## Chapter 13

# Determinants of Borrower's Defaults of Microcredit for Village and Urban Community Funds in Thailand 

Siwaporn Fongthong ${ }^{1}$ and Komsan Suriya ${ }^{2}$<br>${ }^{1}$ Faculty of Economics, Chiang Mai University<br>E-mail: siwaporn_f@hotmail.com<br>${ }^{2}$ Faculty of Economics, Chiang Mai University<br>E-mail: suriyakomsan@yahoo.co.th

This study aimed to analyze the factors that determine a borrower's default and factors affecting the alternative repayment strategies of borrowers who borrow from the Microcredit for Village and Urban Community Funds (MVC) in Thailand. The data were from Thailand's 2010 Socioeconomic Survey. The study uses Probit, Bivariate probit and Multinomial Probit models. The results showed no statistically significance of the poor on the probability of the default. In other words, lending to the poor may not have more risk than giving a loan to those who are not poor. In addition, the duration of the loan, under a loan agreement, had a longer recovery period as a result of high possibility of defaulting in the payment of the debt. Borrowers who did not repay any portion of loan tend to be urban households without a supplementary income from a second occupation.

## 1. Introduction

Traditional financial institutions commonly exclude the poor because of the high transaction cost for small loans and high risk from their low income and inability to fulfill collateral requirement. Thus microcredit providing small loans without collateral to the poor for starting productive activities or expanding their current economic activity may face a high risk. Loan defaults by individuals could destroy the lending capacity and finally affect the programs sustainability. However, the microfinance industry, for example Grameen Bank in Bangladesh, Banco-Sol in Bolivia and Bank Rakyat in Indonesia has been able to show high levels of repayment (Khawari, 2004). For example, Grameen Bank in Bangladesh reported portfolio at risk over 30 days is 6.95 percent in 2010, Banco-Sol in Bolivia reported 0.94 percent and the Foundation for International Community Assistance (FINCA) in Mexico reported 2.18 percent (www.mixmarket.org). These success stories have tend confirm that lending to the poor might not be as risky as has been traditionally assumed.

In Thailand, some studies have been conducted on the microcredit program that targeted the poor. However, few empirical studies have been done on the loan defaults of microcredit of village and urban community Funds (MVC), the government's largest microcredit program in Thailand. Defaults rate of MVC in 2010 calculated from Thailand's Socioeconomic Survey is 7.56 percent of total contract. So, this study is interested in monitoring how microcredit will be able to overcome credit default, and will try to answer the following question: "What are the determinants of loan defaults? Do microcredit programs face high risk form defaults by the poor?" The question about the determinants of loan defaults is of crucial importance because the low default rate is one of the conditions for the successful operation of microcredit programs. The findings can be used to minimize the loan default problem and manage the programs for better sustainability performance.

This paper investigated the key factors that determined loan defaults of the microcredit of village and urban community funds. Borrowers and households with different characteristics, e.g. age, education and household size may have different levels of capabilities that lead to the differences in the abilities to repay the loans. In econometric modeling, this study will use a Probit model as standard binary choice and a Bivariate Probit model to treat endogeneity problem between poor borrower and loan defaults that may occur. In addition, a Multinomial Probit model will be used to analyze of multinomial choice of loan defaults.

## 2. Literature review

In most cases, the lender might not have the full information about the risks of the borrowers' investment projects (adverse selection), and might not be able to monitor the borrower's action with respect to the purpose of loan (moral hazard) (Brehanu and Fufa, 2008). Recently, the group lending approach, which relates to social capital, was adopted by microfinance institutions to avoid asymmetric information issues (AlAzzam, Carter Hill and Sarangi, 2012; Dufhues et al., 2011; Sharma and Zeller, 1997).

Ahlin and Townsend (2007) used Townsend's Thai data base analyze repayment of joint liability borrowing groups of the Bank for Agriculture and Agricultural Cooperatives (BAAC), the primary formal financial institution serving rural households. The Logit results showed that repayment was affected negatively by the joint liability rate and social ties and positively by the strength of local sanctions (Ahlin and Townsend, 2007).

In contrast to the literature that mostly looks at repayment of joint liability borrowing groups, we focus on individual loan repayment. Repayment decision depends on the difference between the net benefits of defaulting and the net benefits of repaying. In addition, defaults' probability may result from an unwillingness to repay or inability to repay (Gonzalez, 2008). Factors related to the borrower's socioeconomic and loan characteristics could explain the differences in the rate of default (Abafita, 2003; Bhatt and Tang, 2002; Brehanu and Fufa, 2008; Godquin, 2004; Vogelgesang, 2003). Those factors can be summarizing as follows: (1) borrower characteristics, (2) occupation, experience, business growth and training in their business, (3) location of the household and business, (4) loan characteristics such as loan size, interest rate, repayment period and (5) other sources of credit.

