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ABSRACT 

Advancing land degradation (LD) in the irrigated agro‐ecosystems of Uzbekistan 
hinders sustainable development of this predominantly agricultural country. Until now, 
only sparse and out‐of‐date information on current land conditions of the irrigated 
cropland has been available. An improved understanding of this phenomenon as well 
as operational tools for LD monitoring is therefore a pre‐requisite for multi‐scale 
targeting of land rehabilitation practices and sustainable land management. 

This research aimed to enhance spatial knowledge on the cropland 
degradation in the irrigated agro‐ecosystems in northern Uzbekistan to support policy 
interventions on land rehabilitation measures. At the regional level, the study 
combines linear trend analysis, spatial relational analysis, and logistic regression 
modeling to expose the LD trend and to analyze the causes. Time series of 250‐m 
Moderate Resolution Imaging Spectroradiometer (MODIS) normalized difference 
vegetation index (NDVI), summed over the growing seasons of 2000‐2010, were used 
to determine areas with an apparent negative vegetation trend; this was interpreted 
as an indicator of LD. The assessment revealed a significant decline in cropland 
productivity across 23% (94,835 ha) of the arable area. The results of the logistic 
modeling indicate that the spatial pattern of the observed trend is mainly associated 
with the level of the groundwater table, land‐use intensity, low soil quality, slope, and 
salinity of the groundwater.  

To quantify the extent of the cropland degradation at the local level, this 
research combines object‐based change detection and spectral mixture analysis for 
vegetation cover decline mapping based on multitemporal Landsat TM images from 
1998 and 2009. Spatial distribution of fields with decreased vegetation cover is mainly 
associated with abandoned cropland and land with inherently low‐fertility soils located 
on the outreaches of the irrigation system and bordering natural sandy deserts. The 
comparison of the Landsat‐based map with the LD trend map yielded an overall 
agreement of 93%. The proposed methodological approach is a useful supplement to 
the commonly applied trend analysis for detecting LD in cases when plot‐specific data 
are needed but satellite time series of high spatial resolution are not available. 

To contribute to land rehabilitation options, a GIS‐based multi‐criteria 
decision‐making approach is elaborated for assessing suitability of degraded irrigated 
cropland for establishing Elaeagnus angustifolia L. plantations while considering the 
specific environmental setting of the irrigated agro‐ecosystems. The approach utilizes 
expert knowledge, fuzzy logic, and weighted linear combination to produce a 
suitability map for the degraded irrigated land. The results reveal that degraded 
cropland has higher than average suitability potential for afforestation with E. 
angustifolia. The assessment allows improved understanding of the spatial variability 
of suitability of degraded irrigated cropland for E. angustifolia and, subsequently, for 
better‐informed spatial planning decisions on land restoration. 

The results of this research can serve as decision‐making support for 
agricultural planners and policy makers, and can also be used for operational 
monitoring of cropland degradation in irrigated lowlands in northern Uzbekistan. The 
elaborated approach can also serve as a basis for LD assessments in similar irrigated 
agro‐ecosystems in Central Asia and elsewhere. 



ZUSAMMENFASSUNG 

Die zunehmende Landdegradation (LD) in den bewässerten Agrarökosystemen in 
Usbekistan behindert die nachhaltige Entwicklung dieses vorwiegend 
landwirtschaftlich geprägten Landes. Bis heute sind nur wenige und veraltete 
Informationen über die aktuellen Bodenbedingungen der bewässerten Anbauflächen 
verfügbar. Ein besseres Verständnis dieses Phänomens sowie operationelle Werkzeuge 
für LD‐Monitoring sind daher Voraussetzung für ein nachhaltiges Landmanagement 
sowie für Landrehabilitationsmaßnahmen. 

Ziel dieser Studie war es, das räumliche Verständnis der Degradierung von 
Anbaugebieten in den bewässerten Agrarökosystemsn des nördlichen Usbekistans zu 
verbessern, um staatliche Interventionen in Bezug auf Landrehabilitationsmaßnahmen 
zu unterstützen Auf der regionalen Ebene kombiniert die Studie lineare Trendanalyse, 
räumliche relationale Analyse sowie logistischer Regressionsmodellierung, um den LD‐
Trend darzustellen und Gründe zu analysieren. Zeitreihen von 250‐m Moderate 
Resolution Imaging Spectroradiometer (MODIS) normalized difference vegetation 
index (NDVI) Bildern wurden für den Zeitraum der Anbauperioden zwischen 2000‐2010 
untersucht, um Bereiche mit einem offensichtlich negativen Vegetationstrend zu 
ermitteln. Dieser negative Trend kann als Indikator für LD interpretiert werden. Die 
Untersuchung ergab eine signifikante Abnahme der Bodenproduktivität auf 23% 
(94,835 ha) der Anbaufläche. Zudem deuten die Ergebnisse der logistischen 
Modellierung darauf hin, dass das räumliche Muster des beobachteten Trends 
überwiegend mit der Höhe des Grundwasserspiegels, der Landnutzungsintensität, der 
geringen Bodenqualität, der Hangneigung sowie der Grundwasserversalzung 
zusammenhängt. 

