPAD-502 roots in 

the principle that the amount of light measured after passing through the leaf is 

inversely proportional to the active chlorophyll a + b content (Havlin et al., 2005). 

Moreover, since N is a crucial component of chlorophyll (Madakadze et al., 1999), and 

a highly positive relationship exists between these two parameters, the SPAD-502 can 

be used to determine the leaf-N content (Wood et al., 1993; Richardson et al., 2002). 

Despite the linear relationship between the SPAD-502 readings and the leaf-N status as 

has been measured in numerous studies (Balasubramanian et al., 2000; Singh et al., 

2002), many other studies reported weaker linear correlations between the SPAD-502 

readings and the N concentration (Loh et al., 2002). Abundant evidence shows that the 

functional relationship between the SPAD-502 values and chemical leaf parameters 

over a range of crops appears to differ according to species, cultivars, and even crop 

growth stage (e.g. Takebe and Yoneyama, 1989; Turner and Jund, 1991; Peterson et al., 

1993). In fact, any biotic (e.g., pests, diseases, weeds, etc.) or abiotic stress (e.g., 

drought, heat, cold, salinity) that impacts leaf discoloration will impact the SPAD-502 
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values and chlorophyll estimates (e.g. Turner and Jund, 1991; Peterson et al., 1993; 

Balasubramanian et al., 2000). Furthermore, the type of relationships between the 

SPAD-502 readings and leaf-N and chlorophyll content may also differ (Castelli et al., 

1996; Richardson et al., 2002). All these findings indicate that functional relationships 

must be developed for each of these parameters to increase the efficiency of the SPAD-

502 meter.  

In contrast with various previous studies, the best goodness-of-fit of the 

functional relationship identified was not linear but curvilinear. In some cases it is 

desirable that the model or functional relationship is as simple as possible, which would 

call for a linear relationship. Yet, when aiming to use the model results for predicting 

the leaf-N content based on corresponding, non-calibrated SPAD-502 values, it is 

highly recommended to use the relationship with the highest coefficient of 

determination (Kumar, 2008), which in this study was the second-degree polynomial 

relationship for all three tree species.  

 

6.4.2 Range of SPAD-502 readings 

Obviously, predictions are only valid within the SPAD-502 range of readings identified 

during the calibration process, which differed among the tree species (Table 6.4). 

Nonetheless, based on an intensive monitoring of all three species during three 

consecutive seasons, and given the accuracy of the outcomes, the possible range of the 

SPAD-502 values for each of the species has been covered, which in turn allows using 

the established curvilinear relationships (Table 6.4). This outcome is also supported by 

a comparison of the leaf-N contents for the three tree species as determined by 

spectrophotometric analyses and with the established relationships for the same species 

(Table 6.3). Hence, the SPAD-502 meter can now be used for leaf-N determination and 

prediction for the three woody species examined in the study region. 

Despite the high goodness-of-fit, the coefficients of determination differed 

among the surveyed tree species (Tables 6.2a, b, c). Various reasons have been 

suggested for such differences, including the nature of the sampling technique, since the 

leaf spots used for the SPAD-502 readings do not always correspond truthfully to that 

leaf part used for the N determination by spectrophotometric analyses, or differences in 

leaf thickness (Loh et al., 2002). Even weather conditions and radiation differences that 



Efficient use of the SPAD-502 chlorophyll meter on trees 

93 

 

occur over the growing season or during the day reportedly may impact the goodness-

of-fit of the relationship (Hoel and Solhaug, 1998). However, diurnal fluctuations in the 

SPAD-502 readings (data not shown) could not be detected during the hot summers in 

the study region. Furthermore, by averaging three SPAD-502 readings for each leaf to 

one value, a potential sampling technique error was reduced. Regarding the leaf 

thickness, which can be quantified by the specific leaf area (SLA: the greater the SLA, 

the thinner the leaf), previous research findings on various tree species in the study 

region showed indeed significant differences between species with respect to this trait 

(Lamers et al., 2006). From this perspective it can be argued that the coefficients of 

determination should be more elevated for tree leaves with a large SLA, e.g., leaves of 

E. angustifolia (SLA = 0.031 m2 g-1), and lower for species with potentially thicker 

leaves such as F. pennsylvanica (SLA = 0.014 m2 g-1) and U. pumila (SLA = 0.009 m2 

g-1) as determined in a previous study (Lamers et al., 2006). Although this confirms the 

initial line of argumentation, the same study showed that the SLA of the same species 

differed between years and, for instance, decreased for some species, increased with 

others and remained unchanged for another group of species over the course of 12 

months. This suggests that the SLA may in the long run not be the most judicious trait 

to examine. Even though SLA or specific leaf weight (SLW; inverse of SLA) may seem 

promising for adjustments (Loh et al., 2002), one of the key advantages of the SPAD-

502 as a non-destructive means for determining leaf-N content gets lost compared to 

non-adjusted SPAD-502 readings because the determination of the SLA or SLW will 

again demand destructive procedures. 

 

6.4.3 Validation of results 

The leaf-N values of R. pseudoacacia were close to those reported by Singh (1982) 

(>3%), whereas for G. triacanthos the values provided by Perry and Hickman (1999-

2000) match the present findings very well (2.3%). The N content in E. angustifolia 

leaves as determined during an afforestation study in the same region was about 3-4% 

(Khamzina et al., 2006), which is slightly lower than the values in this study. The leaf-N 

content and consequently the SPAD-502 readings of this species were much higher than 

those of the other species, which can be explained by the species' effective N2-fixing 

capacity, which has also been reported in earlier studies (Khamzina et al., 2009a). The 
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results are similar for the predicted leaf-N content (Table 6.5b). However, based on the 

low RSME values (Table 6.3), the relationships established for E. angustifolia, G. 

triacanthos and R. pseudoacacia turned out to be sufficiently accurate and thus can be 

used. 

The confirmation that the SPAD-502 meter can be used for N determination 

and prediction for three species has practical implications for tree and forest 

management in the lower reaches of the River Amu Darya. For instance, given the 

growing interest in woody vegetation for fiber and bio-energy production on marginal 

land as one avenue to avoid the dilemma of biomass use for food or fuel production as 

well as for carbon sequestration, there is a definite need for managing tree productivity 

via appropriate N-management (Moreau et al., 2004). This seems critical also within the 

irrigated areas in the lower reaches of the Amu Darya in Uzbekistan (Martius et al., 

2004). Recent findings have shown the potential role of small-scale tree plantations as a 

means to re-convert degraded marginal lands into areas suitable for multipurpose tree 

plantations (Khamzina et al., 2006b; Lamers et al., 2006; Khamzina et al., 2008; Lamers 

et al., 2008). In addition, the global warming potential of N2O and CH4 fluxes from 

annual cropping systems such as cotton, wheat and rice, were shown to be much higher 

than from perennial systems such as the tugai and poplar tree plantations (Scheer et al., 

2008). However, for the bio-remediation of these degraded, marginal lands, tree species 

need to be assorted (Khamzina et al., 2006) and once planted, adequately managed. 

Here, the SPAD-502 readings can be used for the species examined in this study.  

 

6.4.4 Contribution of SPAD-502 to N management 

Furthermore, recent studies have underlined the importance of animal husbandry for 

livelihood sustainability in rural Uzbekistan (e.g. Müller, 2006; Kan et al., 2008). Yet, 

the notorious shortage in feed supply is a major cause for the poor livestock 

productivity in the region (Djanibekov, 2006), and feed diets need to be improved. 

Referring to a foliar crude protein (CP) content between 90 and 150 g CP kg-1, and a 

nutritive value in tree leaves, which relative to barley (100) varied from 62 (P. 

euphratica L.) to 97 (E. angustifolia L.) (Lamers and Khamzina, 2010), it was 

postulated that tree leaves could be used to complement and improve the presently low-

quality diet of livestock. Based on the assumption that the N content of CP as one of the 
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major feed quality indicators is 16% (Close and Menke, 1986), the SPAD-502 can be 

used to monitor not only leaf-N but also leaf-CP content during the growing season 

(CP=N·6.25). This would consequently support livestock holders in their choice for the 

best time to use tree leaves and thus improve and enrich the quality of poor fodder. 