For example, Bhatt and Tang (2002) investigated determinants of repayment from microcredit in the United State. They used six individual level socio-economic variables: gender, education, household income, degree of formality of business, experience in business, and the business' being located in the same zip code as the lending agency. The Logit results indicated that a higher education of the borrower and borrowers whose businesses were located closer to the lending agency had a higher chance of repayment. Vogelgesang (2003) analyzed determinants of default for loans from Bolivian microlender and divided the factors into four categories: personal characteristics, business characteristics, loan characteristics, and environment. The main result indicated that borrowers who got loans from multiple sources at the same time were found to be more likely to default than others. In addition, former single borrowers with a bad record were more likely to default. The amount of the loan and personal guarantee increased the probability defaults, while weekly repayment decreased probability. Roslan and Karim (2009) used a survey of 2,630 borrowers from Agro Bank in Malaysia to investigate the determinants of loan repayment. The results indicated that the probability of defaults was influence by the gender of the borrower, type of business, training in their business, loan size, and the repayment period. In the other words, women borrowers involved in service activity and having some training in their business had a lower probability of defaults. Furthermore, larger loan sizes and longer repayment periods also decreased the probability of defaults.

Oke, Adeyemo and Agbonlahor (2007) analyzed the factors that affect microcredit repayment of non-governmental organization clients from Nigeria and found that family income, distance between house and bank, amount of business investment, social-cultural expenses, amount of loan, and access to business information may influence repayment. An interesting result of the poverty indicator was inversely related to microcredit repayment. This implies that the poorer the borrower, the more
difficult it is to repay microcredit. Poverty reduced the rate of microcredit repayment by borrowers among NGOs in the area by 0.17 per cent.

Abafita (2003) analyzed the factors that influence microfinance loan repayment in rural Ethiopia. The Probit estimation showed that the significant factors that enhanced the loan repayment were education, income, loan supervision, suitability of repayment period, availability of other credit sources and livestock, while loan diversion and loan size were found to increase loan default. Brehanu and Fufa (2008) analyzed the determinants of repayment rate of loan among small-scale farmers in Ethiopia. They found that improvement of production and participation in new technologies increased productivity and farm income thereby reducing defaults.

However, to our knowledge, little is known about what determines the probability to defaults from the MVC program. Huerta (2010) analyzed repayment behavior of MVC under joint liability lending at the community-level and focus on the role of social ties and policies such as compulsory savings and training on basic financial concepts. This empirical study was based on from the Townsend Thai panel dataset which covered four provinces from two regions in Thailand. Two main advantages of this study are as follows: first, it uses a large sample size from Thailand's Socioeconomic Survey (SES) in 2010 which includes detail from the MVC. Second, the analysis uses a variety of models to deal with the probability of defaults.

## 3. Methodology

This paper used the poverty index as a testing variable to test default probability of poor borrowers. The poverty index indicates whether or not a borrower is poor, and it defines poor as when the average monthly consumption expenditure per capita is below the poverty line. For the controlled variables, the model includes borrower characteristics, household characteristics and loan characteristics.

This study proposed a model to explain the loan defaults of MVC's borrower. The model was based on the above mentioned testing and controlled variables. Differences in those variables may affect the ability of the borrower to repay. Three aspects are interesting in this study: (1) the response of the default probability (2) the test variable, being poor, is likely to be jointly determined with loan defaults, and (3) the response of multinomial choices of repayment decisions. The first of these will use an appropriate technique for binary choice modeling, such as a Probit model. The second will use an appropriate treatment for two simultaneously determined binary variables, which is a Bivariate Probit model. The last will apply a Multinomial Probit model.

## (a) Probit model

Probit has been used frequently in cases where the dependent variable is binary outcomes. It assumes the normal distribution of the error term. Logically, a borrower chooses to default when the utility of default exceeds the utility of repayment on time. The utility of default, $y_{i}^{*}$, is a latent variable and depends on some factors. For each
borrower $i$, the utility can be presented as a function of observed components, Xi, and unobserved components, $\varepsilon_{i}$. Probit model is described by Maddala (1983) as follows:

$$
\begin{align*}
& y_{i}^{*}=X_{i} \beta+\varepsilon_{i} \\
& y_{i}=1 \text { if } y_{i}^{*}>0  \tag{1}\\
& y_{i}=0 \quad \text { if } \quad y_{i}^{*} \leq 0
\end{align*}
$$

where the dependent variable, $y_{i}$, is the binary outcome which is equals to one for loan defaults and otherwise it is zero. The variables $X i$ are including testing variable (poverty index) and controlled variables.

## (b) Bivariate Probit model

The Bivariate Probit model is a joint model for two binary outcomes that extend from one latent variable to two latent variables that may be correlated. As discussed above, testing variable, being poor, is likely to be jointly determined with loan defaults. The Bivariate Probit model is described by Cameron and Trivedi (2009) as follows:

$$
\begin{align*}
& y_{1}^{*}=X_{1} \beta_{1}+\varepsilon_{1},  \tag{2}\\
& y_{2}^{*}=X_{2} \beta_{2}+\varepsilon_{2}
\end{align*}
$$

where $y_{1}^{*}$ is the utility of default and $y_{2}^{*}$ stand for latent variable of the poor. Both $y_{1}^{*}$ and $y_{2}^{*}$ are depending on observed components, $X$, and unobserved components, $\varepsilon$. $\varepsilon_{1}$ and $\varepsilon_{2}$ are joint normal distributions with zero means, variances one and correlation $\rho$. Then, the Bivariate Probit model specifies the observed outcomes can write as follows:

$$
y_{1}=\left\{\begin{array}{lll}
1 & \text { if } & y_{1}^{*}>0  \tag{3}\\
0 & \text { if } & y_{1}^{*} \leq 0
\end{array} \text { and } y_{2}=\left\{\begin{array}{lll}
1 & \text { if } & y_{2}^{*}>0 \\
0 & \text { if } & y_{2}^{*} \leq 0
\end{array}\right.\right.
$$

where the dependent variables are binary outcomes which $y_{1}$ is equals to one for defaulters and otherwise it is zero, whereas $y_{2}$ is equals to one for poor borrowers and otherwise it is zero. The variables $X i$ are including testing variable (poverty index) and controlled variables. This model collapses to two separate Probit models for $y_{1}$ and $y_{2}$ when rho equal to zero (Cameron and Trivedi, 2009).