Um das Ausmaß der Degradation der Anbauflächen auf der lokalen Ebene zu 
quantifizieren, kombiniert diese Studie objektbasierte Erkennung von Veränderungen 
und spektrale Mischungsanalyse für die Abnahme der Vegetationsbedeckung auf der 
Grundlage von multitemporalen Landsat‐TM‐Bildern im Zeitraum von 1998 bis 2009. 
Die räumliche Verteilung der Felder mit abnehmender Vegetationsbedeckung hängt 
überwiegend mit verlassenen Anbauflächen sowie mit nährstoffarmen Böden in den 
Randbereichen des Bewässerungssystems und an den Grenzen zu natürlichen 
Sandwüsten zusammen. Ein Vergleich mit der Karte des LD‐Trends ergab insgesamt 
eine Übereinstimmung von 93%. Der vorgeschlagene Ansatz ist eine nützliche 
Ergänzung zu der häufig angewendeten Trendanalyse für die Ermittlung von LD in 
Regionen, für die keine Satellitenbildzeitreihen mit hoher Auflösung verfügbar sind. 

Als Beitrag zu Landrehabilitationsmöglichkeiten, wird ein GIS‐basierter Multi‐
Kriterien‐Ansatz zur Einschätzung der Eignung von degradierten bewässerten 
Anbauflächen für Elaeagnus angustifolia L. Plantagen beschrieben, der gleichzeitig die 
spezifischen Umweltbedingungen der bewässerten Agrarökosysteme berücksichtigt. 
Dieser Ansatz beinhaltet Expertenwissen, Fuzzy‐Logik und gewichtete lineare 
Kombination, um eine Eignungskarte für die bewässerten degradierten Anbauflächen 
herzustellen. Die Ergebnisse zeigen, dass diese Flächen ein überdurchschnittliches 
Eignungspotenzial für die Aufforstung mit E. angustifolia aufweisen. Diese Studie trägt 
zu einem verbesserten Verständnis der räumlichen Variabilität der Eignung von 
solchen Flächen für E. angustifolia bei. 
           



Die Ergebnisse dieser Studie können als Entscheidungshilfe für landwirtschaftliche 
Planer und politische Entscheidungsträger sowie für verbesserte 
Landrehabilitationsmaßnahmen und operationelles Monitoring der Degradation von 
Anbauflächen im nördlichen Usbekistan eingesetzt werden. Zudem kann der 
beschriebene Ansatz als Grundlage für LD‐Untersuchungen in ähnlichen bewässerten 
Agrarökosystemen in Zentralasien und anderswo dienen. 
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1 INTRODUCTION 

1.1 Cropland degradation in the irrigated lowlands of the Amu Darya River 

1.1.1  Problem of land degradation  

According to the Millennium Ecosystem Assessment report of the United Nations (UN), 

land degradation (LD) is one of today’s greatest environmental challenges (Adeel et al. 

2005). The concerns of the world community about this issue resulted in the 

proclamation of the United Nations Convention to Combat Desertification (UNCCD) in 

1996 (http://www.unccd.int/) that aims at a reduction of LD and desertification in all 

affected countries. 

The UNCCD defines LD as the “reduction or loss in arid, semi‐arid and dry sub‐

humid areas, of the biological or economic productivity and complexity of rainfed 

cropland, irrigated cropland, or range, pasture, forest and woodlands resulting from 

land uses or from a process or combination of processes, including processes arising 

from human activities and habitation patterns” (§ 5, UNCCD 1994). Degradation of 

land can be caused by various factors, including climatic variations and human 

activities. The human‐induced LD occurs mainly due to overexploitation of land 

resources for cropping and livestock farming, including irrigation practices, overgrazing 

of rangelands, and fuelwood exploitation (Adeel et al. 2005).  

The increasing rates of human‐induced LD in arid and semi‐arid environments 

have already affected ca. 2.6 billion people worldwide (Sivakumar and Stefanski 

2007a). The livelihood of millions of farmers around the world is threatened by 

cropland degradation. It is estimated that, globally, LD in drylands causes a loss of land 

productivity estimated around USD 13–28 billion a year (Scherr and Yadav 1996). In 

addition, LD not only causes economical losses but also adversely affects the 

environment. It is, therefore, important to monitor LD and to determine its causes so 

that it can be reversed.  

To date, several spatial assessments have been conducted to map LD globally, 

for example, the Global Assessment of Human‐induced Soil Degradation (GLASOD) 

(Oldeman et al. 1990) and the Land Degradation Assessment in Drylands (LADA) 

(Figure 1.1) (Bai et al. 2008). Yet, due to the differences in definition of LD and field 
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data scarcity, the existing global assessments differ in the selection of measurable 

attributes of LD, in their spatial coverage, and in the quality of the datasets (Safriel 

2007). Moreover, the coarse spatial resolution of global LD maps is not appropriate for 

region‐based analysis, while national maps are not always in place for all countries. 

The availability of spatial data on LD is, however, a precondition for implementation of 

land rehabilitation measures as well as for sustainable use of land resources (Winslow 

et al. 2011). 

 

Figure 1.1: Global change in net primary productivity (Bai et al. 2008) 

1.1.2 Land degradation in Central Asia 

Agricultural activities influence significantly the state of the land worldwide (Sivakumar 

and Stefanski 2007a). Specifically, agriculture‐induced LD is strongly evident in 

drylands due to their natural fragility, which makes them susceptible to degradation 

(Gao and Liu 2010).  