Last but not least, although the leaf greenness as indicated by the SPAD-502 

readings can become a suitable predictor of plant growth and thus can provide directives 

for the management of N amendments, the SPAD-502 meter is a diagnostic rather than 

a prognostic tool. The arbitrary indices indicate whether or not plant leaves are 

sufficient in N, but do not reveal how much N to apply unless threshold values are 

established such as for various rice cultivars (Singh et al., 2002). Under such conditions, 

the SPAD-502 can contribute directly to an increased N use efficiency and biomass 

production of crops and trees.  

 

6.5 Conclusions 

The reliable correlations between the SPAD-502 readings and the leaf chlorophyll and 

N status for three tree species as well as the validation of the results for these species 

indicate that the established curvilinear relationship can be used for rapid, non-

destructive and indirect but accurate estimations of the leaf-N status as long as the 

SPAD-502 values are within the established calibration database. This in turn has 

various practical implications for tree management and could support, for instance, 

livestock holders in the lower reaches of the Amu Darya in Uzbekistan in selecting the 

appropriate species, leaves and time of leaf grazing for improving and enriching feed 

diets (see Chapter 7). 
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7 OPTIONS FOR OPTIMIZING DAIRY FEED RATIONS WITH 

FOLIAGE OF TREES GROWN IN THE IRRIGATED DRYLANDS 

 

7.1 Introduction 

Ample evidence underlines the benefits of supplementing ruminant diets with tree 

foliage to complement feed particularly low in nitrogen (N) and crude protein (CP) 

contents (Devendra, 1992; Humphreys, 1995; Reddy and Elanchezhian, 2008). Such 

practices however have not been introduced in the dryland areas of Central Asia (CA) 

owing to an unawareness of, and knowledge about such benefits of perennial 

vegetation. Yet, following independence from the former Soviet Union (SU) in 1991, 

livestock has grown tremendously in importance and has become vital for livelihood 

security of the rural population of the five CA countries, Kazakhstan, Kyrgyzstan, 

Tajikistan, Turkmenistan, and Uzbekistan (Iñiguez et al., 2005). In the aftermath of 

independence, a drastic decline in the number of livestock has occurred, although the 

present stock is again estimated at 17 million (mi) cattle, 44 mi. sheep, and 7 mi. goats 

(Iñiguez et al., 2005). 

Although animal husbandry has become central to the livelihood in rural 

Uzbekistan (Müller, 2006; Kan et al., 2008), feedstuff demand is outstripping its 

production. Animal keepers in the Khorezm region of Uzbekistan for instance mix CP-

deficit and relatively rich metabolizable energy (ME) feedstuff such as wheat bran 

(CP:ME=9.7 g MJ-1), or straw of maize (CP:ME=9.4 g MJ-1) or sorghum (CP:ME=6.6 g 

MJ-1) with CP-rich feeds such as cottonseed cake (CP:ME=29.9 g MJ-1), when 

affordable and available (Djanibekov, 2008). But in the absence of the expensive 

cottonseed cake, the notoriously low quality of the cheap grain bran and fibrous 

roughages is one cause for the poor livestock productivity of, e.g., 6-7 litres per day per 

cow (Djanibekov, 2008).  

A screening of potentially suitable multipurpose tree species for afforesting 

degraded marginal lands in the Khorezm region demonstrated the benefits of various 

non-timber products including the nutritive value of the tree foliage of various species 

(Lamers and Khamzina, 2010). At the end of the growing season the tree foliage of 

different species ranged within 90-150 g CP kg per dry matter (DM), but during the 

season CP values of 250 g CP kg-1 DM had been monitored and hence it was concluded 
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that the foliage of these tree species could supplement the N–deficit diet for dairy cattle 

(Lamers and Khamzina, 2010). The tree leaves could thus increase the quality of the feed 

whereas the usual fibrous roughages (wheat, rice and sorghum residues) could complement 

the quantity of the feed particularly during feed deficit periods (November-May).  

Although little is known about the role of the foliage from woody species 

grown in the irrigated croplands of CA, there is much evidence on its importance in 

complementing feed diets worldwide (e.g. Baumer, 1992; El-Waziry, 2007). But most 

studies have focused on analyzing the use of tree foliage per se or compared the suitability 

of different tree species (e.g. Rubanza et al., 2005; Amanullah et al., 2006; Al-Soqeer, 

2008), analyzed the chemical structure of tree foliage (Amanullah et al., 2006; El-Waziry, 

2007; Al-Soqeer, 2008) or looked at the benefits of tree foliage for different types of 

livestock (Baumer, 1992; Azim et al., 2002). Yet, information about the optimal timing for 

collecting tree leaves as to complement dairy diets, whilst considering both nutritive and 

financial aspects, has received little attention particularly in the irrigated drylands of CA. 

This demands knowledge about the seasonal dynamics of N and CP contents in tree and 

bush foliage. Labri et al. (2008), for instance, summarized the nutritive value of seven 

perennial species native to Uzbekistan, but the foliage material was only collected once 

during the season. The analyses by Lamers and Khamzina (2010) on the dynamics of 

the nutritive value of tree foliage during the eight-month growing season was based on 

measurements taken only three times. But even though the quality profile and the 

dynamics of the chemical composition of the tree foliage in this case was monitored 

throughout the season (e.g.,  Lamers and Khamzina, 2010), the methods used for the 

determination of the N and CP contents of the tree leaves were expensive and time-

consuming. The latter hampers that the laboratory results become rapidly and timely 

available. This leaves the animal holders uncertain about the best time to feed tree 

leaves. A rapid, easy-to-use, cheap and practical method to monitor the tree leaf N/CP 

contents throughout the growing season would therefore allow to determine the best 

timing from both a nutritive and financial perspective.  

The SPAD (Soil Plant Analyses Development)-502 chlorophyll meter 

(Minolta, 1989) compels a non-destructive means to determine total leaf chlorophyll, 

which is highly correlated with the leaf N content (Girma et al., 2006; Pinkard et al., 

2006). However, since this relationship depends on crops, species, cultivars and even 
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hybrids (Peterson et al., 1993),  the relationships between the SPAD readings and the 

N/CP content has to be determined first, in particular since they vary between simple 

linear to curvilinear for annual and perennial vegetation (Dwyer et al., 1994; Moreau et 

al., 2004; Esfahani et al., 2008).  

This component focuses on the introduction of tree foliage into farm 

management practices to improve nutrient composition of the dairy feed rations and 

sustain farm income. A mathematical programming model can be a tool, in this case, to 

formulate an optimal ration for feeding dairy cows (Holler et al., 1969). A linear 

programming (LP) approach, which is based on mathematical programming, has been 

used extensively in farm management to formulate least-cost dairy rations (O'Connor et 

al., 1989; Tozer, 2000; Van Calker et al., 2004). The application of LP models allows 

evaluating if the introduction of tree foliage into the dairy ration is both economically 

and technically feasible given the nutritive requirements of the diet of dairy cows, the 

forage nutrient composition and regional prices of feeds available in the study region 

Khorezm. 

The objectives were therefore threefold: (i) to analyze the suitability of the 

SPAD-502 meter for monitoring the N and CP content in the leaves of the fodder 

species Elaeagnus angustifolia L., Gleditsia triacanthos L. and Robinia pseudoacacia 

L., (ii) to detect thus the best harvesting time and the effect of including CP-rich tree 

leaves into feed rations of dairy cows and (iii) if so, what admixture would bring about 

the optimal feeding ration for dairy cows at the lowest cost using the LP approach.  

