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Multi-Agent Simulation for the Targeting of Development Policies in Less-Favored 1 

Areas 2 

 3 

Abstract 4 

Complex combinations of biophysical and socioeconomic constraints characterize the less-5 

favored rural areas in developing countries. More so, these constraints are diverse as they vary 6 

considerably between households even in the same community. We propose Multi-Agent 7 

Systems as a modeling approach well suited for capturing the complexity of constraints as 8 

well as the diversity in which they appear at the farm household level. Given that empirical 9 

multi-agent models based on mathematical programming share the characteristics of bio-10 

economic farm models plus some additional features, one may interpret bio-economic farm 11 

models as a special case of multi-agent models without spatial dimension and direct 12 

interaction. Evidently, spatially-explicit, connected multi-agent models have higher 13 

requirements in terms of development costs, empirical data and validation. Therefore, we see 14 

them as a complement, and not a substitute, to existing bio-economic modeling approaches. 15 

They might be the preferred model choice when heterogeneity and interactions of agents and 16 

environments are significant and, therefore, policy responses cannot be aggregated linearly. 17 

We illustrate the strength of empirical multi-agent models with simulation results from 18 

Uganda and Chile and indicate how they may assist policymakers in prioritizing and targeting 19 

alternative policy interventions especially in less-favored areas. 20 

 21 
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1. Introduction 1 

A wide diversity in terms of biophysical conditions, farm resource endowments, and social 2 

structures characterize the less-favored rural areas of developing countries (Ruben and 3 

Pender, 2004; Kuyvenhoven, 2004). This diversity translates into a long list of factors 4 

constraining agricultural development: uncertain rainfall, poor soil fertility, steep slopes, lack 5 

of irrigation, poor physical infrastructure, high transaction costs, imperfect and missing 6 

capital, land and product markets, etc. (idem.). The abundance of these constraints as well as 7 

their interaction creates an overwhelming level of complexity. All constraints can be, or have 8 

been, shown as important. Yet policy intervention is costly and resources are limited. Ranking 9 

of constraints and prioritizing policy interventions is thus important to ensure that the limited 10 

funds are spent efficiently. 11 

 12 

Bio-economic simulation models are suitable tools for disentangling complex relationships 13 

and have been widely applied for this purpose (Barbier, 1998; Holden and Shiferaw, 2004; 14 

Holden et al., 2004; Deybe and Barbier, 2005). These models are, however, not fully capable 15 

of capturing the heterogeneity in biophysical and socioeconomic constraints and the 16 

interaction between these. We argue that Multi-Agent Systems (MAS) is a modeling approach 17 

well suited to complement these bio-economic models when heterogeneity and interaction are 18 

important. MAS are therefore of particular relevance for developing tools to support policy 19 

targeting in the less-favored areas (LFAs). 20 

 21 

The paper is organized as follows. We first shortly elaborate on the specific policy challenges 22 

posed by LFAs. We then describe multi-agent simulation as a well-suited approach for 23 

integrating the many constraints characteristic of LFAs into a single modeling framework. We 24 

illustrate the applicability of MAS models with empirical research from Uganda and Chile. 25 
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The last section of the paper summarizes the foregoing in terms of relevance for research and 1 

policymaking and draws conclusions. 2 

 3 

2. Diversity and interaction of constraints 4 

A defining feature of LFAs is that biophysical and socioeconomic constraints are more 5 

binding than in the favored areas. This creates particular challenges for farm households, 6 

researchers and policymakers alike. 7 

 8 

2.1. The challenge of agricultural growth in the LFAs 9 

At the farm household level, we can broadly divide these constraints into biophysical and 10 

socioeconomic ones plus an interaction between these two. At the aggregate level, the 11 

diversity between farm households creates an additional constraint to development. We 12 

shortly detail on these in the following. 13 

1. The biophysical constraints faced by farm households in the LFAs are not unique to 14 

the LFAs but their intensity is more severe than in the favored areas. Crop growth is 15 

limited by short growing periods due to seasonal drought, flood, or stresses posed by 16 

unfavorable soil physical properties such as low soil depth, salinity, poor drainage or 17 

water holding capacity, or susceptibility to erosion—to name a few. Because of these 18 

constraints, the yield premium from farm technology adoption is usually lower in 19 