Irrigated agriculture contributes about 30% of the world food production, 

while in some arid and semi‐arid regions, such as former‐Soviet Central Asia (CA) 

(Figure 1.2), it is the backbone of the economy (Ji 2008). About 70% of the irrigated 

areas worldwide are located in Asia (East, South, Southeast and Central Asia). The 

heavily irrigated cropland in Asia is found in CA. During the 70 years of the Soviet 

Union, the agricultural sector in the five CA countries Kazakhstan, Kyrgyzstan, 



 

Tajikistan, Turkmenistan and Uzbekistan was modernized through extensive land

transformations aiming to increase overall agricultural production and the arable area 

(Glantz 1999). This vision was motivated by the view that not the 

irrigable land was limiting for the development of the agricultural sector in CA but 

rather the amount of irrigation water that needed to be diverted to unexploited areas 

(Field 1954). Since 1961, the irrigated areas have tripled to about 7.9 Mha in 1999, 

mainly along the rivers Amu Darya and Syr Darya 

one of the largest irrigated zones in the world and 

massive expansion of irrigated agriculture resulted in significant increases in food and 

cotton production. Today, irrigated agriculture in CA is still the centerpiece for the 

livelihoods of about 63% of the rural population of in total 41.8 million 
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during Soviet Union times and maintained after independence in 1991, have resulted 

in an overexploitation and, consequently, degradation of cropland. This has caused 

yields to decline by as much as 30% (Létolle and Mainguet 1993). Today, 47.5% of the 

irrigated land in CA is affected by soil salinity, ranging from 11.5% in Kyrgyzstan to 

95.9% in Turkmenistan (Saigal 2003). Since available soil degradation maps are static 

and seldom updated, the concerns have risen about the accuracy of the mapped LD.  

Overall, the entire region faces enormous challenges in preventing, mitigating 

and reversing the processes of LD. The annual costs for CA countries due to LD are 

estimated to USD 31 million (Ji 2008). Moreover, in combination with the expected 

water scarcity, due to the impact of climate change, which for CA is predicted to be far 

above world average (Lioubimtseva et al. 2005; Lioubimtseva and Henebry 2009; Qi et 

al. 2012), and the growing population (Glantz 1999), the necessity of sustainable use of 

land resources is immense. The international concern about LD in CA led to the launch 

of the Subregional Action Programme for the Central Asian Countries on Combating 

Desertification (UNCCD 2003).  

1.1.3 Land degradation in Uzbekistan 

Uzbekistan is probably the most vulnerable of the CA countries regarding water 

resources and irrigated agriculture, as it has the largest irrigated area (4.3 million ha), 

the largest rural population (more than 14 million) and the highest population density 

(49.6 pers/km2) (CACILM 2006). Being an arid country and the same time a large 

consumer of water resources, Uzbekistan is significantly affected when water 

shortages occur, especially in drought years. Degradation of land is widespread 

throughout Uzbekistan (Figure 1.3). The most affected areas are, however, 

concentrated in the lowlands of the Amu Darya River and in the districts of Bukhara, 

Navoi, and Kashkadarya. Reportedly, about 885,000 ha are marginal, and up to 53% of 

irrigated land are exposed to varying degrees of soil salinity, leading to low or no 

profits from annual crops (Djanibekov et al. 2012b). Over 50% of the croplands suffer 

from wind and water erosion, and continued losses of the fertile topsoil layer are 

observed every year (Nkonya et al. 2011). 
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Figure 1.3: Current pace of soil salinization in irrigated areas of Uzbekistan (FAO 
2003) 

While agriculture accounts for about 22% of the gross domestic product 

(GDP) and employs 33% of the labor, the annual costs associated with LD in Uzbekistan 

amount to as much as USD 1 billion a year (Sutton et al. 2007).The decreasing land 

productivity and decreasing crop yields have been a crucial factor, causing a decline in 

rural living standards (CACILM 2006).  

The economic costs due to LD are imposed at three levels: (i) at the field 

level, in terms of decline in land productivity, (ii) at the national level, in terms of 

decrease in the agricultural GDP and export earnings due to the loss of productive 

capacity of the arable land, and (iii) at the global level, in terms of pollution of 

transboundary water resources, loss of biodiversity, and negative impact on carbon 

sequestration and climate change (ADB 2006). A governmental policy that constrains 

production growth and reduces incentives to invest in land improvement challenges 

further management of land resources in the country (World Bank 2002; Ji 2008). 

Urgent actions are, therefore, required in Uzbekistan to mitigate the causes and 

negative impacts of LD through sustainable land management practices as a 

contribution to improving economic wellbeing and people’s livelihoods (ADB 2006; 

CACILM 2006; Nkonya et al. 2011). Despite the numerous alarming signals, land 
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managers in CA in general and in Uzbekistan in particular have insufficient spatial 

information on LD to implement rehabilitation and mitigation measures and to follow 

sustainable land‐use practices (Dregne 2002; Ji 2008).  
 

1.1.4 Remote sensing of land degradation 

Degradation of drylands manifests itself in reduced productive potential (Reynolds et 

al. 2007) indicated by a gradual loss of vegetation cover over time. In irrigated agro‐

ecosystems in Uzbekistan, the declined productive potential is triggered by soil 

salinization that adversely affects crop growth (Akramkhanov et al. 2012). It can also 

be a consequence of reduced irrigation and of other agricultural inputs or overall 

disruption in cropping activities. Reduced frequency of irrigation and occurrence of 

fallow land may serve as indirect indicators of cropland degradation because farmers, 

particularly in drought years, tend to reduce cultivation primarily in areas least 

responsive to agricultural inputs (Dubovyk et al. 2013a). Regardless of whether caused 

by decreasing soil quality or decreasing cultivation, the vegetation cover loss over time 

signifies a decline in economic productivity of irrigated cropland and can be considered 

as degradation of its productive function (UNCCD 1994). 

Elaboration of recommendations on sustainable land management, which 

would reduce vulnerability to water scarcity and decrease dependency on irrigation 

while guaranteeing a sustainable livelihood for the rural population, requires accurate 

information on the long‐term changes in the state of the land. Assessment of these 

changes needs to be based on objective, repeatable, and spatially explicit approaches 

(Winslow et al. 2011). In this context, remote sensing (RS) is of significant value.  