 

7.2 Description of the study region 

Large parts of CA belong to the non-tropical drylands with a continental climate, 

characterized by short, cold and moist winter periods lasting between November and 

March, and long, hot and dry summers spanning from April till October. Typical for this 

dryland area of 392,670 million ha (Mha) are the smaller areas of irrigated landscapes 

amounting to less than 3% (about 8-11 Mha), but which are vital for the welfare and 

livelihood of the population (PFU, 2008).  

With a size of 605.000 ha, of which only about 270.000 ha can be irrigated, 

the study region Khorezm is typical for the irrigated lowlands within CA (PFU, 2008). 

The Khorezm region is located between 60.05 and 61.39 N and 41.13 and 42.02 E of 
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the Greenwich meridian, and thus, at about 250 km south from the present Aral Sea 

shores. The region has borders with the Karakum and Kyzylkum deserts, the Amu 

Darya River, the Autonomous Republic of Karakalpakstan, and Turkmenistan. The 

mean annual air temperature is 13°C, but daily maxima can be as high as +45°C and 

minima as low as -28°C. The long-term mean annual precipitation of about 100 mm, 

which falls mostly outside the growing season, is much lower than the annual 

evaporation of 1200 mm, which makes agriculture possible with irrigation only. The 

agro-climatic conditions are suitable for the cultivation of crops adapted to higher 

summer temperatures such as cotton, tobacco, and sunflower but also maize and 

sorghum. More details are presented in section 2.2.  

Based on a bonitet of <40, (the bonitet is “the comparative assessment of the 

land quality and productivity with a representative level of agricultural activity” (FAO, 

2003), which is rated on  a 100-point scale (Ramazanov and Yusupbekov, 2003) about 

20% of the irrigated area (about 37,000 ha) of the Khorezm region has become 

unsuitable for cropping mainly owing to soil degradation caused by ill-managed 

irrigation and production practices (Martius et al., 2004). 

 

7.3 Materials and methods 

In March 2006, a three year tree experiment was set up as a randomized complete block 

design with four replications on a 0.5 ha marginal site in the Yangibazar research station 

(4165 N latitude, 6062 E longitude, altitude 102 m asl) in the Khorezm region. Next 

to the tree species E. angustifolia, G. triacanthos and R. pseudoacacia, the treatments 

included three levels of phosphorus application. These fertilizer treatments will not be 

discussed here but are presented in Chapter 3. Each experimental plot consisted of one 

row of eleven trees, transplanted as 1-year-old saplings from the tree nursery into the 

experimental plots at 1 m distance inside the row and 1.75 m between the rows. Given 

the young age of the trees, they did not interfere with each other during the entire three-

year study period. Watering was ensured via drip irrigation at 80 mm per year, which 

was ceased after two years as the roots started tapping the groundwater. The emitters 

were installed at about 10 cm from the tree basis. During the growing season the 

groundwater fluctuated between – 1.2 and 1.6 m in 2006, 1.5 and 1.7 m in 2007, and 1.5 

– 1.8 m in 2008. Soil texture at the research site was previously identified as Salids 
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(USDA, 1996), or salic Fluvisols (FAO, 2006b), despite the absence of periodical 

waterlogging.  

 

7.3.1 Feed quality estimates of tree foliage 

Since detailed information on the quality of feedstuff in Uzbekistan included the 

qualitative indicators ME and CP, crude lipids (CL), crude fibers (CF), crude ash (CA), 

and N-free extractives (NFE), for the sake of comparison these indicators were required 

also for the tree leaves. Gas production (Gb), used to estimate the ME content, was 

measured in the presence and absence of polyethylengglycol (PEG), following the in 

vitro Hohenheim gas technique (Menke et al., 1979) . The rumen fluid was taken from a 

sheep (Ovis aries) as the donor animal that were fed 600 g grass hay and 600 g mixed 

concentrates, divided into two equal meals a day. The difference between the Gb with 

and without PEG indicates the presence of tannins (Makkar, 1993). Leaf N content was 

measured according to Kjeldahl, whilst the CP content was computed as the leaf N 

content times 6.25 (Close and Menke, 1986). Leaf ME contents were computed using the 

multi-regression equation developed for roughages, which considers Gb, as well as CP, 

and CL contents (Menke et al., 1979). The in vitro organic matter digestibility (dO) was 

subsequently derived from the multiple regression of dO on Gb, CP and CA (Menke et al., 

1979). 

 

7.3.2 SPAD-502 measurements and calibration 

Two trees per species were designated within each plot for measuring fortnightly the 

leaf chlorophyll content with a SPAD-502 meter. Three small, medium and large sized 

leaves (in total nine leaves per tree) were measured between the midrib and the leaf 

margin. The measurements started in April when leaves began flushing and ended in 

October before the complete harvest of these trees. 

For the calibration of the SPAD-502 values and the N/CP contents, leaf 

material was collected in the middle of the season (July) from three trees per species. 

First the SPAD-502 readings were taken between the midrib and the leaf margin of 18 

leaves of each the three species and repeated three times to obtain a leaf average. 

Following these measurements, the same 54 leaves were handpicked from the trees 

between 8:00-9:00 am, petioles were detached, and leaves were placed in polyethylene 
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bags and transported to the laboratory within a refrigerated box. In the laboratory the 

bags with fresh leaf samples were kept in a stationary freezer at -10C° until analysis for 

total N using the Kjeldahl method and for chlorophyll a and b according to 

Lichtenthaler (1987). 

 

7.3.3 Dry matter production of leaves 

Three trees of each tree species were completely defoliated at the beginning (May), 

middle (July) and end (September) of the season for leaf dry matter determination. 

Immediately after harvest, leaf sub-samples were weighed with a digital scale to the 

nearest mg, wetted and transported in a refrigerated box to the laboratory. The sub-

samples were then placed into paper bags and oven-dried at 103º  2 0C for 72 hours to 

constant weight in a forced air convection oven (MacDicken et al., 1991).  

 

7.3.4 Monitoring crude protein contents with SPAD-502 

The relationship between the SPAD-502 chlorophyll meter readings and the leaf 

chlorophyll and N contents were analyzed. Several functional forms were tested, but the 

curvelinear relationship gave the highest coefficient of determination (R2) for all three 

species (see section 6.3.1). The general equation can be described as y = a + bx + cx2, 

where y is total nitrogen content, a, b and c are linear and curvilinear coefficients 

respectively, and x is the SPAD-502 reading. While using the established coefficients 

obtained for the midseason (July), the leaf N status could be derived at any other period 

following SPAD-502 measurements. The leaf CP contents were computed as 

aforementioned (Close and Menke, 1986). Here we report the CP contents at the season-

onset (May), the mid-season (July) and end of the growing season (September). The 

accuracy of the regressed CP values was validated with CP values of the same species 

and in the same month but as measured in the laboratory. The accuracy is reflected in 

the coefficient of variation (CV), root mean squared error (RMSE) and the relative 

RMSE (RRMSE). For more details see section 6.2.6.  

 

7.3.5 Feed quality estimates of feedstuff 

The leaf dO values for the tree species were estimated in vitro. However, information on 

the dOs of the commonly used feedstuff in the study region such as hull, wheat and rice 
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straw, wheat bran, maize stems, alfalfa, and maize and sorghum straw as well as 

cottonseed cake had not been previously reported (Dalakyan et al., 1980). Therefore, dO 

values of the above mentioned feedstuff was derived indirectly from available 

information in a step-wise procedure. First, the Gb for each feed was calculated using 

the multiple regression equation for roughages with the square of CL (Menke et al., 

1979). In a second step, the values for the estimated Gb, and the measured CP and CA 

values were used for calculating the dO, according to the multiple regression equation 

as previously derived by Menke et al. (1979). 

 

7.3.6 Statistical analyses 

One-way analysis of variance (ANOVA) was used to analyze differences in leaf dry 

matter (DM) production as well as CP content of tree species at the three examined 

periods of the growing season. When significant (P<0.05) differences were found, the 

Tukey post-hoc test was used to compare individual means. Statistical analyses were 

performed with SPSS 15.0. 