LFAs than in favored areas while the seasonal yield variability is usually higher (e.g. 20 

de Rouw 2004).  21 

2. In addition to the biophysical constraints, farm households in the LFAs face also more 22 

socioeconomic constraints (Ruben and Pender, 2004). These constraints include high 23 

transaction costs, for instance, resulting from geographic insulation, imperfect and 24 

missing input and output markets, as well as from poor infrastructure and public 25 
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services, which can be a consequence of past neglect in development policies 1 

(Kuyvenhoven, 2004).  2 

3. The interaction between biophysical and socioeconomic constraints creates additional 3 

binding constraints for agricultural growth in LFAs. For example, fertilizer is used at 4 

sub-optimal levels when farm households are uncertain about the returns to fertilizer 5 

use, which results from a large variability in both rainfall and output prices (Vlek, 6 

1990). 7 

4. A characteristic of farm households in LFAs is their large heterogeneity in terms of 8 

biophysical and socioeconomic constraints. Often, the farm households have different 9 

land qualities and differential access to markets. The opportunities to adopt improved 10 

technologies or to seek off-farm employment can also not be assumed equal for all 11 

farm households. The potential for rapid technology diffusion tends to be lower in 12 

environments with a high degree of network diversity (Rogers 1995). 13 

 14 

2.2. The challenge of targeting policy interventions 15 

The heterogeneity of biophysical and socioeconomic constraints in LFAs and the multitude of 16 

their interactions pose great difficulties to the design of development policies. In order to be 17 

effective, the most binding constraints at the farm household level should be the target of 18 

policy interventions and guide public investments in agricultural R&D. From the complexity 19 

of the planning problem in LFAs derives a challenge for researchers to provide scientific 20 

information for policy targeting and ex ante technology evaluation. 21 

 22 

In a previous special issue of this journal, several bio-economic modeling approaches were 23 

presented that might support the development and formulation of policy interventions 24 

(Kuyvenhoven et al., 1998). These bio-economic approaches quantify the biophysical and 25 
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socioeconomic constraints and model them within a single framework to analyze the human-1 

environment interactions and the likely effects when particular—biophysical or 2 

socioeconomic—constraints are relieved (see also the more recent work of Holden et al., 3 

2004; Deybe and Barbier, 2005).  4 

 5 

The scientific challenge, however, is to apply bio-economic models when policy interventions 6 

and/or environmental changes are likely to cause large differences in individual policy 7 

responses. In general, this is the case when farm households differ considerably in terms of 8 

factor endowments and decision-making processes and when resources are exchanged locally 9 

or in networks. Another challenge for bio-economic modeling is to allow for a sufficient 10 

degree of spatial and temporal complexity, since changes in the natural environment, the 11 

market environment, and the introduction of improved technologies typically involve long-12 

term interacting processes. This is especially important for the ex ante evaluation of plant 13 

breeding programs which will usually take about ten years to release newly adapted varieties 14 

for LFAs. In the remainder of this paper, we present multi-agent simulation as a promising 15 

tool for capturing more fully the heterogeneity over space and time and for providing 16 

information for policy targeting by means of computational experiments. 17 

 18 

3. Agent-based bio-economic models 19 

Multi-Agent Systems (MAS) is a quite recent concept, originating in the computer sciences; it 20 

has rapidly diffused to other disciplines and is now broadly applied to the analysis of complex 21 

systems (Gilbert and Troitzsch, 1999; Janssen, 2002; Parker et al. 2003). MAS is also of great 22 

interest to scenario analyses of agricultural development opportunities in LFAs, because it is 23 

highly suitable for representing interlinked socioeconomic and biophysical systems. 24 

 25 
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3.1. Multi-Agent Systems and human-environment interactions 1 

Parker et al. (2003) reviewed applications of MAS to the modeling of land-use decisions and 2 

subsequent land-cover changes. They defined multi-agent models of land-cover and land-use 3 

change (MAS/LUCC) as consisting of two key components. The first component is a cellular 4 

model that represents the landscape under study. This cellular model may draw on a number 5 

of specific modeling techniques such as Cellular Automata, Spatial Diffusion Models, and 6 

Markov Models. In cellular automata, for example, each cell has discrete states, which can 7 

change over time according to pre-defined rules that take into account spatial interactions with 8 

neighboring cells (for more details on the cellular model component see Parker et al., 2003). 9 