The data archives from the earth observation sensors, being operational for 

several decades, allow retrospective analyses of the state and development of (agro)‐

ecosystems on different spatial scales. Satellite imagery conforms to the principles of 

objectivity, repetitiveness, and consistency, which are preconditions in the framework 

of monitoring (Prince et al. 2009). Therefore, it provides important information for 

integrated approaches combining RS data with specific tools and modeling techniques 

(Röder et al. 2008). Among different methods for studying and monitoring LD, RS 

provides a cost‐effective evaluation over extensive areas, whereas in-situ process 
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studies are resource demanding and thus usually conducted at a small scale (e.g., Vlek 

et al. 2008; Bai and Dent 2009; Prince et al. 2009; Gao and Liu 2010). In addition, RS‐

based assessment is currently the only means for LD monitoring at a regional scale, 

specifically in the less developed countries such as Uzbekistan, where funds for 

environmental programs are often limited (Sivakumar and Stefanski 2007b).  

Earth observation provides a variety of techniques to study land surface 

dynamics and assess LD quantitatively (van Lynden and Mantel 2001; Kessler and 

Stroosnijder 2006; Lu et al. 2007; Wessels et al. 2008; Jones et al. 2011). However, 

until recently, most of the RS applications for LD dealt with direct observation of visible 

features such as different forms of soil erosion (Almeida‐Filho and Shimabukuro 2002; 

Li et al. 2009), while less attention was paid to monitoring gradual changes in land 

cover (Hostert et al. 2003). Furthermore, most of the studies focused on natural and 

semi‐natural environments (Heumann et al. 2007; Röder et al. 2008), even though 

degradation of cropland cannot be overlooked in the light of increasing demand for 

agricultural production. With the advance of RS sensors, the variety of images has 

increased, laying a promising basis for assessment of (irrigated) cropland degradation 

on the medium and high spatial scales. 

1.1.5 Spatial assessment of land degradation in Central Asia and Uzbekistan 

Despite the recognized severity of LD in CA, there are only few published studies that 

aimed at spatial assessment of this problem in the region (Ji 2008). Kharin et al. (1999 

cited in Ji, 2008) created a LD map of 4 by 4 arc‐minutes based on expert opinions and 

existing soil maps. It shows that LD is generally present throughout CA, and that it is 

differentiated by land‐use type and degradation cause. Based on this data, 

desertification in this region is mainly characterized by vegetation cover degradation 

on rangelands and meadows. Given the fact that this map is partly based on expert 

opinions, objective and updated assessment is necessary. 

More attention was paid to the analyses of land use and land cover (LULC) in 

the region. For example, Chen et al. (2013) assessed changes in LULC and ecosystem 

services in CA during 1990–2009. Klein et al. (2012) presented a classification approach 

for regional land‐cover mapping of CA. Spatial analyses on the aeolian geomorphic 
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processes of the CA ergs were conducted by Maman et al. (2011). Kariyeva and van 

Leeuwen (2011) studied environmental drivers of vegetation phenology in CA based on 

the normalized difference vegetation index (NDVI) calculated from the AQUA/TERRA‐

Moderate Resolution Imaging Spectroradiometer (MODIS) NDVI and NOAA‐Advanced 

Very High Resolution Radiometer (AVHRR) NDVI time series (1981‐2008). Spatial 

cropping patterns were observed in the Khorezm region in Uzbekistan (Conrad et al. 

2011). Inter‐annual changes in vegetation activities and their relationship to 

temperature and precipitation in CA from 1982 to 2003 were analyzed by Propastin et 

al. (2008). De Beurs and Henebry (2004) assessed LULC changes in Kazakhstan using 

NDVI satellite time series (1985–1988 and 1995–1999) from AVHRR. O’hara (1997) 

conducted a statistical analysis of the data on the extent of irrigated land, variations in 

groundwater table (GWT), soil salinity, waterlogging and quality of irrigation water in 

Turkmenistan for the period 1984 to 1994. Yet cropland degradation per se and the 

relevant aspects for assessing, for instance, relations between the degradation and 

their possible triggers have been neglected (Dregne 2002; Dubovyk et al. 2013a). 

1.2 Spatial targeting of land rehabilitation in the irrigated agro-ecosystems in 

northern Uzbekistan 

1.2.1 Afforestation as an option for rehabilitation of degraded irrigated cropland  

In Uzbekistan, about one‐third of all irrigated land has a shallow and saline GWT, while 

the share of shallow GWT within irrigated cropland reaches 80% in study region (Ji 

2008; Ibrakhimov et al. 2011). To reduce soil salinity in the root zone, local farmers 

practice leaching that requires a substantial share (~40%) of the water directed for 

irrigation (World Bank 2002). Considering the increasing water scarcity predicted due 

to the impact of climate change (Lioubimtseva and Henebry 2009) and population 

growth, the sustainable use of land resources is becoming of uttermost importance.  

Among different methods available for rehabilitation of degraded lands (e.g., 

Houérou 1976; Cano et al. 2009; Kapur et al. 2011), afforestation of degraded cropland 

is considered a viable land‐use option to address the problem of LD and irrigation 

water scarcity and secure income of local population in study region in northern 

Uzbekistan (Martius et al. 2003; Khamzina et al. 2006b).  
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Planting trees on such land improves soil fertility through enhancing nitrogen 

and carbon contents, simultaneously reducing elevated GWT via transpiration, and 

contributes to the global effort of climate change mitigation by sequestering carbon in 

biomass and soil (Khamzina et al. 2012). Trees can also benefit rural livelihoods by 

providing valuable timber and non‐timber products (e.g., fuelwood, fodder, and fruits) 

(Lamers et al. 2008; Djanibekov et al. 2012b). The irrigation demand of the trees was 

observed to be lower compared to the traditional crops (cotton, rice, and winter 

wheat) due to tree reliance on the groundwater. By drawing on groundwater 

resources, establishment of the forest plantation on degraded cropland could release 

irrigation water for the use on productive cropland (Khamzina et al. 2008).  