 

7.3.7 Optimization procedures 

To analyze the optimization of a feed mix based on the various feeds, a linear 

programming (LP) model was elaborated, including the commonly used livestock feed 

in the study region (Djanibekov, 2006). The nutritive values of these feeds were taken 

from Dalakyan et al. (1980). Key elements of the LP are the feed prices, the CP and ME 

components of these feeds and the nutritional requirements to obtain a predefined level 

of daily milk production based on the body mass of a cow. Under the assumption that 

dairy producers would use feed at a minimum costs for the dairy feed ration while 

striving for a suitable CP:ME ratio, the objective function of the least cost ration 

(LCFR) model was:  

 

 

Minimize  Z C X  

Subject to  AX or B   

and  0X   
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where 

Z =  cost of 1 kg DM of feed mix; 

C =  price of 1 kg DM of feed; 

A =  nutrient attributes of 1 kg DM of modeled feeds in CP, ME, CA, CL, CF,  

 NFE and Gb; 

B =  required nutritional constraints; 

X =  share of feeds in 1 kg DM of feed ration introduced as positive variables. 

 

Therefore each feedstuff was defined by its attributes (A) relative to the feed 

quality indicators CP (g CP kg-1 DM) and ME (MJ kg-1 DM) contents. The final, 

optimal LCFR should meet the required nutritional constraints (B). Therefore, the 

model first sums the values of the decision variables to 1000 g, on which basis the least 

expensive feed mix is composed. Concurrently, the maximum and minimum DM was 

considered for different levels of milk production and body mass of a lactating cow 

(Close and Menke, 1986). These levels were imposed for fresh weights and dry weights 

of the fodders modeled.  

Subject to the model assumptions, a linear relationship between ME 

requirements and milk production was established with the constant structure of the 

feed ration as long as the maximum fresh and dry weight constraints are not violated. 

According to previous research (Close and Menke, 1986) various constraints were 

imposed to obtain a well-balanced diet for milk production: (i) a CP:ME ratio of at least 

13 g MJ-1 and (ii) the dO of the mix should be not less than 70%. The model was 

formulated and solved via the MS Excel Solver. According to the LP model, the costs of 

one kg DM of the feeding ration is minimized as defined by market prices of fodders 

(C) in USD kg-1 while changing the feed composition in fodders (X). The LP model 

estimated the least cost combination of various ingredients in a 1 kg DM feeding ration 

that would meet the nutrient requirements for various levels of daily milk yield and 

body mass of a cow. During these estimations it was assumed that a lactating cow with 

a weight of 400 kg produced 6 kg of 3.5% fat milk per day with a zero daily weight 

gain, which is considered average in the study region. This would require a daily diet of 

74.7 MJ of ME and 845.2 g of CP. In the financial analysis, a period of 300 lactating 

days was assumed, which is the standard lactation period in the study region. 



Optimizing dairy feed rations with tree foliage 

104 

 

Since the nutritional value of fodder leaves and their quantity varied over the 

growing season (Table 7.1), the model considered these empirically observed dynamics 

of nutritional quality and quantity of tree leaves. This allowed identifying both the most 

suitable tree species and the best time of the growing season (here month) for harvesting 

leaves for dairy feed. The periods examined included May, July and September 

corresponding to the selected field measurements by the SPAD-502. It was assumed 

also that the nutritional quality of crops and crop by-products was constant over time in 

the absence of more detailed information.  

 

Table 7.1: Dry matter (DM) production and crude protein content (CP) of three tree 
species over three periods of the growing season 2007. DM and CP values 
within one column followed by the same letter are not significantly 
different at P<0.05 according to the Tukey post-hoc test; values in 
brackets are standard deviations of the means 

 

Species
Months May July Sept
Parameter

DM (kg ha-1)   567 (±137) a 1696 (±329) a 2223 (±534) a

CP (g kg-1) 250 (±13) a    201(±19) a  227(±11) a
Species
DM (kg ha-1)   25 (±2) b    32(±7) b     87 (±34) b

CP (g kg
-1

) 129 (±6) b 114 (±8) b 109 (±6) c
Species

DM (kg ha
-1

) 118 (±24) b   487 (±179) b   804 (±64) b

CP (g kg-1) 221 (±19) b 211 (±17) a 201 (±5) b

Elaeagnus angustifolia

Robinia pseudoacacia

Gleditsia triacanthos

 

 

7.3.8 Feed and milk prices 

Feed and milk prices were obtained from fodder and livestock market surveys in 

Urgench city of Khorezm in August 2008. They were collected in the local currency 

Uzbek Soum (UZS kg-1) but converted to USD using the exchange rate of 1,319 UZS 

USD-1. Since tree leaves were not sold at the regional markets, shadow prices were 

derived via regression analysis using the information of the May market prices, CP:ME 

content and dry matter (DM) content of nine locally marketed feeds. Next, using the 

information on the seasonal dynamics of leaf DM production (in kg ha-1), the prices of 
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tree leaves in July and September were calculated under assumption that the total value 

of leaf DM production (in USD ha-1) was constant. 

 

7.3.9 Sensitivity analyses 

To determine the LCFR with and without the inclusion of tree leaves and the best period 

of using tree leaves based on the nutritive values, four scenarios were simulated. In the 

baseline scenario 1, an optimal feed mix was estimated while excluding tree leaves all 

together. This simulation thus represented an LCFR mirroring the current conditions of 

livestock holders in the study region. The resulting LCFR served as the benchmark for 

comparison when allowing feed admixture with tree leaves in the subsequent three 

scenarios. In scenario 2, tree leaves with a feed quality as monitored in May were 

included in the feed mix, without altering the other parameters. Scenario 3 included 

only tree leaves with a feed quality for July, and in scenario 4, only foliage with the 

nutritional values as determined in September.  

 

7.4 Results 

7.4.1 Calibration of SPAD-502 for three tree species 

Although in all cases a higher SPAD-502 reading corresponded to higher N (and CP) 

content, the relationship between these parameters differed between the species. 

Whereas the coefficient of determination (R2) of G. triacanthos did not vary between 

the linear and curvilinear regressions, the R2 for the other two species was highest in the 

case of a curvilinear relationship with a polynomial regression type (Table 7.2).   

 

Table 7.2: Coefficients of determination (R2) for linear and curvilinear relationships 
derived from the regressed SPAD-502 readings to the leaf N content (mg 
g-1) of three tree species. Same as table 6.2c 

Species Linear Logarithmic Exponential Polynomial

Elaeagnus angustifolia 0.71 0.67 0.78 0.87
Gleditsia triacanthos 0.76 0.76 0.77 0.76
Robinia pseudoacacia 0.78 0.82 0.72 0.86

Regression type

  R2
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The high R2 between N content and the SPAD-502 readings for all three 

species provided confidence that its leaf N, and consequently CP, content could be 

predicted at all times (Figure 7.1). The SPAD-502 readings were highest for E. 

angustifolia ranging in July between 62 and 88, whereas for the other two species 

ranged between 27 and 51 over the same period. This confirmed that the period of July 

was the optimal period for establishing the calibration curves. Consequently, the N 

content of the randomly selected leaves varied in E. angustifolia from 32 to 90 g N kg-1 

DM and in the other two species from 10 to 50 g N kg-1 DM, thus indicating higher CP 

contents in E. angustifolia leaves. 

 

 

 

 

 

 

 

 

Figure 7.1: The relationship between the SPAD-502 readings and total N content 
of three tree species: Elaeagnus angustifolia (a), Gleditsia triacanthos 
(b) and Robinia pseudoacacia (c). Same as figure 6.1c 

 

7.4.2 Accuracy of crude protein content estimation 

The directly measured (laboratory findings) CP contents matched well the findings of 

the indirectly predicted leaf CP contents (based on the SPAD-502 readings) irrespective 

of the tree species as evidenced by the low CVs, and an RMSE of 25 g kg-1 DM and a 

RRMSE of 10% for E. angustifolia, 23 g kg-1 DM and 18% for G. triacanthos and 20 g 

kg-1 DM and 9% for R. pseudoacacia (Table 7.3).   