The second component is an agent-based model that represents human decision-making and 10 

interactions. It consists of autonomous decision-making units (computational agents), an 11 

environment through which agents interact, rules that define the relationship between agents 12 

and their environment, and rules that determine the sequencing of actions.  13 

 14 

According to the type of rules, Berger and Parker (2002) classified MAS/LUCC into abstract, 15 

experimental, and empirical applications (a fourth class of historical applications is not of 16 

concern here). In abstract MAS, the rules of agents and environment are hypothetical and 17 

simple. The intention is not to represent reality as closely as possible, but to reduce it to its 18 

essential features and thereby study the underlying (social) mechanisms of land-use change. 19 

In experimental MAS, the computer model serves as a platform for interaction of real human 20 

actors. D’Aquino et al. (2003), for example, applied MAS to accompany collective decision-21 

making processes related to the management of natural resources. In role-playing games, 22 

participants are first asked to define the decision rules of different resource users. 23 

Computational agents are then implemented according to these decision rules and interact 24 

within a simplified environment. Participants may observe their computational ‘analogs,’ 25 
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change the agents’ rules of behavior for the next simulation experiment, and thereby learn 1 

how to improve their real-world management rules. In empirical MAS, in contrast, the rules 2 

of both the agents and the environment are based on empirical observations or on ad hoc 3 

parameters that serve as realistic substitutes for lacking empirical data. Simulation 4 

experiments are used to frame possible land use dynamics and to explore the policy feasible 5 

space. 6 

 7 

In this paper, the focus is only on empirical multi-agent models. In this type of models, a 8 

computational agent typically represents a farm household who combines individual 9 

knowledge and values, information on soil quality and topography (the biophysical landscape 10 

environment), and an assessment of the land management choices of neighbors (the spatial 11 

social environment) to make land-use decisions. Figure 1 shows the spatial data representation 12 

of an empirical MAS/LUCC. 13 

 14 

<< Insert Figure 1: Spatial data representation of an integrated Multi-Agent System >> 15 

 16 

The particular strength of empirical MAS is their ability to account for the heterogeneity and 17 

interdependencies among agents and their environment. The cellular model component 18 

provides a spatial framework to link socio-economic decision models with biophysical 19 

simulation models at disaggregated level, for example with models for soil productivity or 20 

water run-off (Vlek et al., 2005). MAS models are generally implemented via object-oriented 21 

programming languages, which provide an efficient and transparent way of organizing large 22 

amounts of data and handling complex model dynamics. Furthermore, their high degree of 23 

flexibility makes it possible to incorporate a large variety of agent decision rules such as profit 24 

maximization, minimum subsistence levels, or combinations of these rules. For the 25 
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assessment of binding constraints and the valuation of natural resources (shadow prices), it is 1 

convenient to formalize the agent decision problem with the help of mathematical 2 

programming, a technique that has proven its suitability to represent the decision rules of land 3 

managers and farm households (Hazell and Norton, 1986: 10).  4 

 5 

Balmann (1997) pioneered this combination of agent-based modeling and mathematical 6 

programming. He developed a hypothetical farm sector model and showed the theoretical 7 

effects of the spatial distribution of farms on both the land rent and the speed of structural 8 

change in agriculture. Berger (2001) developed an empirical MAS/LUCC model based on 9 

mathematical programming and applied it to the question of technology diffusion in an 10 

agricultural region of Chile. In the Chilean model, each farm agent has a separate objective 11 

function and individual resource constraints and updates its expectations for prices and water 12 

availability. In this respect, Berger’s MAS model has the same characteristics as bio-13 

economic modeling approaches based on independent, representative farm models (see for 14 

example, Ruben et al., 2000). There are, however, three important additional features that 15 

distinguish the MAS from the representative farm modeling approach:  16 

1. Number of farm models: Each and all real-world farm households are represented by 17 

single model agents, that is, there is a one-to-one correspondence between real-world 18 

and modeled agents. Monte Carlo techniques have to be developed to generate model 19 

agent populations from sample data and to test the simulation results for robustness 20 