## (c) Multinomial Probit model

The Multinomial Probit Model (MNP) avoids the problem of independence of irrelevant alternative (IIA) property, which is the main limitation of the Multinomial Logit model (Maddala, 2006). It is possible to find the borrower's repayment decision
in four categories; (1) borrowers that have paid all the principal and interest rate on time (non-defaulters), (2) those borrowers that have paid full amount but later than the due date, (3) those borrowers that have paid just some amount and (4) those that have not paid any portion of the loan (defaulters). The borrower will choose the alternative that maximizes his utility.

Considering the case of the four alternatives, the utility of the $j^{t h}$ choice given as follow (adapted from Maddala, 1983):

$$
\begin{equation*}
Y_{i j}^{*}=V_{i j}+\varepsilon_{i j}, \quad j=1,2,3,4 \tag{4}
\end{equation*}
$$

suppose $Y_{i j}^{*}$ is the outcome from alternative $j$ for individual $i . V_{i j}$ denotes the deterministic component which equal $X_{i} \beta_{j}$ for case specific variables and $\varepsilon_{i j}$ denotes the random component (Cameron and Trivedi, 2009). Assume that the residuals have a multivariate normal distribution with a mean vector of zero and a covariance matrix $\Sigma$.

Considering the probability that the first alternative will be chosen.
$\operatorname{Pr}\left(Y_{i}^{*}=1\right)=\operatorname{Pr}\left\{\varepsilon_{i k}-\varepsilon_{i 1} \leq\left(V_{i 1}-V_{i k}\right)\right\}$, for all k
write $\eta_{21}=\varepsilon_{i 2}-\varepsilon_{i 1}, \quad \eta_{31}=\varepsilon_{i 3}-\varepsilon_{i 1}, \quad \eta_{41}=\varepsilon_{i 4}-\varepsilon_{i 1}, \quad V_{12}=V_{i 1}-V_{i 2}, V_{13}=V_{i 1}-V_{i 3}$, and $V_{14}=V_{i 1}-V_{i 4}$. Thus the probability that alternative 1 will be chosen is given by

$$
\begin{equation*}
P_{1}=\operatorname{Pr}\left(Y_{1}^{*}=1\right)=\int_{-\infty}^{V_{12}} \int_{-\infty}^{V_{13}} \int_{-\infty}^{V_{14}} f\left(\eta_{21}, \eta_{31}, \eta_{41}\right) d \eta_{21} \eta_{31} \eta_{41} \tag{5}
\end{equation*}
$$

where $f\left(\eta_{21}, \eta_{31}, \eta_{41}\right)$ has a trivariate normal distribution with a covariance matrix $\Omega_{1}$ and a mean vector of zero. The probabilities $P_{2}, P_{3}$ and $P_{4}$ can be similarly calculated. The specification of the model is as follows:

> Default $=f($ testing variable, borrower characteristics, household characteristics, loan characteristics)

## 4. Data

The data in this study were collected from Thailand's Household Socioeconomic Survey in 2010, conducted by the National Statistical Office. The survey from the Village and Urban Community Funds (MVC) section interviewed 10,340 borrowers throughout the country. Borrowers living in municipal and rural households accounted for 37 and 63 percent, respectively. The data were collected every month throughout the year. The survey collected detailed information on the borrower, the household and loan characteristics. A key question in the questionnaire is "Did you repay your debt to the Village and Urban Community Fund by the due date as indicated in the loan registered form?" The survey found that 797 borrowers (or 7.7 percent) were defaulters who could not repay the MVC debt on the due date. We can separate those defaulters into three
categories including 318 borrowers that have not paid any portion of the loan, 231 borrowers that have repaid some of the loan, and 248 borrowers that had paid the full amount but later than the due date.

After eliminating observations with missing data, the sample consisted of 10,030 borrowers. Those borrowers of MVC program included 758 defaulters and 9,272 repayers. The borrower being poor was 5.2 percent. The average age of borrowers was 49.5 years old, around $53 \%$ were female, and $65 \%$ had their own business. The borrower, household and loan characteristics are summarized in TABLE 1.

TABLE 1. Descriptive statistics of variables

| Variables | Repayer <br> (non-default) |  | Defaulter |  |  | Total |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Mean | Std. Dev. | Mean | Std. Dev. | Mean | Std. Dev. |
| Testing Variable: |  |  |  |  |  |  |
| Being poor (yes=1) | 0.051 | 0.220 | 0.062 | 0.241 | 0.052 | 0.222 |