1.2.2 Spatial decision support for afforestation of degraded irrigated cropland 

Land suitability for establishing tree plantations on degraded cropland differs spatially 

due to the variability of factors that determine suitability of land for tree growth 

(Hansen et al. 2007). For the land manager, such information is needed to enhance 

effective allocation of land resources by providing options for selection of appropriate 

locations for tree plantations and for creating a basis for efficient environmental policy 

interventions (van der Horst 2006).  

There is little published research on afforestation in arid CA. For irrigated 

agro‐ecosystems in northern Uzbekistan, previous studies investigated tree species’ 

suitability, early growth, and water use of tree plantations as well as their restoration 

functions on the degraded irrigated cropland (Lamers et al. 2006; Khamzina 2006a; 

Khamzina et al. 2008; Khamzina et al. 2009; Djumaeva et al. 2010; Djumaeva et al. 

2012). Yet little was done to spatially assess land suitability for afforestation on 

degraded land in irrigated agro‐ecosystems of CA, though a few studies were 

conducted on land evaluation for afforestation worldwide (e.g., Dent and Murtland 

1990; Bydekerke et al. 1998; Hansen et al. 2007; Zomer et al. 2008; Eslami et al. 2010).  

Afforestation decisions should consider the location‐specific conditions that 

determine suitability of the area for establishment of tree plantations. The benefits of 

afforestation are also location‐specific, e.g., biomass production and carbon 

sequestration, which depend on the site quality, its spatial organization within its 
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surroundings, and the stakeholders involved (Hansen et al. 2007). The complexity of 

land suitability assessment for tree planting is also caused by the multi‐functional 

nature of afforestation including numerous trade‐offs and compromises between 

conflicting interests of the involved parties (Kangas and Kangas 2005).  

In forestry and agroforestry, decision‐support tools have been applied 

extensively (e.g., Crookston and Dixon 2005; Ellis et al. 2005; Gilliams et al. 2005; Lexer 

et al. 2005; Rauscher et al. 2005; Jarnevich and Reynolds 2011; Schwenk et al. 2012). 

The reviewed models are, however, often location‐specific, and thus cannot be directly 

applied to other geographical areas. As suggested by Bansouleh (2009), the 

development of the site‐specific land suitability assessment that considers local 

conditions, data availability, and socio‐economic settings is a solution for this problem. 

In this light, land suitability model for afforestation in irrigated agro‐ecosystems in 

northern Uzbekistan has to be developed to facilitate agroforestry decisions and to 

contribute to land rehabilitation efforts in the region. 

The proposed study is part of an interdisciplinary research project 

“Opportunities for climate change mitigation via afforestation of degraded lands in 

Central Asia” (http://www.zef.de/1631.html) aiming to assess the role of plantation 

forestry for ecological restoration and for improvement of rural livelihoods in 

Uzbekistan. This project encompasses agroforestry and spatial, socio‐economic, and 

policy aspects to identify the environmental, economic, institutional, and informational 

conditions under which afforestation projects can be realized in the context of 

Uzbekistan. The current doctoral study represents the spatial component of the 

project, focusing on monitoring of cropland degradation and assessing the biophysical 

potential for afforestation to support decisions on land rehabilitation as well as 

sustainable use of land resources. 

1.3 Research objectives 

In the downstream of the Amu Darya River in Uzbekistan, degradation of irrigated 

cropland is a serious problem that has its implications for the economic, social, and 

environmental sustainability of the country (Vlek et al. 2012). Moreover, the absence 

of accurate up‐to‐date spatial information on the extent of LD as well as on its triggers 
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forestalls implementation of land rehabilitation measures, which threatens 

sustainability of irrigated agriculture and people’s livelihoods. The demarcation of the 

irrigated cropland area affected by LD, and identification of the LD factors would make 

it possible to target areas for mitigation efforts and to prioritize those in need of 

immediate policy attention. 

Afforestation of the degraded cropland is claimed to be a feasible option to 

combat LD and at the same time guarantee income sources for the rural population in 

the downstream of the Amu Darya River in northern Uzbekistan (Djanibekov et al. 

2012b; Khamzina et al. 2012). Its implementation should be based on the spatial 

assessment of suitability of degraded land for afforestation with the selected tree 

species.  

The overall aim of this research was to enhance spatial knowledge on the 

cropland degradation in the irrigated agro‐ecosystems in northern Uzbekistan to 

support policy interventions on land rehabilitation measures and sustainable land 

management. The following specific objectives were defined for the study area:  

1. To analyze extent and factors of irrigated cropland degradation at the regional 

scale,  

2. To derive parcel‐specific information on irrigated cropland degradation,  

3. To assess land suitability for afforesting degraded irrigated cropland with the 

selected tree species.  

1.4 Thesis outline 

The thesis is structured in six interrelated chapters. Following an introduction (chapter 

1) to the research problem, the study area is described in chapter 2. The chapters 3‐5 

consist of the brief introduction to the topic of the analyses, methods used, the 

analyses per se, discussion of the results, and drawn conclusions. Chapter 3 deals with 

RS‐based assessment of irrigated cropland degradation at the regional level using time 

series of 250‐m MODIS NDVI images. The resulting spatial LD patterns are explained 

using logistic regression modeling and by relating the observed patterns to a number 

of biophysical and socio‐economic factors, such as soil quality, GWT, groundwater 

salinity (GWS), population density, irrigation infrastructure, etc. To facilitate site‐



Introduction 

12 

 

specific decisions on land rehabilitation measures, chapter 4 presents the findings of 

the object‐based analysis of vegetation cover decline using 30‐m Landsat imagery. The 

results of the land suitability assessment for afforestation of the degraded irrigated 

cropland with the selected tree species are described and discussed in chapter 5. 