(see Berger, 2004).  21 

2. Spatial dimension: The MAS model is spatially explicit and employs a cell-based data 22 

representation where each grid cell corresponds to one farm plot held by a single 23 

landowner. Sub-models of water run-off and crop growth are linked to this cell-based 24 

spatial framework.  25 
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3. Direct interactions: Several types of interactions among agents and their environment 1 

are explicitly implemented in the MAS model such as the communication of 2 

information, the exchange of land and water resources on land markets, the return 3 

flows of irrigation water, the irrigation of crops and crop growth. 4 

This one-to-one MAS representation captures biophysical and socio-economic constraints and 5 

interactions at a very fine spatial resolution. Including this heterogeneity of constraints and 6 

interactions of farm agents and their biophysical environment broadens the scope of bio-7 

economic modeling significantly. Phenomena that conventional models cannot easily 8 

address—such as local resource degradation, technology diffusion, heterogeneous policy 9 

responses and changes in farm structure—can now explicitly be modeled.  10 

 11 

Given that MAS models share the characteristics of bio-economic farm models plus some 12 

additional features, one may interpret bio-economic farm models as a special case of MAS 13 

models without spatial dimension and direct interactions (aspatial, non-connected MAS). 14 

Evidently, spatially-explicit, connected MAS have higher requirements in terms of 15 

development costs, empirical data and validation. Therefore, we see MAS/LUCC as a 16 

complement, and not a substitute, to existing bio-economic modeling approaches. They might 17 

be the preferred model choice when heterogeneity and interactions of agents and 18 

environments are significant and, therefore, policy responses cannot be aggregated linearly 19 

(this is especially of importance, when farm types change over time). In the following 20 

subsection, we outline how a multi-agent modeling framework can be used for policy 21 

simulations in LFAs and how it may help in targeting policy interventions. 22 

 23 
3.2. Policy simulations 24 

There are several policy questions in the context of agricultural development of LFAs, where 25 

MAS simulations may generate useful information for decision making on public investments 26 
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in R&D and targeting of policy interventions. Should funds be spent in crop breeding for 1 

stress resistance or in research for improved crop management? Should micro-finance be 2 

promoted or should agricultural inputs be subsidized? Which markets are the most distorted 3 

and exactly where should market regulations be targeted at? Simulating the likely policy 4 

responses of farm households and their impacts on the natural resource base provides 5 

information for ex ante technology evaluation and for targeting of policy interventions.  6 

 7 

The complexity of the research problem at hand, however, suggests conducting multi-agent 8 

policy simulations according to the principle of ceteris paribus. Having successfully validated 9 

the simulation model, it is convenient to run a sequence of simulation experiments that 10 

stepwise isolate the effects of parameter changes. Table 1 outlines a sequence of computer 11 

experiments to investigate specifically for LFAs, which constraints farm households face in 12 

the adoption of new technologies and which policy instruments may induce them to adopt 13 

ecologically sustainable farming practices: 14 

 15 

<< Insert Table 1: Sequence of MAS experiments for policy simulations in LFAs >> 16 

 17 

Questions 1-5 in Table 1 can be answered with a static, non-connected bio-economic model 18 

specification, as location and interaction between farm-households need not be considered. 19 

Questions 6-9 require a dynamic, connected bio-economic model specification with spatial 20 

and agent interactions. The next section illustrates how these two bio-economic model 21 

specifications can be implemented within a multi-agent modeling framework, and what type 22 

of information can be generated through computer policy simulations. 23 

 24 

4. Simulation experiments 25 
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Before presenting some simulation experiments from empirical model applications to Uganda 1 

and Chile, we have to make two reservations. First, although both study regions have 2 

unexploited development opportunities, their agro-ecological conditions are relatively 3 

favorable, population density is high, and access to markets is fairly good. In this respect, they 4 

rather belong to the group of more favored rural areas than to the group of LFAs, at least if 5 

measured by the criteria proposed in Pender et al. (2004). Second, research is still underway; 6 

we cannot illustrate the nine questions posed in Table 1 for each study region. Yet, the 7 

purpose of this paper is to demonstrate the suitability of MAS rather than to present policy 8 

conclusions for a particular LFA. In the first subsection, we show on the basis of farm 9 

household data from Uganda, how a static bio-economic model specification without agent 10 

interactions can be applied to address questions 1-5. In the second subsection, we then show 11 

with Chilean data how a dynamic and connected model specification can be applied to 12 

address questions 6-9.  13 

 14 

4.1 Assessing the feasibility and constraints to increasing agricultural productivity 15 

The first group of research questions to be addressed deals with the feasibility of increasing 16 