## Borrower characteristics:

| Age | 49.607 | 10.874 | 48.799 | 10.848 | 49.546 | 10.873 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| Women (yes=1) | 0.530 | 0.499 | 0.538 | 0.499 | 0.531 | 0.499 |
| Education (years) | 6.166 | 3.277 | 6.150 | 3.296 | 6.165 | 3.278 |
| Married (yes=1) | 0.830 | 0.375 | 0.794 | 0.405 | 0.828 | 0.378 |
| Occupation |  |  |  |  |  |  |
| $\quad$ Employer (yes=1) | 0.055 | 0.228 | 0.029 | 0.168 | 0.053 | 0.224 |
| $\quad$ Employee (yes=1) | 0.198 | 0.398 | 0.306 | 0.461 | 0.206 | 0.405 |
| $\quad$ Own business (yes=1) | 0.665 | 0.472 | 0.551 | 0.498 | 0.656 | 0.475 |
| Unemployed (yes=1) | 0.083 | 0.275 | 0.113 | 0.317 | 0.085 | 0.279 |
| Secondary occupation (yes=1) | 0.391 | 0.488 | 0.310 | 0.463 | 0.385 | 0.487 |
| Have been a committee (yes=1) | 0.173 | 0.378 | 0.128 | 0.334 | 0.169 | 0.375 |

## Household characteristics:

| Number of earner | 2.237 | 1.006 | 2.203 | 1.030 | 2.235 | 1.008 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| Household size (persons) | 3.680 | 1.585 | 3.909 | 1.659 | 3.698 | 1.592 |
| Dependency ratio | 0.373 | 0.298 | 0.398 | 0.289 | 0.375 | 0.298 |
| Land tenure (yes=1) | 0.937 | 0.243 | 0.883 | 0.322 | 0.933 | 0.250 |
| Number of car | 0.392 | 0.622 | 0.315 | 0.577 | 0.386 | 0.619 |
| Number of motorcycle | 1.467 | 0.851 | 1.351 | 0.842 | 1.459 | 0.851 |
| Number of mobile phone | 1.912 | 1.096 | 1.916 | 1.112 | 1.912 | 1.097 |


| Variables | Repayer <br> (non-default) |  | Defaulter |  | Total |  |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Mean | Std. Dev. | Mean | Std. Dev. | Mean | Std. Dev. |
| Rural household (yes=1) | 0.631 | 0.482 | 0.583 | 0.493 | 0.628 | 0.483 |
| Loan characteristics: |  |  |  |  |  |  |
| Frequency of borrowing (since <br> 2002) | 6.000 | 2.727 | 3.757 | 2.774 | 5.831 | 2.794 |
| Interest rate | 5.958 | 2.372 | 5.825 | 3.244 | 5.948 | 2.449 |
| Term of loan (month) | 11.999 | 2.333 | 12.455 | 4.820 | 12.034 | 2.608 |
| Purpose of loan | 0.432 | 0.495 | 0.309 | 0.462 | 0.423 | 0.494 |
| $\quad$ Farm business (yes=1) | 0.146 | 0.353 | 0.164 | 0.370 | 0.147 | 0.354 |
| $\quad$ Non-farm business (yes=1) | 0.422 | 0.494 | 0.528 | 0.500 | 0.430 | 0.495 |
| $\quad$ Consumption (yes=1) | 0.912 | 0.283 | 0.739 | 0.440 | 0.899 | 0.301 |
| Need for future loan (yes=1) | 0.078 | 0.148 | 0.059 | 0.144 | 0.076 | 0.147 |
| MVC debt remaining (Million <br> Baht) |  |  |  |  |  |  |
| Loan size (THB 1,000) | 17.241 | 11.289 | 16.751 | 11.740 | 17.204 | 11.324 |
| Number of observations | 9,272 |  | 758 |  | 10,030 |  |

## 5. Results

The results present three specifications of the empirical model (TABLE 2). The first column provided the results of Probit model. A concern with endogeneity problem, Bivariate Probit model is applied and the test could not reject the exogeneity of the testing variable in the determination of the loan defaults. In this case, the Bivariate Probit model was not necessary (Cameron and Trivedi, 2009). However, the results are reported in column two. The last three columns show the results from Multinomial Probit model, which the borrowers who repaid the full amount on time are the base case outcome.

The results from three models indicate that testing variable of loan defaults of the poor are nonsignificant. These results indicate that the poor do not have larger loan defaults than the non-poor.

Moreover, results from TABLE 2 indicate that borrowers with lower education levels are more likely to have larger default probabilities. The signs on occupations of borrowers indicated that employers have a lower probability to default while employees were more likely to have larger default probability compared with the unemployed people, which are the base case of the model. Borrowers' household with lower earnings and larger household size are likely to have larger probability to default. Borrowers with more assets both in land and vehicles tend to default less. In addition, borrowers with a higher frequency of borrowing since 2002 stated that there is a need
for future MVC's loan to have smaller default probabilities. Borrowers who used loan for farm business are likely to have smaller defaults' probability. The longer the term of loan tend to have a larger probability to default.

TABLE 2. Results of determinants of loan defaults

|  | Probit |  |  | Bivariate <br> Probit |  | Multinomial Probit |  |  |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |


|  | Probit |  |  | Bivariate <br> Probit |  | Multinomial Probit |  |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: |

Notes: Defaults (1) or repaid full amount on time is the base outcome for Multinomial Probit model
Numbers in parenthesis indicate robust standard errors.
***, ** and * represent level of significance at $99 \%, 95 \%$ and $90 \%$.

The results of three models are very similar. However, the result from Multinomial Probit model indicates that higher interest rate had significantly larger default probability in the case of borrowers who repaid the full amount of loan but late
than the due date. For borrowers who repaid just some amount of loan, older borrowers are likely to have larger default probability. In addition, larger loan size had a significantly larger probability to default. In the case of borrowers who did not repay any portion of loan, rural borrowers who had a secondary occupation are more likely to have smaller loan defaults.