 

7.4.3 Evaluation of feeds 

Compared to the CP:ME ratio of ~13 g MJ-1 of feedstuff, which is considered a ratio 

with a high potential for dairy cattle (Close and Menke, 1986), the common feeds 

available in Khorezm were of low quality (Figure 7.2) due to their low CP and 

relatively high ME contents. Exceptions are alfalfa and cottonseed cake. In contrast, the 
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high CP:ME ratio of the tree leaves, resulting from (very) high contents of CP but 

relatively low ME values, demonstrated the potential of these leaves as a suitable 

supplement to feedstuff containing low CP and relatively higher ME contents. This mix 

would give a suitable CP:ME ratio and thus potentially enrich the present dairy feeds. 

 

Table 7.3: 
 

Comparison of modeled and empirical crude protein (CP) contents of 
three tree species in the beginning (May), middle (July) and end (Sept) 
of the 2007 growing season. STDEV = standard deviation (g kg-1), CV 
= coefficient of variation (%), RMSE = Root Mean Squared Error (g 
kg-1), RRMSE = Relative Root Mean Squared Error (%). 

Species
Months May July Sept May July Sept
Parameter
CP (g kg-1) 250 201 227 236 182 190

STDEV (g kg-1) 13 19 11 20 29 25
CV (%) 5 9 5 8 16 13

RMSE (g kg-1)
RRMSE (%)
Species

CP (g kg-1) 129 114 109 168 123 103

STDEV (g kg-1) 6 8 6 47 22 26
CV (%) 5 7 6 28 18 25

RMSE (g kg-1)
RRMSE (%)
Species

CP (g kg-1) 221 211 201 214 186 178

STDEV (g kg-1) 19 17 5 33 18 15
CV (%) 9 8 2 15 10 8

RMSE (g kg-1)
RRMSE (%)

***********  25 *********

**********  10 **********

**********  23 *********

**********  18 *********

**********  20 *********

**********  9 **********

Robinia pseudoacacia

Elaeagnus angustifolia

Based on SPAD-502 Based on analyses 

Gleditsia triacanthos

 

 

7.4.4 Optimization of feed rations 

The LCFR simulations (Table 7.4) were very sensitive to the introduction of tree leaves 

into the dairy feed ration as it allowed achieving a CP:ME ratio of ~13 g MJ-1 while 

decreasing at the same time the cost of the feeding ration. The introduction of tree 

leaves into the feed mix substantially reduced the need for expensive cottonseed cake 
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whereas low quality maize stover could be completely removed from the feeding ration 

(Table 7.4). In contrast, the share of grain bran in the feed mix increased when tree 

leaves were introduced. The cheapest feed was a mix of cottonseed husk and wheat bran 

complemented with leaves of G. triacanthos in May and with E. angustifolia leaves in 

July.  
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Figure 7.2: Crude protein (CP) and metabolizable energy (ME) contents of 
commonly used feedstuff in Khorezm (open dots) compared to the 
values of the examined tree leaves (black dots) and as compared to the 
CP:ME ratio of 13 g MJ-1 

 

Inclusion of the tree leaves into the feed mix hardly changed the dry weight of 

the ration or the ME content although the fresh weight of the diet decreased 

considerably. Consequently, while the cost per kg of dry matter of the dairy feed ration 

decreased by less than 10% when including the tree leaves, the cost per kg fresh weight 

of the diet decreased in May by 37%, in July by 22%, and in September by 19%. The 

findings or the LCFR model simulations showed that mixing tree leaves with the 

common feedstuff would increase profits in May by 53%, in July by 38% and in 

September by 34% (Table 7.4). 
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7.5 Discussion 

7.5.1 SPAD-502 calibration 

According to Peterson et al. (1993), the SPAD-502 readings are crop-specific thus 

necessitating a calibration for each crop and species. Although ample evidence 

underlined the suitability of the SPAD-502 for agricultural crops (Turner and Jund, 

1991; Wood et al., 1992; Peng et al., 1993), this method has only sporadically been used 

for perennial vegetation (e.g. Moreau et al., 2004). The calibration of the SPAD-502 for 

the three deciduous tree species E. angustifolia, G. triacanthos, and R. pseudoacacia, 

resulted in high and positive coefficients of determination (R2) between the SPAD-502 

readings and leaf N contents for both linear and curvilinear relationships. This 

confirmed the utility of the SPAD-502 chlorophyll meter for a non-destructive and rapid 

field determination of tree foliar N (and indirectly of leaf CP) for the three tree species 

tested. Also, the relationships established could be effectively used year-round for the 

prediction of N and CP contents as long as the SPAD-502 readings remained within the 

calibrated range.  

 

7.5.2 Crude protein contents as estimated with SPAD-502 

Previous studies in the region pointed to the high feed quality of E. angustifolia as 

evidenced by its leaf CP contents of about 217 g CP kg-1 DM (Khamzina et al., 2006).  

This content is very much in line with the estimated CP values in this study that varied 

throughout the season between 200 and 250 g CP kg-1 DM. Reported CP contents of R. 

pseudoacacia leaves (Singh et al., 2002) amounted to 24% (240 g CP kg-1 DM), which 

also matched well with the range of 201 and 221 g CP kg-1 DM  for this species in this 

study. In all simulations the assumed minimum level of dO of ~70% of the feed mix 

was achieved which is considered adequate for a medium (15 liters) to high (>20-30 

liters) daily milk production (Close and Menke, 1986). 

 

7.5.3 Achieving optimal feed diets 

Previously conducted household surveys in Khorezm (Djanibekov, 2008) indicated that 

most feed for dairy consisted of locally produced, protein-deficient feedstuff,  with 

CP:ME ratios of less than 13 g MJ-1 (Close and Menke, 1986). Furthermore, these 

surveys revealed that livestock keepers cannot reach a suitable CP:ME ratio by mixing 
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available crops, crop residues and other byproducts. Many studies have discussed the 

advantages of including tree leaves into diary feeds (Devendra, 1992; Reddy and 

Elanchezhian, 2008) because the leaves of many tree species turned out to be, as in the 

present study, as nutritious as leguminous fodder crops and thus may offer a cheap 

source of proteins, although the results depended on the tree species.  

Including tree leaves is one option to reach at least a nutritive feed with an adequate 

CP:ME ratio and hence enrich the poor diets as demonstrated by the simulation results. 

But in their quest to find an optimal feed diet for dairy cows livestock keepers in the 

study region are interested not only in the nutritive values of the diet components, but 

also in the costs involved. Although Devendra (1992) concluded that the inclusion of 

tree leaves as supplementary forage was financially beneficial in a number of countries, 

until today these feed resources have often been ignored also because livestock keepers 

are unaware of the best timing of including tree foliage and about the financial benefits 

such a choice may bring. This is true for Uzbekistan as well, where no up-to-date 

formulations of cost effective feeding rations for dairy cows exist. The results of the 

developed least-cost formulation LP model can be used to close this gap as the 

outcomes indicated the potential and scope of mixing the present dairy cow diets with 

tree foliage as to enrich these diets at the lowest cost, and whilst at least maintaining the 

present level of milk production. The foliage of G. triacanthos showed for example the 

highest financial potential for complementing the feed mix in May while concurrently 

reducing costs compared to the present feeding practices, whereas E. angustifolia leaves 

had the highest potential later in the growing season (July and September).  