agricultural productivity in a sustainable manner. We first give an overview of the model 17 

implementation and then show some simulation results. The study region comprises two 18 

communities in the Iganga district in Southeastern Uganda. The prospects of agricultural 19 

development are high, but current land productivity is very low and farmers extract large 20 

amounts of nutrients from their soils through unsustainable land management practices. This 21 

process of low productivity and high nutrient depletion could potentially be halted and 22 

reversed through the application of new fertilizer technologies (e.g., green manures and 23 

improved fallow). Such technologies were recently tested in field trials in the region; at 24 

present, however, their adoption is limited (Woelcke, 2003; Kayuki et al., 2004). 25 
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 1 

The bio-economic modeling system, developed for testing the feasibility and constraints to 2 

technology adoption, consists of three major components:  3 

1. mathematical programming models at the farm household level to reflect agent 4 

decision-making under different scenarios; 5 

2. artificial neural networks as yield estimators; and 6 

3. nutrient balances for N, P, and K as indicators for ecological sustainability. 7 

The modeling system is implemented as an aspatial, non-connected MAS; it consists of 8 

independent farm programming models without inter-agent linkages and is used for 9 

comparative-static analyses. The objective function of each agent maximizes the household 10 

income subject to consumption requirements and a number of financial and technical 11 

constraints. Additional nutritional constraints represent the food requirements and 12 

consumption preferences that the households articulated during in-depth interviews. Statistical 13 

tests with data from fertilizer experiments revealed that artificial neural networks could better 14 

capture the observed nonlinearities in fertilizer response than general linear models and 15 

multiple regressions. The yield estimations and nutrient balances are incorporated into the 16 

mathematical programming problem as coefficients and sustainability constraints. Model 17 

validation is conducted by measuring the “goodness of fit” between modeled and observed 18 

values in the baseline scenario; for details, the reader is referred to Woelcke (2003). 19 

 20 

<< Insert Table 2: Simulation experiments for the average commercial farm household 21 

in Iganga district, Uganda >> 22 

 23 

From a large sample of farm households, four household types are identified through cluster 24 

analysis taking into account the level of education, resource endowments, innovativeness, and 25 
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market orientation. Here, we summarize the simulation experiments only for a single 1 

household type, namely the average commercial farm household. Results for this household 2 

type have high policy priority in Uganda because the commercialization of farm production is 3 

promoted by the government. The simulation results for questions 1-5 are depicted in Table 2. 4 

Negative nutrient balances in the current situation reveal a relatively high rate of nutrient 5 

depletion in the study region (S1a in Table 2). Imposing an additional sustainability constraint 6 

(non-negative nutrient balances) does not yield a feasible solution—meaning that, under 7 

current conditions, ecological sustainability is out of reach for the average commercial farm 8 

household (S1b). Even if new technologies (fertilizers), which could potentially increase 9 

agricultural productivity and preserve soil fertility, are made available, the negative nutrient 10 

balances still persist, and nutrient mining does not halt (S2). Making available new 11 

technologies and imposing the sustainability constraint simultaneously is still infeasible (S3). 12 

Only if cash constraints are relaxed, the commercial farm household may increase 13 

productivity and produce with non-negative nutrient balances (S4a). Without the 14 

sustainability constraint though (S4b), the profitable solution leads to higher nutrient losses 15 

for nitrogen and potassium, as compared to the baseline scenario. This implies a tradeoff 16 

between the private goal of increasing the farm household income in the short run and the 17 

social goal of ecological sustainability in the long run. These results are similar to those 18 

reported by Ruben et al. (2000). 19 

 20 

Having identified the binding factors for the adoption of profitable and sustainable farming 21 

practices, the model can then be used to identify policy incentives that could induce the farm 22 

households to increase productivity while maintaining soil fertility. Through sensitivity 23 

analyses it is first estimated by how much the fertilizer price must be reduced to give an 24 

incentive for setting off the nutrient losses. Reduction in fertilizer price alone, however, is 25 
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found to be insufficient. Only combinations of higher output prices, lower input prices, and 1 

provision of credit may induce the adoption of profitable and less depleting farming practices 2 