Chapter 6 concludes the thesis by summarizing the main findings of the research and 

providing an outlook on the further implications of this work. 

 



Geography of northern Uzbekistan 

13 

 

2 GEOGRAPHY OF NORTHERN UZBEKISTAN 

2.1 Geographic location, population, and administrative structure 

The study area consists of the Khorezm Province and the southern part of the 

Autonomous Republic of Karakalpakstan (SKKP) located in the north‐western part of 

Uzbekistan in the lower reaches of the Amu Darya River. It spreads between latitude 

40°62´ and 42°71´ N and longitude 60°02´ and 62°44´ E, which is about 225 km south of 

the former shore of the Aral Sea (Figure 2.1). The region borders on the natural sandy 

deserts Karakum and Kyzylkum in the south and east. It covers an area of about 

662,042 ha1 of which 410,000 ha (270,000 ha in Khorezm and 140,000 ha in the SKKP) 

are irrigated cropland (Dubovyk et al. 2013b).  

Due to its location in the downstream of the Amu Darya River, Khorezm and 

the SKKP are among the final receivers of the water. In the last years, the water supply 

has significantly decreased and has become unreliable because of the increasing 

upstream water use and frequent droughts, which resulted in major crop failures in 

2000, 2001, 2008 and 2011 (CACILM 2006). Moreover, the amount of water is 

predicted to reduce further given the impacts of climate change and increasing 

demand from the continuously growing population (Perelet 2007; Lioubimtseva and 

Henebry 2009). 

The region’s population of 2 million people is increasing at an annual rate of 

about 2% (UZSTAT 2010b). Khorezm has a population of 1.5 million, while 0.5 million 

people live in the SKKP. About 70% of the population is engaged in crop production 

and in animal husbandry and horticulture. Agriculture accounts for 35% of the Uzbek 

GDP (UZSTAT 2010b). The socio‐economic and public health situation in the region has 

been negatively affected by the proximity to the environmental disaster area of the 

Aral Sea Basin. The study area is divided into administrative units, called districts. 

Khorezm consists of ten districts with the capital in Urgench. The SKKP is a part of 

Autonomus Republic of Karakalpakstan, and it consists of three districts with the 

capital in Nukus.  

                                                      
1 The study region excludes the area of the former Pytnak district of Khorezm and covers irrigated areas 

in Khorezm and the SKKP. 
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Figure 2.1: Location of the study area Khorezm and southern part of Autonomous 
Republic of Karakalpakstan in Uzbekistan and in Central Asia 
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2.2 Climate 

The study region belongs to the Central Asian semi‐desert zone with an extreme 

continental climate (Glazirin et al. 1999). The annual precipitation, averaging 100 mm 

(Tischbein et al. 2012), falls mostly outside the crop‐growing season (April‐October) 

and is greatly exceeded by annual evaporation (Figure 2.2) (Conrad et al. 2007). Thus, 

crop production depends entirely on irrigation. The mean annual temperature is about 

+13C, while the absolute daily minimum and maximum temperatures may reach up to 

‐28C and +45C, respectively (Djalalov et al., 2005). The frost‐free period lasts about 

205 days (Khamzina 2006a). 

 
Figure 2.2: Monthly mean air temperature and monthly precipitation in Urgench 

during 1980‐2006 according to Walter‐Lieth (modified from Conrad et 
al. 2012) 

2.3 Relief, geomorphology, soils, and hydrogeology 

The region is located on the alluvial plain of the Amu Darya River with the floodplain 

strip, varying from 0.3‐0.5 km to 3‐5 km in width. In the study area, the current state of 

the soils is a result of the meandering Amu Darya River that deposited sediments along 

the banks and in depressions. Alluvial deposits along the meanders mostly consist of 

sand, while the depressions are mainly filled with clay and loam (Fayzullaev 1980). 
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When irrigation was introduced in the 1950s, sediments were deposited on the 

cropland forming spatially distinct features in the topsoils. Long‐term irrigation formed 

a layer of uniform topsoil, i.e., an agro‐irrigation horizon, which consists of a multi‐

layered alluvium. Today, the soil texture is dominated by silty loam, sandy loam and 

loam (Akramkhanov et al. 2012).  

According to the FAO classification, the following soil types dominate in 

Khorezm: arenosols, cambisols, and fluvisols (FAO 2003). In the SKKP, most of the soils 

in the irrigated area are fluvisols, often flanked by dune areas of regosols, and with salt 

pans of solonetz (Mott‐MacDonald 2011).The main characteristic of the soils is low 

humus content in a range of 0.1‐0.5%, and low organic matter averaging about 0.75% 

in Khorezm (Akramkhanov et al. 2012) and not more than 1% in the SKKP (Mott‐

MacDonald 2011) in the topsoil layers and decreasing in the deeper layers. Cation 

exchange capacity varies between 5 and 10 meq/100g. Total nitrogen and phosphorus 

contents are also low, ranging between 0.03‐0.15% and 0.01‐0.18%, respectively, while 

the available potassium content is classified as low to moderate (Fayzullaev 1980; 

Mott‐MacDonald 2011). Overall, the soils are characterized by rather low fertility. Crop 

cultivation thus requires fertilizer inputs (Khamzina 2006a). 