The elaborated model is thus used as an aid to demonstrate that the 

afforestation of marginal lands offers various benefits including the potential of adding 

tree foliage into the dairy feeding ration and at lower costs, which can be substantiated 

in the irrigated areas of Central Asia. For instance, when referring to about 37,000 ha of 

marginal land in the Khorezm region (Martius et al., 2004) and when assuming that this 

land could be converted to small tree plantations, due to the low foliage production in 

May and July the total amount would be too limited for feeding all cows (about 235,100 

as of 2006) in the region during spring and summer. However, during this period of the 

growing season, livestock keepers have access to sufficient feedstuff (Djanibekov,  
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2006). The main bottleneck for satisfying the feed demand occurs in autumn, 

characterized by a deficit in green fodder and hence a supplement of the dairy feed 

rations with the tree leaves becomes most promising at that time. Assuming that the 

present marginal areas of ca. 37,000 ha would be planted equally to the three tree 

species examined, in September a total production of 27,721 ton DM of E. angustifolia, 

765 ton DM of R. pseudoacacia and 9,900 ton DM of G. triacanthos can be expected 

for dairy cow feeding. With ca. 235,100 cows in the region (OBLSTAT, 2007), and 

when assuming a daily need of 74.7 MJ of ME and 845.2 g of CP for the production of 

6 kg of 3.5% fat milk per day with a zero daily weight gain, a total of 350 ha of E. 

angustifolia would be needed to satisfy the monthly requirements of a least cost dairy 

feed ration in September taking into account the nutritive value of the foliage in this 

period. Thus, to satisfy the dairy feed needs during the feed deficit period (from 

November till May) assuming perfect storage conditions, the area necessary under 

afforestation should be at least 2,800 ha. Finally, the simulation findings indicated that 

livestock holders may rely more on cheaper wheat byproducts such as bran and less on 

cotton byproducts such as cottonseed cake, when dairy feed rations are supplemented 

with tree foliage. 

At present the optimization model includes in particular information on CP, 

ME and the CP:ME ratio. However, in case additional information on the nutritive 

values of fodder would become available, a livestock keeper could include additional 

attributes of a feeding ration, e.g. CA, CF, CL and NFE, RFV or dO. Furthermore, the 

present findings are based on in vitro results, which still need to be confirmed by in vivo 

analyses. In particular the palatability of tree leaves is decisive. However, the analyses 

of the Gb with and without PEG did not indicate the presence of antinutritional factors 

in E. angustifolia and G. triacanthos such as tannins, which are known to limit the use 

of leaves as feed (Makkar, 1993). In contrast, R. pseudoacacia leaves may contain 

tannins which would render this species less suitable as dairy feed, despite the high CP 

contents, as is indicated also by the low dO values (45-56%) of this species (Table 7.4). 

But, although Devendra (1992) argued that the presence of tannins in feed does present 

a major barrier for utilization by cattle unless when used as supplementary feed (about 

30% on a dry basis), in vivo analyses maybe needed to clarify this. 
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7.6 Conclusions 

Following the calibration of the SPAD-502 for the three tree species, the outcomes 

confirmed the potential utility of this chlorophyll meter for a rapid determination of 

foliar N and thus also CP contents of the species E. angustifolia, R. pseudoacacia and 

G. triacanthos. The availability of permanent information on N and CP contents of tree 

leaves will benefit dairy producers in the irrigated drylands of Central Asia as to select 

the best time for feeding tree leaves. The simulation outcomes demonstrated that the 

inclusion of the CP-rich tree leaves into feed rations of dairy cows had not only a high 

potential to increasing the quality of the diets, but based on the nutritional values of the 

tree foliage the feed costs could be decreased by about half at the season-onset and by 

about one third at the mid-season and end of the season depending on the quality of the 

tree leaves that change during the growing season.  

With the fodder prices observed in August of 2008, the cheapest dairy feed 

ration would consist of cottonseed husks, wheat bran and tree leaves. The harvest of G. 

triacanthos leaves in May and of E. angustifolia leaves in July and September, showed 

to be economically and nutritionally most attractive for those dairy producers facing a 

land deficit for fodder cultivation and livestock grazing. Thus, long-term investments in 

tree plantations on low-yielding or abandoned marginal cropland have substantial 

prospects for improving the income of farmers via improved livestock diets at lower 

costs than the present diets. Furthermore, following an afforestation of marginal 

cropland, protein-rich foliage can be gained and this could release pressure on natural 

pastures. 
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8 GENERAL DISCUSSION AND CONCLUSIONS 

 

Trees are planted for socio-economic and/or ecological reasons. Although all tree 

species have the potential to serve several purposes, a judicious selection of species that 

best fits the needs of land users can increase the likelihood of achieving projected 

benefits. This is also true for afforesting degraded croplands in landscapes. To 

accomplish this we studied potential afforestation species in Uzbekistan including 

Robinia pseudoacacia L. (Black locust), which is a woody-legume benefiting from a 

Rhizobium symbiosis, and the non-legume Elaeagnus angustifolia L. (Russian Olive), 

which forms a symbiosis with Frankia. In case N2 fixation occurs, such species provide 

ecological and economic benefits such as addition of nitrogen (N) to the soil via shed 

leaves, maintenance of soil fertility, availability of fixed N2 for intercropped vegetation, 

rehabilitation of degraded soils and the production of considerable amounts of biomass. 

A combination of these potential benefits is the drive for the ecological restoration 

through the afforestation of salt-affected croplands in the irrigated areas of Central Asia. 

Means were examined for converting marginal croplands (defined as areas 

which have lost their productive value) into forested areas from which various benefits 

can then be reaped. Through a field study, the impact of Phosphorus (P) amendments 

was analyzed on N2 fixation by the N2-fixers R. pseudoacacia and E. angustifolia 

against the reference species Gleditsia triacanthos L., and consequently, on growth and 

production of these nitrogen fixers. In addition, a lysimeter experiment was used to 

compare four different methods of quantifying N2 fixation by E. angustifolia, which 

was the N2-fixer with the highest potential in the field experiment, against the non-N-

fixers G. triacanthos and Ulmus pumila L. The SPAD-502 chlorophyll meter, a non-

destructive device to rapidly diagnose the leaf N concentration, was calibrated and 

validated for ten species including the species in the field and lysimeter trials. The 

practical value of this device is demonstrated by its use in the selection of the best time 

for gathering tree foliage as a supplement to livestock diets. 

 

8.1 Phosphorus amendments for bolstering early growth and establishment 

Compared to the nil treatment (no P amendments, 0-P), both P levels tested (high-P and 

low-P) were found to increase N2 fixation by N2-fixers measured with the 15N 
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abundance method in the open field trial. The estimated N2 fixation rates varied, 

however, according to the species and P rates applied. Whereas with high-P (the 

equivalent of 90 kg P ha-1) N2 fixation consistently and significantly increased over the 

three study years (2006-2008), with low-P (45 kg P ha-1) the monitored boost in N2 

fixation was less consistent (section 3.4.3). These findings indicated that even higher P 

levels could further enhance N2 fixation. Therefore, additional research should include 

trials with higher P amendments with the aim of identifying the most suitable P rate for 

enhancing N2 fixation in resource-poor conditions. 

Following the increase in N2 fixation with high-P, biomass production of 

entire trees increased by 27% for E. angustifolia and by 57% for R. pseudoacacia. 

Furthermore, biomass of some individual tree fractions increased. For example foliage 

of E. angustifolia increased by 53% and stems of R. pseudoacacia by 118% (section 

3.4.4). Compared to the nil treatment, however, the monitored differences in absolute 

biomass increments were statistically insignificant due to large coefficients of variation. 

This is in contrast to some findings in tropical areas (Luyindula and Haque, 1992; 

Sanginga, 2003), but has been corroborated by others (Binkley et al., 2003). Possibly, 

more repetitions should be included in the experimental designs to confirm whether N2 

fixation significantly boosts absolute biomass production in the early growth stages. 