(S5). 3 

 4 

4.2 Assessing the impacts of technology adoption and policy intervention 5 

Until now, we have used the bio-economic modeling system for analyzing the constraints and 6 

policy incentives from a comparative-static point of view. The next group of questions put to 7 

a dynamic, connected model version focuses on the likely adjustment process and policy 8 

responses of farm households. Even if profitable and sustainable combinations of new 9 

technologies, credit and relative prices can be identified as incentives as in the Ugandan study 10 

region, there is still no guarantee that farm households eventually adopt these innovations and 11 

increase agricultural productivity. Often, farm households can select between multiple 12 

innovations and then—depending on their individual factor endowments, resource constraints 13 

and subjective risk behavior—adopt only the most suitable ones. The interaction of farm 14 

households in communication networks is, especially in developing countries, an integral part 15 

of the adoption decision process since interpersonal communication lowers the uncertainty of 16 

innovation (Rogers, 1995: 304). Other types of interactions that may be decisive for 17 

technology adoption are land markets and population migrations (Berger, 2005). Furthermore, 18 

the goals of farm households are not necessarily compatible with the goals of policymakers. A 19 

model of policy response must therefore include the farm households’ objective functions 20 

(Hazell and Norton, 1986: 135). Both, interactions and heterogeneity of policy responses, can 21 

be captured by adding three more components to the static, non-connected specification of 22 

MAS: 23 

1. rules of interactions between agents as, for example, the exchange of information in 24 

communication networks and the exchange of land parcels on land markets;  25 
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2. specification of the agent decision-making, especially for inter-temporal decision 1 

problems such as consumption versus investment; 2 

3. sequencing of the agents' actions, for example, when agents make investment 3 

decisions, when they engage in land markets, and when they harvest their crops.  4 

We will here discuss results of a model application to Chile. The Chilean model employs 5 

standard crop water production functions instead of artificial neural networks, and water 6 

balances instead of nutrient balances. But the basic model component, the mathematical 7 

programming models at farm household level, has the same structure as the model for Uganda 8 

in the previous section. For implementation, validation and more empirical results of the 9 

Chilean model, the reader is referred to Berger (2001). 10 

 11 

In the Chilean study region—the Melado River catchment, 300 km south of the country’s 12 

capital Santiago—ten farm household types were identified according to farm size, 13 

communication networks and innovativeness. Again, we summarize scenario results for the 14 

household type that receives most attention of policymakers and change agencies, which in 15 

this case are the clients of the Chilean extension service. The extension clients belong to the 16 

group of small-scale holdings, the network of campesino farms, and to the late majority in 17 

terms of innovativeness.  18 

 19 

<< Insert Table 3: Simulation experiments for farm households in the Melado River 20 

catchment, Chile >> 21 

 22 

Table 3 depicts the simulation results related to the second group of research questions in 23 

Table 1. The columns ‘EXT’ provide indicators for the group of extension clients only; the 24 

columns ‘ALL’ provide additional information for all households at catchment level. The first 25 



 

 

16

 

three scenarios (S6a/b and S7 in Table 3) show that the extension clients will likely adopt 1 

much less innovations than were made available through change agencies (column 1). 2 

Fourteen basic innovations with high yield potentials for different technology levels and soil 3 

types were tested both at the experimental station and in farm trials. According to the gross 4 

margin analyses, all innovations are profitable. But even under ideal technical conditions with 5 

a priori complete information sets —i.e., technology adoption occurs independent of the 6 

communication process in farm agent networks (Berger, 2001)—, only 27% of the 7 

opportunities for innovation are taken advantage of. Under market conditions (S7), if we 8 

consider the communication process in farm agent networks, this indicator even goes down to 9 

4%.  10 

 11 

The environmental impacts at the catchment level are measured by the frequency of water-12 

saving irrigation methods adopted by all households in twenty years, at the end of the last 13 

simulation period (column 2). Under ideal technical conditions, almost half of the irrigated 14 

area is irrigated with modern, water-saving methods; under market conditions only 12%. The 15 

socioeconomic impacts of technology diffusion at the catchment and extension group level 16 

are here measured by indicators for migration and household incomes. Without innovation, 17 

slightly more than 1% of the farm household agents per annum decide to abandon their plots 18 