Virtually all the soils in the region are subjected to degradation mainly due to 

various degrees of salinity, primarily as a consequence of the salt transport from the 

shallow saline GWT (Figure 2.3). Soil salinization is dominated by sulphate‐chloride and 

chloride characteristics. A higher level of soil salinity occurred in the downstream parts 

of the irrigation system, where the GWT is 1‐2 m and where drainage is inadequate 

(Mott‐MacDonald 2011). For crop cultivation, seasonal salt leaching is practiced for 

coping with soil salinization (Ibrakhimov et al. 2007). 

Khorezm and the SKKP are predominantly flat with elevations ranging 

between 85 m and 205 m asl. Slopes do not generally exceed 10% with the exception 

of the very northern part of the SKKP where slopes can reach up to 27% (Dubovyk et 

al. 2013b).  

Due to the small phreatic gradient, the lateral groundwater flow is slow, 

averaging about 0.02 m3/d*ha in the SKKP (Mott‐MacDonald 2011). This, coupled with 
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the prevailing heavy soil textures and arid climate, restricts groundwater outflow and 

increases evaporative losses. Besides poor natural drainage conditions (low‐lying 

location, relief flatness), the shallow GWT results from losses from the irrigation 

system (Ibrakhimov et al. 2007). Fluctuations of the GWT are also driven by irrigation 

and leaching activities (Ibrakhimov 2004; Mott‐MacDonald 2011). The GWT may rise 

up to 1 m below the soil surface during salt leaching (March‐April) and irrigation events 

(April‐September) and drop to about 2 m in October. The result is secondary soil 

salinization throughout the entire irrigated cropland, which triggers degradation 

processes (Mott‐MacDonald 2011; Akramkhanov and Vlek 2012). 

 

Figure 2.3: Degraded highly saline cropland in the Khorezm (left) and degraded 
abandoned cropland in the southern Karakalpakstan (right) during the 
crop growing season of 2010–2011 

Regardless of the shallow GWTs in Khorezm and the SKKP, the use of 

groundwater for irrigation is limited due to the cost of energy for pumping, and to 

GWS, which mostly makes soils unsuitable for crops. On average, the groundwater was 

moderately saline during 1990‐2000 in Khorezm averaging 1.75±0.99 g/1 (Ibrakhimov 
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et al. 2007). The portion of the cropland with a high GWS of 3‐10 g/l was observed on 

about 10% of the total irrigated area. In the SKKP, the areas with a GWS of 1‐3 g/l 

occurred on 81,360 ha (58% of irrigated area) in July 2009, while areas with GWS of 3‐5 

g/l were observed on 17,090 ha (0.12% of irrigated area) (Mott‐MacDonald 2011). 

Under such conditions, crop cultivation is possible only with well functioning drainage 

network (Khamzina 2006a).  

2.4 Irrigation and drainage network  

The irrigated land in the study region is served by the extensive irrigation and drainage 

network established in 1950s (Alimov and Kadurov 1979). The irrigation water is 

supplied from the Amu Darya River via a dense network of 16,000 km and 6,000 km of 

irrigation canals and 8,000 km and 5,000 km of drainage collectors in Khorezm (Conrad 

et al. 2007), and in the SKKP (Mott‐MacDonald 2011), respectively (Figure 2.4, Figure 

2.5). Only 11% (Khorezm) and 0.04% (SKKP) of these canals are lined, while the on‐

farm systems consist mostly of earth canals, which greatly reduce the amount of water 

that is ultimately delivered to the crop fields. The irrigation water is supplied by both 

direct gravity flow and pumped flow via a hierarchically constructed irrigation network, 

including main, inter‐farm, and on‐farm canals. Though also used in Khorezm, water 

pumping is more frequent in the SKKP, where around 96% of irrigated cropland is 

served by pumps within the on‐farm network (Mott‐MacDonald 2011).  

The drainage system is mainly open horizontal. The water is drained away via a 

hierarchically arranged network to the lakes and depressions outside the irrigated 

area. This has been causing flooding of the neighboring fields, leading to elevated GWT 

and, eventually, soil salinization and waterlogging (Alimov and Kadurov 1979). The 

observed shallow GWT and increasing soil salinization indicate a sub‐optimal 

performance of the irrigation and drainage system (Ibrakhimov 2004).  
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Figure 2.4: Irrigation network in the study region: example of Khorezm2
 

 

Figure 2.5: Total irrigation water use in Khorezm and southern Karakalpakstan 
during the vegetation periods 2000‐2010  

                                                      
2 Source: ZEF/UNESCO project database (http://www.khorezm.zef.de/) 
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2.5 Land use and land cover 

The study region is an important center of irrigated agriculture in the country. The 

main crops are cotton and winter wheat, which occupy 50‐70% (cotton) and 20‐30% 

(winter wheat) of the arable land (UZSTAT 2010a; Mott‐MacDonald 2011). Cotton has 

always been produced in Uzbekistan as a means of gaining export earnings, whereas 

wheat was introduced in the 1990s for national wheat self‐sufficiency. Cotton can be 

rotated with winter wheat, followed by summer crops (Figure 2.6). These crops are 

cultivated under the state procurement system introduced in the Soviet Union era, 

when cotton cultivation was regulated by a state order (Djanibekov et al. 2010). 

 After independence in 1991, the Uzbek government maintained the centrally 

planned economy in the cotton production sector and added the quotas for winter 

wheat for national self‐reliance. The spatial cropping patterns for these strategic crops 

are also defined by the government according to the standards established in the 

Soviet era. The state‐order system requires cropping of wheat and cotton over at least 

50% of the total irrigated area (Mott‐MacDonald 2011). On the area of land that is not 

assigned to cotton, and following the winter wheat, farmers grow maize, sorghum, 

watermelons, melons, and vegetables (Conrad et al. 2007). Irrigation water supply to 

crop fields is determined according to the standard guidelines set up in the 1960s 

(Rakhimbaev et al. 1992).  