This is of particular interest because the findings from the analyses of relative growth 

rates illustrated that various growth parameters (section 3.4.6) increased with high-P, 

although these impacts differed between N2-fixers. High-P significantly affected relative 

differences in height, diameter, unit production rate and nitrogen productivity. These 

differences were not discerned in standard absolute growth analyses. Hence, absolute 

and relative growth analyses must be performed together to gain an overall 

understanding of growth performance. N2 fixation rates were sufficient to satisfy the N 

demand of both N2-fixers. Amounts of N2 fixed in the open field trial were in line with 

previously reported findings (section 3.5.1). Hence, although N2 fixation was quantified 

here against one reference species only, the results appeared to be within the commonly 

observed range and are likely accurate. However, future research designs should include 

more than one suitable reference species to increase the probability of accurate 

quantification of N2 fixation. When using only one reference species, the correct choice 

of the reference species is critical. Present research findings indicated that G. 
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triacanthos could be such a suitable reference species (section 3.5.1).  However some 

reports suggest that this species may fix N2 through non-nodule N2 fixation under very 

specific environmental conditions (Bryan, 1995). Previous field research (Khamzina et 

al., 2009a) indicated that Ulmus pumila L. is a suitable reference species for estimating 

the amount of N2 fixed by E. angustifolia. 

In addition to the difficulties with selecting multiple reference species, the 

absence of an accurate B value complicated the quantification of N2 fixation in open 

field trials with the 15N abundance method. The B value indicates the N2 fixation 

potential of species in an N-free growth environment. The range of B values previously 

reported for N2-fixers stresses the importance of using accurate B values. Where B 

values are unknown, it is a common practice to substitute the absent B value with a 

literature value.  Whereas much information exists on Rhizobium-based symbioses, little 

research has been done on Frankia associations. Unfortunately, the determination of 

these values for Frankia-non-legume associations requires intensive laboratory-

supported studies and analyses, which fell beyond the scope of the present study. As 

long as B values are non-existent, as is the case for E. angustifolia and R. pseudoacacia 

under the growth conditions examined, a combination of N2 fixation quantification 

methods increases the confidence of the estimated measures.  

 

8.2 Lysimeter-based experiment and N2 fixation quantifications 

Quantification of N2 fixation in tree stands can be hampered by difficulties associated 

with collecting all biomass from older trees grown in a (dense) stand. Although spacing 

within the sample rows and between field plots was chosen to avoid these well-known 

stumbling blocks, a lysimeter-based experiment was simultaneously conducted to verify 

and increase the accuracy of quantifying N2 fixation. Using the same spacing as in the 

field experiment, N2 fixation by E. angustifolia, which showed the highest N2 fixation 

rates in the open field trial (section 3.3.3), was measured against two reference species: 

G. triacanthos and U. pumila, using the 15N enrichment technique (15NET). The 

experiment (section 4.2) was designed also to compare four commonly used methods to 

quantify N2 fixation (Chapter 5). In addition to the 15NET, N2 fixation was quantified by 
15N abundance (15NA), N difference (ND) and A-value (AV) methods. Due to logistical 
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reasons, these verification studies were not extended to R. pseudoacacia, for which few 

reference values for Central Asian regions are available, either.   

The use of the 15NET in lysimeters showed high accuracy and reliability with 

one-year-old trees while using low doses of enriched 15N fertilizer (section 4.3). 

However, for two-year-old trees the amount of 15N fertilizer added was insufficient to 

ensure proper growth of both reference species. Therefore, in the second year higher 

amounts of 15N fertilizer were applied to the reference species, which overcame this 

limitation, and biological N2 fixation (BNF) estimates were possible using the AV 

method. A comparison of the results for the four N2 quantification methods illustrated 

the suitability of using lysimeters for trees when using the carefully designed system for 

applying enriched 15N fertilizer. The highest accuracy was found with the AV method, 

but financial and material considerations may favor the total ND method (section 5.3). 

The latter has clear implementations for the poorly endowed research institutions in 

Central Asia. When using a similar methodological set up (section 5.3), ND can be used 

to estimate N2 fixation rates without expensive 15N enriched materials. Furthermore, the 

simple irrigation technique of using a polyethylene pipe in a lysimeter, through which 

water and labeled 15N fertilizer could be supplied from below, effectively ensured a 

uniform distribution of the 15N fertilizer throughout the soil profile.   

 

8.3 The use of SPAD-502 for within-season management of trees 

Chemical analyses of tree fractions elucidated that leaf N concentrations of both N2-

fixers in the open field trial were higher than those of the reference species. The N 

concentration of the foliage of both N2 fixers was indirectly bolstered by the application 

of P amendments that had triggered the increase in N2 fixation. Thus although the 

monitored increase in leaf biomass was statistically insignificant (appendix 10.2), the 

resulting increase in leaf N concentration due to high-P was significant for E. 

angustifolia. Low-cost, easy to use, and rapid diagnostic tools that allow land users to 

monitor near real-time tree N dynamics can improve tree and plantation management 

and explore the benefits of higher leaf N concentrations. In Uzbekistan, this is 

particularly advantageous because the present forest administration has insufficient 

means and near real-time information to manage many types of tree plantings (Tupitsa, 

2010). During 2006-2008, an optical sensor-based chlorophyll meter (SPAD-502) was 
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therefore tested, calibrated, and validated for the three species included in the field 

experiments (section 6.3.1). The temporal and spatial validation of SPAD-502 estimates 

for the species in the core experiments showed very high correlations with the 

chemically analyzed values. This indicated that as long as the measured values fall 

within the range of the SPAD-502 indices monitored during calibration and validation, 

the established relationships are adequate for monitoring leaf N status.  

Optical sensor meters are reputed as an N management tool, in particular for 

annual but also for perennial vegetation. However, because the mineral N makes up 

about 16% (Menke et al 1979) of the leaf crude protein (CP), which is an important 

indicator for feed quality, the established relationships between N/CP contents and 

SPAD-502 readings can also be used also for selecting the best time for harvesting tree 

foliage. The profitability of including tree foliage in the feed diets of cattle was 

simulated with a specially elaborated least-cost-ratio model (section 7.4). The findings 

showed that the leaves of non-fixer G. triacanthos would be better harvested in May, 

but for the N2-fixer E. angustifolia July or September would be better. The model 

simulations revealed that the cheapest dairy feed ration would consist of cottonseed 

husks, wheat bran, and tree leaves. Although the leaves of N2-fixer R. pseudoacacia 

contained high N/CP contents, their use as supplementary fodder is probably limited 

due to the high amounts of tannins. Further in vivo research should be conducted to 

clarify/verify the feed value of the studied species. In case confirmed, tree plantations 

on marginal cropland can contribute to the production of protein-rich feed and could 

therefore relax the on-going pressure on natural grazing lands. 

  

8.4 Overall conclusions 

The results of the present study show that afforestation with the N2-fixing tree species 

can be self-sufficient in N through their N2 fixation ability on nutrient-exhausted 

croplands. They would enhance soil fertility of managed landscapes. Planting N2-fixing 

tree species such as actinorhizal E. angustifolia and leguminous R. pseudoacacia could 

bring ecological and economic benefits through:  

(1) increasing the juvenile growth and N contribution to the soil-plant system via 

enhanced N2 fixation rates by localized applications of P; 
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(2) increasing the productive capacity of the degraded landscapes via production of 

large amounts of biomass which can be used as fuelwood or construction material; 

(3) improving livestock nutrition by supplementing the common feed with high-quality 

tree foliage; with the calibrated diagnostic tool, the N/CP dynamics of the foliage 

can now be monitored in near real-time and support the selection of the best time for 

collecting tree foliage for supplementation. Hence, following the afforestation of 

marginal cropland, protein-rich foliage can be gained for feeding livestock without 

competing with crops and while easing the pressure on natural grazing lands. 

 

Afforestation is a recognized land use option to support ecological restoration 

of degraded landscapes or marginal, salt affected croplands. This was confirmed by the 

findings in this study conducted in the lower regions of the Amu Darya River. 