(column 4). Under ideal technical conditions, in contrast, the farm household incomes can 19 

almost be doubled (column 6) and by this means provide a strong incentive to stay; out-20 

migration slows down to 0.1% per year. But technical change, and thus higher income, does 21 

not reach all households under market conditions because the communication of information 22 

slows down ideal adoption rates (for more details on the underlying network threshold model 23 

see Berger, 2001). As scenario S7 reveals, the extension client incomes fall by 14% and 24 

migration rises to nearly 2% per annum. Other interactions between agents, in the Chilean 25 
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context the exchange of land parcels and water rights, do not play a major role. Empirically, 1 

land and water sales hardly occur and rental contracts are only informal and short-term in the 2 

study region. Accordingly, there should be little incentives for additional investments in new 3 

technologies in order to expand farm sizes. The simulation experiment without rental markets 4 

and ‘pull’ factors for migration confirms this hypothesis as it does not lead to significant 5 

changes in income under ideal technical conditions (S8 compared with S6b).  6 

 7 

Finally, the model simulations shed light on the response to policy programs that aim at 8 

promoting the diffusion of innovations. The first program as proposed by the Chilean farmers 9 

association is comprehensive and non-targeted; it is intended for all farm holdings and 10 

includes credit schemes for all available technologies, public investments in irrigation 11 

facilities as well as fertilizer subsidies (S9a). In contrast, the second program of the Chilean 12 

extension service is much smaller in scope and therefore less costly. It targets exclusively at 13 

extension clients and mainly involves micro-finance and intensified extension (S9b). The 14 

simulation experiments suggest that both policy programs may give incentives to take more 15 

advantage of agricultural development opportunities than under market conditions (see 16 

indicators for all farm households in columns 2, 4, and 6). They also show that well targeted 17 

extension programs are cost-effective because both the non-targeted and the targeted policy 18 

programs have similar environmental and socioeconomic impacts. The key success factor of 19 

the targeted program, however, is a smoothly functioning extension service that enables 20 

extension clients to innovate and actually links them to high-value markets. 21 

 22 

5. Discussion 23 

The simulation experiments demonstrate the suitability of multi-agent simulations in 24 

disentangling the complexity of human-environment interactions and policy responses. The 25 
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MAS implementation captures more fully than conventional modeling approaches the social 1 

and spatial heterogeneity of farm households and their biophysical environment. This is 2 

especially important for policy modeling in LFAs, which, by definition, face a multitude of 3 

biophysical and socioeconomic constraints and interactions. The MAS experiments allow for 4 

a stepwise isolation of partial and combined effects to parameter changes and can thus 5 

identify the binding factors at farm household level. Through sensitivity analyses it is possible 6 

to identify ideal policy incentives leading to the internalization of environmental externalities. 7 

The model structure is also flexible and rich enough to test actual policy interventions over 8 

time at disaggregated and aggregated level. By exploring the socio-economic and 9 

environmental impacts of different policy options, MAS may therefore provide useful 10 

information for the targeting of policy interventions in LFAs. 11 

 12 

The model case studies represent the situation typical of LFAs where farm technologies with 13 

high yield potentials do not automatically translate into high adoption rates. Although 14 

improved and sustainable technologies are potentially available, low land productivities and 15 

relatively high rates of resource depletion can be observed. The first group of MAS 16 

simulations shows that a number of technical and financial constraints might compel the farm 17 

households to employ poor farming practices and to deplete their natural resource base. From 18 

a normative point of view, policy interventions should be targeted at those factors 19 

constraining adoption. The computer experiments may then reveal whether the market 20 

environment is too distorted to provide economic incentives for a productive and sustainable 21 

land management, even if new technologies were made available through ideal policy 22 

interventions. The second group of MAS simulations illustrates that the diffusion of 23 

technologies takes considerable time under market conditions. Policy programs can help to 24 

speed up the diffusion of innovations by giving incentives to technology adoption. The MAS 25 
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experiments demonstrate that targeted policy programs have potentially a cost advantage over 1 

non-targeted programs but their success relies on the well functioning of hardly manageable 2 

factors such as knowledge networks and agricultural extension services. 3 

 4 

6. Conclusions 5 

By the very definition of LFAs, their agricultural development is constrained by the 6 

abundance of biophysical and socioeconomic factors. If policy interventions are desired, they 7 

should be targeted at the most binding constraints at farm household level and provide 8 

economic incentives for technology adoption and preservation of natural resources. The 9 

policy problem, however, involves a relatively high degree of complexity and cannot be 10 

solved straightforwardly without additional scientific information. This again poses 11 

difficulties for bio-economic modeling research because computer simulation approaches are 12 

needed that capture more fully the spatial and temporal interactions at farm household level. 13 