TABLE 3 presents the results of marginal effect at the mean of three models. It provides an effect of explanatory variables on loan defaults. For example, in a Probit model, the marginal effect of education indicates that an additional year of education would decrease the probability of default of borrower by average of 0.21 percent. Whereas the marginal effect of household size indicates that an increase in members of the family would increase the probability of default by 1.09 percent on average.

TABLE 3. Results of marginal effect for loan defaults

| Dependent variable: | Probit | Bivariate Probit <br> Dummy of default | Multinomial Probit |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | default (2) <br> Repaid full but late | default (3) Repaid just some amount | default (4) Did not repay |
| Testing Variable: Being poor ${ }^{\text {a }}$ | $\begin{gathered} -0.0025 \\ (-0.26) \end{gathered}$ | $\begin{gathered} -0.3738 \\ (-1.28) \end{gathered}$ | $\begin{gathered} -0.0022 \\ (-0.37) \end{gathered}$ | $\begin{gathered} -0.0017 \\ (-0.35) \end{gathered}$ | $\begin{gathered} 0.0015 \\ (0.35) \end{gathered}$ |
| Borrower characteristics: Age | $\begin{gathered} 0.0001 \\ (0.33) \end{gathered}$ | $\begin{gathered} 0.0005 \\ (0.21) \end{gathered}$ | $\begin{aligned} & 0.0000 \\ & (-0.05) \end{aligned}$ | $\begin{gathered} 0.0003^{* *} \\ (2.03) \end{gathered}$ | $\begin{gathered} -0.0001 \\ (-1.20) \end{gathered}$ |
| Women ${ }^{\text {a }}$ | $\begin{gathered} -0.0057 \\ (-1.20) \end{gathered}$ | $\begin{gathered} -0.0550 \\ (-1.27) \end{gathered}$ | $\begin{gathered} -0.0023 \\ (-0.73) \end{gathered}$ | $\begin{gathered} -0.0006 \\ (-0.27) \end{gathered}$ | $\begin{gathered} -0.0015 \\ (-0.78) \end{gathered}$ |
| Education (years) | $\begin{gathered} -0.0021^{* * *} \\ (-2.59) \end{gathered}$ | $\begin{gathered} -0.0196^{* * *} \\ (-2.62) \end{gathered}$ | $\begin{gathered} -0.0011^{* *} \\ (-2.10) \end{gathered}$ | $\begin{gathered} -0.0004 \\ (-0.84) \end{gathered}$ | $\begin{gathered} -0.0005 \\ (-1.47) \end{gathered}$ |
| Married ${ }^{\text {a }}$ | $\begin{gathered} -0.0082 \\ (-1.26) \end{gathered}$ | $\begin{gathered} -0.0705 \\ (-1.28) \end{gathered}$ | $\begin{gathered} -0.0008 \\ (-0.19) \end{gathered}$ | $\begin{gathered} -0.0017 \\ (-0.54) \end{gathered}$ | $\begin{gathered} -0.0043 \\ (-1.44) \end{gathered}$ |
| Occupation Employer ${ }^{\text {a }}$ | $\begin{gathered} -0.0216^{* *} \\ (-2.12) \end{gathered}$ | $\begin{gathered} -0.2427^{*} \\ (-1.83) \end{gathered}$ | $\begin{gathered} -0.0176^{* * *} \\ (-4.21) \end{gathered}$ | $\begin{gathered} -0.0049 \\ (-0.90) \end{gathered}$ | $\begin{gathered} 0.0021 \\ (0.34) \end{gathered}$ |
| Employee ${ }^{\text {a }}$ | $\begin{gathered} 0.0205^{*} \\ (1.78) \end{gathered}$ | $\begin{gathered} 0.1581^{*} \\ (1.75) \end{gathered}$ | $\begin{gathered} 0.0001 \\ (0.02) \end{gathered}$ | $\begin{gathered} 0.0132^{*} \\ (1.86) \end{gathered}$ | $\begin{gathered} 0.0065 \\ (1.35) \end{gathered}$ |
| Own business ${ }^{\text {a }}$ | $\begin{gathered} -0.0044 \\ (-0.46) \end{gathered}$ | $\begin{gathered} -0.0397 \\ (-0.47) \end{gathered}$ | $\begin{gathered} -0.0062 \\ (-0.94) \end{gathered}$ | $\begin{gathered} 0.0008 \\ (0.18) \end{gathered}$ | $\begin{gathered} 0.0010 \\ (0.28) \end{gathered}$ |
| Secondary occupation ${ }^{\text {a }}$ | $\begin{gathered} -0.0065 \\ (-1.36) \end{gathered}$ | $\begin{gathered} -0.0608 \\ (-1.36) \end{gathered}$ | $\begin{gathered} -0.0015 \\ (-0.48) \end{gathered}$ | $\begin{gathered} 0.0007 \\ (0.28) \end{gathered}$ | $\begin{gathered} -0.0046^{* *} \\ (-2.31) \end{gathered}$ |
| Have been a committee ${ }^{\text {a }}$ | $\begin{gathered} 0.0007 \\ (0.10) \end{gathered}$ | $\begin{gathered} 0.0077 \\ (0.13) \end{gathered}$ | $\begin{aligned} & 0.0043 \\ & (0.95) \end{aligned}$ | $\begin{gathered} 0.0013 \\ (0.39) \end{gathered}$ | $\begin{gathered} -0.0039 \\ (-1.48) \end{gathered}$ |
| Household characteristics: <br> Number of earner | $\begin{gathered} -0.0058^{*} \\ (-1.69) \end{gathered}$ | $\begin{gathered} -0.0527^{*} \\ (-1.68) \end{gathered}$ | $\begin{gathered} -0.0007 \\ (-0.33) \end{gathered}$ | $\begin{gathered} -0.0020 \\ (-1.14) \end{gathered}$ | $\begin{gathered} -0.0026^{*} \\ (-1.82) \end{gathered}$ |