The findings furthermore showed that P applications at an early stage of afforestation 

and the use of optical sensors during the growing season have large potential for 

improving management of trees and tree plantations. The profitability of these 

management techniques had not been confirmed, but given the prospects of annual 

recurring returns (Lamers et al., 2008) from tree plantations in dryland areas, it is at 

present very likely that investments in these techniques could be recovered in little time.  

Afforestation of marginal croplands will benefit nature and humans. At present, there is 

a need for administrators and land users to become familiar with (i) the principle of 

afforesting marginal cropland and (ii) the fact that such land use is not to be seen as a 

rival to out-compete annual crop production, but rather as a useful complement to 

combat on-going land degradation and inefficient use of resources. Since 2011 was 

declared the International Year of Forests, the GOU has called a nationwide appeal for 

tree plantings (Figure 1.1). By accepting afforestation as a means of improving 

degraded croplands, Uzbekistan has the opportunity to set a precedent within Central 

Asia, where many similar agro-ecological landscapes exist. 
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10 APPENDICES 

 

Appendix 10.1:  
 

Concentrations of total N (%), available P and exchangeable K (mg 
kg-1) in 1 m soil layer according to tree species and P treatments at the 
onset and end of each growing season. The initial soil data is 
excluded. ± indicate standard deviation of means 

Parameter  N (%) 
Species P treatment Oct 2006 May 2007 Oct 2007 May 2008 Oct 2008 
E. angustifolia 0-P 0.4 ± 0.1 0.4 ± 0.2 0.5 ± 0.1 0.4 ± 0.2 0.4 ± 0.1
 Low-P 0.3 ± 0.1 0.4 ± 0.2 0.5 ± 0.1 0.3 ± 0.2 0.4 ± 0.1 
 High-P 0.4 ± 0.1 0.4 ± 0.2 0.5 ± 0.1 0.4 ± 0.2 0.5 ± 0.1

Overall means 0.4 ± 0.1 0.4 ± 0.2 0.5 ± 0.1 0.4 ± 0.2 0.5 ± 0.1
G. triacanthos 0-P 0.3 ± 0.1 0.4 ± 0.2 0.5 ± 0.2 0.5 ± 0.2 0.4 ± 0.2
 Low-P 0.3 ± 0.1 0.4 ± 0.2 0.4 ± 0.1 0.4 ± 0.1 0.4 ± 0.2
 High-P 0.3 ± 0.1 0.4 ± 0.2 0.4 ± 0.2 0.4 ± 0.1 0.4 ± 0.2

Overall means 0.3 ± 0.1 0.4 ± 0.2 0.4 ± 0.2 0.5 ± 0.1 0.4 ± 0.2
R. pseudoacacia 0-P 0.3 ± 0.1 0.4 ± 0.2 0.4 ± 0.2 0.5 ± 0.1 0.4 ± 0.1

 Low-P 0.3 ± 0.1 0.4 ± 0.2 0.5 ± 0.1 0.5 ± 0.1 0.4 ± 0.1
 High-P 0.3 ± 0.1 0.5 ± 0.1 0.5 ± 0.1 0.4 ± 0.1 0.4 ± 0.2

Overall means 0.3 ± 0.1 0.4 ± 0.2 0.5 ± 0.1 0.5 ± 0.1 0.4 ± 0.1
  ANOVA, probability > F(=) 

Time 
Species 
P treatment 
Time*species 
Time*P treatment 
Species*P treatment 

0.044 
0.826 
0.594 
0.172 
0.941 
0.771 

Parameter  Available P2O5  (mg kg-1) 
Species P treatment Oct 2006 May 2007 Oct 2007 May 2008 Oct 2008 
E. angustifolia 0-P 10.5 ± 6.9 14.3 ± 8.6 10.6 ± 7.5 18.4 ± 14.2 10.4 ± 5.9
 Low-P 21.6 ± 18.6   9.3 ± 3.9 10.1 ± 5.1 12.1 ± 10.1 13.6 ± 6.2
 High-P 14.9 ± 10.4 13.7 ± 9.5 12.1 ± 4.5 10.2 ± 5.9   6.7 ± 1.9

Overall means 15.6 ± 11.3 12.4 ± 7.5 10.9 ± 5.5 13.6 ± 11.4 10.2 ± 5.5
G. triacanthos 0-P   3.7 ± 1.8 10.8 ± 5.1   6.0 ± 3.2   6.6 ± 3.4    5.3 ± 1.7
 Low-P   8.5 ± 2.3   9.3 ± 4.8   5.9 ± 4.3   7.6 ± 5.0 13.2 ± 9.3
 High-P 13.2 ± 2.6 10.6 ± 5.3   5.6 ± 3.2   8.6 ± 6.7 10.1 ± 5.1

Overall means   8.5 ± 4.5 10.2 ± 4.8   5.8 ± 3.3   7.4 ± 4.7 10.4 ± 6.9
R. pseudoacacia 0-P   7.5 ± 3.9   8.6 ± 5.8   4.2 ± 2.9 11.8 ± 7.4   8.1 ± 3.6

 Low-P 14.4 ± 1.1   7.5 ± 3.0   8.5 ± 6.3 22.1 ± 8.0 11.2 ± 5.4 
 High-P 13.1 ± 10.1   9.1 ± 5.4   5.4 ± 3.3 15.9 ± 2.6   7.8 ± 4.4

Overall means 11.7 ± 6.6   8.4 ± 4.6   6.1 ± 4.5 16.7 ± 8.2   8.5 ± 4.3 
  ANOVA, probability > F(=) 

Time 
Species 
P treatment 
Time*species 
Time*P treatment 
Species*P treatment 

0.002 
0.001 
0.108 
0.050 
0.211 
0.525 
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Appendix 10.1: 
 

continued 

Parameter  K2O (mg kg-1) 
Species P treatment Oct 2006 May 2007 Oct 2007 May 2008 Oct 2008 
E. angustifolia 0-P 120 ± 13 138 ± 65 133 ± 24 116 ± 36   86 ± 37
 Low-P   97 ± 16   67 ± 24   87 ± 16   86 ± 35   55 ± 11
 High-P 131 ± 21   75 ± 25 103 ± 25 102 ± 36   75 ± 34

Overall means 116 ± 22   94 ± 51 108 ± 28 101 ± 37   72 ± 30
G. triacanthos 0-P 136 ± 49   70 ± 14   83 ± 26   78 ± 23   83 ± 37
 Low-P 101 ± 13   89 ± 30   96 ± 31   95 ± 41   77 ± 31
 High-P 105 ± 25   73 ± 17 100 ± 36   97 ± 40 107 ± 52

Overall means 114 ± 34   77 ± 21   93 ± 30   89 ± 34   93 ± 45
R. pseudoacacia 0-P 108 ± 29 120 ± 81   94 ± 24 106 ± 35   82 ± 38

 Low-P   90 ± 10   66 ± 25   91 ± 27 131 ± 41   65 ± 31
 High-P   69 ± 13 120 ± 27 117 ± 45 108 ± 41   69 ± 24

Overall means   89 ± 24 102 ± 55 100 ± 33 117 ± 39   73 ± 31
  ANOVA, probability > F(=) 

Time 
Species 
P treatment 
Time*species 
Time*P treatment 
Species*P treatment 

<0.0001 
0.582 
0.191 
0.021 
0.341 

                                   0.062 
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Appendix 10.4:  Overviews of the experimental site in (a) April, 2006, (b) May, 
2007, and (c) July, 2008    
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Appendix 10.5:  Detached and washed root nodules of the three-year-old E. 
angustifolia (a), and root nodules of the three-year old R. 
pseudoacacia, both collected during root excavations (b)   

a) 

 

    b) 

     
 

Appendix 10.6:  Overview of the lysimeter trial; (a) plastic bottles with water and 
15N enriched fertilizer prepared for application to the soil in each 
lysimeter, (b) trees growing in lysimeters   

a) 

 

b) 

 
 

Appendix 10.7: SPAD-502 measurements on R. pseudoacacia tree leaves 
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