We advocate the use of MAS because this methodology is well-suited to represent the 14 

heterogeneity of farm households in an environment characterized by many biophysical and 15 

socioeconomic constraints and interactions. By means of computer simulations, the impact of 16 

policy options and alternative technologies can be assessed ex ante to inform strategic 17 

investment decisions in LFAs.  18 
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Table 1: Sequence of MAS experiments for policy simulations in LFAs 1 

 2 

Scenario Research question 

#1 What are the impacts of current agricultural practices on household incomes, 

food security, and the conditions of natural resources? 

#2 Are innovations available to the farm households that are technically feasible and 

profitable? 

#3 If such innovations are available, does the adoption of these innovations enable 

farm households to increase land productivity without depleting the natural 

resource base? 

#4 If current adoption levels are sub-optimal, what constrains the adoption at the 

farm household level? 

#5 What policy incentives can induce the change of farming practices? What policy 

instruments lead to the profitable adoption of innovations? 

#6 What will be the speed of technology diffusion and what types of farm 

households will be reached? 

#7 What are the potential economic and environmental impacts of these innovations 

over time? 

#8 Are there future constraints emerging from inter-household linkages? (For 

example informal land markets, local arrangement for labor exchange, flow of 

information in communication networks, management of common pool 

resources.) 

#9 How can different policy options best be implemented over time? 
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Table 2: Simulation experiments for the average commercial farm household in Iganga 1 

district, Uganda 2 

 3 

  Profitability Nutrient balance [kg/ha] 
Scenario (see Table 1)  Nitrogen Phosphorus Potassium 

S1a    Baseline  0  -77  -15  -71 

S1b + Sustainability #infeasible 

S2 + Innovation  8  -96  58  -100 

S3 + Innovation 
+ Sustainability 

#infeasible 

S4a + Innovation 
+ Credit  
+ Sustainability 

 -30  0  47  53 

S4b + Innovation  
+ Credit 

 9  -104  56  -106 

S5 + Innovation 
+ Credit 
+ Price changes 

 33  -15  72 -14 

Notes: Simulation experiments for the most frequent soil type; profitability is measured in 4 
terms of percentage change of household income. New fertilizer technologies are only 5 
available for the cultivation of maize. The price changes in S5 include a 50 percent increase in 6 
output price and an 80 percent decrease in input price. 7 
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Table 3: Simulation experiments for farm households in the Melado catchment, Chile (all 1 

values in percent) 2 

 3 

 
 
 
 

 Adoption 
of available 
innovations

Frequency of 
water-saving 

irrigation 

Annual change in 
number of farms 

 

Incremental 
household income 

 

Scenario (see Table 1) EXT ALL EXT ALL EXT ALL 

(S6a) Without 
technical 
change 

 0  0  -0.4  -1.2  0  0 

(S6b) Ideal technical 
change 

 27  49  -0.1  -0.1  86  110 

(S7) Market solution  4  12  -1.8  -1.3  -14  8 

(S8) Without rental 
markets and 
‘pull’ factors 

 n/a  50  0.0  0.0  84  111 

(S9a) Non-targeted 
policy 
intervention 

 24  27  -0.1  -1.0  93  53 

(S9b) Targeted policy 
intervention 

 20  33  -0.2  -1.1  90  52 

Notes: EXT refers to extension farm households; ALL refers to all farm households. 4 
‘Adoption of available innovations’ is measured as the ratio of years of actual adoption and 5 
years of availability for adoption, summed over all innovations. ‘Frequency of water-saving 6 
innovations’ is measured as the proportion of non-traditional irrigation methods in irrigated 7 
agriculture at the end of the twentieth simulation period. ‘Incremental household income’ is 8 
calculated as the Net Benefit Increase (NBI), i.e. the discounted average income compared to 9 
the baseline income. 10 
 11 
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Figure 1: Spatial data representation of empirical Multi-Agent Systems (##please convert to 1 

black and white) 2 

 3 

 4 

Layout: C. Block, ZEF-Bonn. First published in Berger and Ringler (2000). 5 

 6 