| Dependent variable: | Probit | Bivariate Probit <br> Dummy of default | Multinomial Probit |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | default (2) <br> Repaid full but late | $\begin{gathered} \text { default (3) } \\ \text { Repaid just } \\ \text { some amount } \\ \hline \end{gathered}$ | $\begin{aligned} & \hline \text { default (4) } \\ & \text { Did not } \\ & \text { repay } \\ & \hline \end{aligned}$ |
| Household size (persons) | $\begin{gathered} 0.0109^{* * *} \\ (5.01) \end{gathered}$ | $\begin{gathered} 0.1198^{* * *} \\ (4.61) \end{gathered}$ | $\begin{gathered} 0.0034^{* *} \\ (2.28) \end{gathered}$ | $\begin{gathered} 0.0031^{* * *} \\ (3.03) \end{gathered}$ | $\begin{gathered} 0.0034^{* * *} \\ (3.67) \end{gathered}$ |
| Dependency ratio | $\begin{gathered} -0.0085 \\ (-0.92) \end{gathered}$ | $\begin{gathered} -0.0786 \\ (-0.94) \end{gathered}$ | $\begin{gathered} 0.0029 \\ (0.50) \end{gathered}$ | $\begin{gathered} -0.0099^{* *} \\ (-2.14) \end{gathered}$ | $\begin{gathered} -0.0005 \\ (-0.13) \end{gathered}$ |
| Land tenure ${ }^{\text {a }}$ | $\begin{gathered} -0.0172^{*} \\ (-1.77) \end{gathered}$ | $\begin{gathered} -0.1400^{*} \\ (-1.92) \end{gathered}$ | $\begin{gathered} -0.0134^{*} \\ (-1.79) \end{gathered}$ | $\begin{gathered} -0.0076 \\ (-1.48) \end{gathered}$ | $\begin{gathered} 0.0019 \\ (0.69) \end{gathered}$ |
| Number of car | $\begin{gathered} -0.0090^{* *} \\ (-2.09) \end{gathered}$ | $\begin{gathered} -0.0998^{* *} \\ (-2.33) \end{gathered}$ | $\begin{gathered} -0.0016 \\ (-0.59) \end{gathered}$ | $\begin{gathered} -0.0036 \\ (-1.59) \end{gathered}$ | $\begin{gathered} -0.0029 \\ (-1.61) \end{gathered}$ |
| Number of motorcycle | $\begin{gathered} -0.0100^{* * *} \\ (-3.31) \end{gathered}$ | $\begin{gathered} -0.1024^{* * *} \\ (-3.49) \end{gathered}$ | $\begin{gathered} -0.0033^{*} \\ (-1.72) \end{gathered}$ | $\begin{gathered} -0.0024 \\ (-1.49) \end{gathered}$ | $\begin{gathered} -0.0033^{* * *} \\ (-2.64) \end{gathered}$ |
| Number of mobile phone | $\begin{gathered} -0.0009 \\ (-0.33) \end{gathered}$ | $\begin{gathered} -0.0248 \\ (-0.88) \end{gathered}$ | $\begin{gathered} -0.0006 \\ (-0.33) \end{gathered}$ | $\begin{aligned} & 0.0000 \\ & (-0.03) \end{aligned}$ | $\begin{gathered} 0.0001 \\ (0.08) \end{gathered}$ |
| Rural household ${ }^{\text {a }}$ | $\begin{gathered} -0.0055 \\ (-1.15) \end{gathered}$ | $\begin{gathered} -0.0488 \\ (-1.15) \end{gathered}$ | $\begin{gathered} -0.0017 \\ (-0.54) \end{gathered}$ | $\begin{aligned} & 0.0014 \\ & (0.63) \end{aligned}$ | $\begin{gathered} -0.0040^{*} \\ (-1.87) \end{gathered}$ |
| Loan characteristics: <br> Frequency of borrowing (since 2002) | $\begin{gathered} -0.0152^{* * *} \\ (-18.05) \end{gathered}$ | $\begin{gathered} -0.1376^{* * *} \\ (-16.65) \end{gathered}$ | $\begin{gathered} -0.00288^{* * *} \\ (-5.27) \end{gathered}$ | $\begin{gathered} -0.0042^{* * *} \\ (-10.06) \end{gathered}$ | $\begin{gathered} -0.0060^{* * *} \\ (-13.34) \end{gathered}$ |
| Interest rate | $\begin{gathered} 0.0003 \\ (0.35) \end{gathered}$ | $\begin{aligned} & 0.0031 \\ & (0.38) \end{aligned}$ | $\begin{gathered} 0.0009^{*} \\ (1.78) \end{gathered}$ | $\begin{aligned} & 0.0000 \\ & (-0.10) \end{aligned}$ | $\begin{gathered} -0.0004 \\ (-0.95) \end{gathered}$ |
| Term of loan (month) | $\begin{gathered} 0.0013^{* *} \\ (1.98) \end{gathered}$ | $\begin{gathered} 0.0116^{*} \\ (1.93) \end{gathered}$ | $\begin{gathered} 0.0011^{* * *} \\ (2.65) \end{gathered}$ | $\begin{gathered} 0.0004^{*} \\ (1.80) \end{gathered}$ | $\begin{gathered} -0.0001 \\ (-0.28) \end{gathered}$ |
| Purpose of loan Farm business ${ }^{\text {a }}$ | $\begin{gathered} -0.0146^{* *} \\ (-2.14) \end{gathered}$ | $\begin{gathered} -0.1359^{* *} \\ (-2.12) \end{gathered}$ | $\begin{gathered} -0.0025 \\ (-0.52) \end{gathered}$ | $\begin{gathered} -0.0077^{* *} \\ (-2.36) \end{gathered}$ | $\begin{gathered} -0.0028 \\ (-0.95) \end{gathered}$ |
| Consumption ${ }^{\text {a }}$ | $\begin{gathered} -0.0042 \\ (-0.62) \end{gathered}$ | $\begin{gathered} -0.0366 \\ (-0.59) \end{gathered}$ | $\begin{gathered} 0.0006 \\ (0.14) \end{gathered}$ | $\begin{gathered} -0.0045 \\ (-1.43) \end{gathered}$ | $\begin{gathered} 0.0001 \\ (0.05) \end{gathered}$ |
| Need for future loan ${ }^{\text {a }}$ | $\begin{gathered} -0.0759^{* * *} \\ (-7.30) \end{gathered}$ | $\begin{gathered} -0.5034^{* * *} \\ (-9.46) \end{gathered}$ | $\begin{gathered} -0.0024 \\ (-0.49) \end{gathered}$ | $\begin{gathered} -0.0338^{* * *} \\ (-5.20) \end{gathered}$ | $\begin{gathered} -0.0302^{* * *} \\ (-5.09) \end{gathered}$ |
| MVC debt remaining (Million Baht) | $\begin{gathered} -0.0070 \\ (-0.39) \end{gathered}$ | $\begin{gathered} -0.0493 \\ (-0.31) \end{gathered}$ | $\begin{gathered} -0.0044 \\ (-0.38) \end{gathered}$ | $\begin{gathered} -0.0059 \\ (-0.63) \end{gathered}$ | $\begin{aligned} & 0.0021 \\ & (0.29) \end{aligned}$ |
| Loan size (THB 1,000) | $\begin{gathered} 0.0001 \\ (0.45) \end{gathered}$ | $\begin{gathered} 0.0007 \\ (0.42) \end{gathered}$ | $\begin{gathered} -0.0001 \\ (-0.40) \end{gathered}$ | $\begin{gathered} 0.0002^{* *} \\ (2.20) \end{gathered}$ | $\begin{gathered} -0.0001 \\ (-1.19) \end{gathered}$ |

Notes: Numbers in parenthesis indicate z -statistics.
${ }^{\text {a }} \mathrm{dy} / \mathrm{dx}$ is for discrete change of dummy variable from 0 to 1
${ }^{* * *},{ }^{* *}$ and ${ }^{*}$ represent level of significance at $99 \%, 95 \%$ and $90 \%$.
The probability of default would decrease on average by 7.59 percent when they needed the next loan from the MVC, and 1.52 percent on average when increasing
borrowing since 2002. The marginal effect of term loans indicates that an additional month of duration of a loan would increase the probability of default by on average of 0.13 percent.

## 6. Discussions

Empirical evidence has shown that there was no statistical significance of the poor borrowers on the probability of defaulting. Results from both the Probit and Bivariate probit models confirmed that the poor do not have larger default than the nonpoor. In addition, Multinomial Probit results indicate that the poor do not affect the alternative of repayment strategies of borrower.

Borrowers with lower levels of education have higher loan defaults. The higher education results in a greater ability to create income and thus the ability to repay the loan on time (Ahlin and Townsend, 2007). The borrower is an employee tends to have higher probability of default. It may be difficult to split their fixed wage to pay the debt. For borrowers who have been a committee (both at present and in the past), no statistical significance for loan default. This group is knowledgeable about the rules of the MVC as well and controls the operation of the MVC directly. However, they do not behave in the default of MVC better than other members.

In addition, households with more earners are more likely to have lower probability of default because they do not rely only on head of household's income. Since households have an additional source of income and more ability to repay the debt. However, households with more members will need more money to take care and meet the needs of members. They could use the money that reserve for repayment to meet the needs of family members. While the MVC does not require asset collateral by the borrower, wealth indicators such as land and vehicle ownership may improve the capacity of the borrower to meet repayment requirement on time.

A long duration of loan seemed likely to have created the opportunity to generate income from the loan. The results of this study have shown that longer the duration of a loan increase in the debt defaults. Roslan and Karim (2009) stated the reason may result from a term of loan longer than project's business cycle. Revenue should be allocated to debt repayment that will pay for the other activities. The results also have shown that borrowers who used the loan for farm business investment tended to decrease the probability of defaulting. Poor households borrow about 47 percent and 43 percent, for consumption loan, for non-poor households. However, consumption loan was not statistically significant in the probability of defaulting. In case of borrowers need loans in the future it tends defaults less in order to have the opportunity to borrow in the future. The frequency of borrowing make fewer default because the borrowers often have experience of the rules and know how to manage credit well.

Although, urban households have monthly MVC's repayment expenditures averaging 9.7 percent of their monthly total expenditure and 11.08 percent for rural households. It seems that the debt burden from MVC of rural households is more than in urban households. However, the repayment of loans in rural areas is higher than in urban households. Rural borrowers may have other source of income from second
occupations such as textiles, food processing, and work in factories after the harvest season. Thus, it is more likely for them to repay the debt on time. Another reason may explain by social capital, which is higher in rural areas, as an important factor to determine rate of defaults. For example, social sanctions can lead to increased repayment rates (Ahlin and Townsend, 2007; Bhatt and Tang, 2002; Oke, Adeyemo and Agbonlahor, 2007). Huerta (2010) suggested that social ties such as cooperation and social sanctions play a central role in explain the success of the program in terms of repayment rates in rural and urban communities in case of a joint liability lending MVC program in Thailand.

## 7. Concluding remarks

Traditional financial institutions have the idea that the poor are high risk. The empirical evidence of MVC in Thailand shows that the poor do not have higher risks than a loan to those who are not poor. The duration of the loan is an important factor to determine the possibility of default. For borrowers who did not repay any portion of loan tended to be urban households without a second occupation.

Policy recommendations to improve sustainability performance of the MVC are presented as follows. First, the MVC should not deprive the poor because they do not as risky as has been traditionally financial institutions assumed. Second, the most of loan agreements set a one year term for a loan, however, the frequency of repayments such as every month or bimonthly may result in fewer defaults. Last, there should be promoted income generating activities as a source of extra income for the borrower.

## REFERENCES

Abafita, J. 2003. Microfinance and Loan Repayment Performance: A Case Study of the Oromia Credit and Savings Share Company (OCSSCO) in Kuyu. Master Thesis, Addis Ababa University, School of Graduate Studies.
Ahlin, C. and R. M. Townsend. 2007. Using repayment data to test across models of joint liability lending. The Economic Journal, 117(February), F11-F51.
Al-Azzam, M. d., R. Carter Hill and S. Sarangi. 2012. Repayment performance in group lending: evidence from Jordan. Journal of Development Economics, 97, 404-414. doi: 10.1016/j.jdeveco.2011.06.006

Berhane, G. and C. Gardebroek. 2011. Does microfinance reduce rural poverty? evidence based on household panel data from Northern Ethiopia. American Journal of Agricultural Economics, 93, 43-55. doi: 10.1093/ajae/aaq126
Bhatt, N. and S.Y. Tang. 2002. Determinants of repayment in microcredit: evidence from programs in the United States. International Journal of Urban and Regional Research, 26, 360-376.
Brehanu, A. and B. Fufa. 2008. Repayment rate of loans from semi-formal financial institutions among small-scale farmers in Ethiopia: two-limit Tobit analysis. Journal of SocioEconomics, 37, 2221-2230. doi: 10.1016/j.socec.2008.02.003
Cameron, A. C. and P. Trivedi. 2009. Microeconometrics Methods and Applications. New York: Cambridge University Press.
Dufhues, T., G. Buchenrieder, H. D. Quoc and N. Munkung. 2011. Social capital and loan repayment performance in Southeast Asia. Journal of Socio-Economics, 40, 679-691. doi: 10.1016/j.socec.2011.05.007

Godquin, M. 2004. Microfinance repayment performance in Bangladesh: how to improve the allocation of loans by MFIs. World Development, 32, 1909-1926. doi: 10.1016/j.worlddev.2004.05.011

Gonzalez, A. 2008. Microfinance, Incentives to Repay, and Overindebtedness: Evidence from a Household Survey in Bolivia. Doctoral dissertation, Ohio State University.
Huerta, A. 2010. Microfinance in rural and urban Thailand: policies, social ties and successful performance. University of Chicago. Retrieved from cier.uchicago.edu/ papers/students/adrianathesis.pdf
Maddala, G. S. 1983. Limited-Dependent and Qualitative Variables in Econometrics. New York: Cambridge University Press.
Oke, J. T. O., R. Adeyemo and M. U. Agbonlahor. 2007. An empirical analysis of microcredit repayment in Southwestern Nigeria. Humanity and Social Sciences Journal, 2, 63-74.
Roslan, A. H. and M. Z. Abd Karim. 2009. Determinants of microcredit repayment in Malaysia: the case of Agrobank. Humanity and Social Sciences Journal, 4, 45-52.
Sharma, M. and M. Zeller. 1997. Repayment performance in group-based credit programs in Bangladesh: an empirical analysis. World Development, 25, 1731-1742. doi: 10.1016/s0305-750x(97)00063-6

Suriya, K. 2011. An Economic Analysis of Community-based Tourism in Thailand. Doctoral dissertation, Faculty of Economic Sciences, Georg-August University of Goettingen.
Vogelgesang, U. 2003. Microfinance in times of crisis: the effects of competition, rising indebtedness, and economic crisis on repayment behavior. World Development, 31, 2085-2114. doi: 10.1016/j.worlddev.2003.09.004