The natural vegetation is represented by the Tugai floodplain forest along the 

banks of the Amu Darya River and vegetation in the transition areas on the margins of 

irrigated cropland. The major species of the desert areas belong to the genera 

Calligonum, Haloxylon, Salsola and Tamarix (Figure 2.7). The main tree species of the 

Tugai forest are Populus euphratica Oliv., Elaeagnus angustifolia L., and Salix songarica 

Anderss (Khamzina 2006a). The Tugai forest covered about 39,000 ha in 2005 in 

Khorezm (Tupitsa 2010) and 65,000 ha in 2000 in the SKKP (Mott‐MacDonald 2011), 

but its area has decreased by as much 90% during the last decades. The forest of the 

SKKP, which includes shelter belts, occupied an area of 475 ha in 2009. 



Geography of northern Uzbekistan 

21 

 

 

Figure 2.6: Agricultural land use in Khorezm and southern Karakalpakstan: a) 
cotton, b) winter wheat, c) rice, d) winter wheat – summer crop (on the 
photo: rotation with maize), e) sorghum, f) fallow uncultivated land, g) 
permanent crops (on the photo: apple trees), h) other crops (on the 
photo: sunflowers)  

In the study region, tree cultivation was introduced in the 1950s mainly to 

fulfill ecological functions by protecting agricultural fields from wind erosion and 

preventing desertification at the margins of the irrigated areas. Such tree plantations 

mainly include Morus, Populus, Ulmus, Salix, and Elaeagnus species (Appendix 8.1). 

The trees are usually planted as strips on field borders (tree windbreaks) and along on‐

farm canals (Tupitsa 2010). 
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Figure 2.7: Common species of the Tugai forest: Populus euphratica (top) and 
Tamarix species (bottom) 

Since 1991, the reform of the agricultural sector has taken place and has 

been characterized by state‐induced farm restructuring, land transfer from collective 

to individual use, state ownership of land, and area‐based state targets for cotton at 

fixed prices (Djanibekov et al. 2012a). Being planned according to the developed 

irrigation network, the boundaries of the field parcels in the cadastral maps have not 

been changed over last 20 years. 
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3 SPATIO-TEMPORAL ANALYSES OF CROPLAND DEGRADATION AT REGIONAL 

SCALE  

3.1 Introduction 

Dryland degradation manifests in the reduction of the productive potential of the land 

(Reynolds et al. 2007). It is a gradual process that becomes obvious particularly in the 

long run, and thus requires frequently recorded land‐productivity data spanning over 

years. As RS‐based vegetation indices (VIs) are proven as indicators for biomass 

productivity, the degraded land can be detected via analyses of their gradual changes 

(Tucker et al. 1985; Bai et al. 2008). In arid and semi‐arid areas, the sum of NDVI over a 

growing season (∑NDVI) is strongly correlated with the vegeta�on produc�on 

(Nicholson et al. 1998), revealing that a decreasing linear trend is a good indicator of 

the vegetation loss and can serve as an early warning of LD (Budde et al. 2004; Wessels 

et al. 2004). A statistical trend analysis is often applied to analyze satellite time series 

to detect spatial patterns and rates of land‐cover changes (Lambin and Linderman 

2006). Such analysis can separate seasonal and annual variations from long‐term 

phenomena (Sonnenschein et al. 2011), enabling mapping of land productivity changes 

caused by degradation processes (Eastman et al. 2009). This allows overcoming 

limitations of the commonly applied bitemporal change detection methods and 

mapping subtle land‐cover changes, caused by land‐use practices (Röder et al. 2008). 

Trend analysis of RS time series has been used to effectively describe a 

vegetation trend in natural environments (Sonnenschein et al. 2011) and agricultural 

ecosystems similar to the presented case (Fuller 1998; Tottrup and Rasmussen 2004). 

This analysis was routinely used for phenological and LD studies using a coarse‐scale 

imagery (Wessels et al. 2008; Reed et al. 2009). For example, the Global Inventory 

Modeling and Mapping Studies (GIMMS), Bai and Dent (2009) used the 23 years of 

NDVI datasets to reveal recent LD and improvement in China. Similarly, mapping of 

long‐term negative changes in savannah crop productivity in Senegal was implemented 

through trend analysis of time series of the AVHRR NDVI data and related to the LD 

problem (Tottrup and Rasmussen 2004). Wessels et al. (2004) used the AVHRR NDVI 
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time series (1985‐2003) for assessing the human impact on desertification in South 

Africa.  

Only a limited number of studies used satellite time series of medium and 

high spatial resolution, which are likely to be more appropriate for monitoring of 

fragmented landscapes of drylands (Sonnenschein et al. 2011). The reason is that the 

medium‐scale data, such as from MODIS, until recently did not cover sufficiently long 

periods to allow trend analyses (Prince et al. 2009; Fensholt and Proud 2012). The 

comparatively higher‐scale images from the Landsat program, recorded since 1972, are 

not always in place for all geographical areas, e.g., CA, on the frequent and repeatable 

basis required for trend analyses. The current availability of the over‐decade MODIS 

imagery gives an opportunity to advance LD monitoring of irrigated drylands. 

Despite a considerable amount of literature available on the subject of LD, 

only a few studies have explicitly linked this phenomenon with its factors (Gao and Liu 

2010). Some studies implemented statistical analyses to correlate observed trends 

with individual drivers. Bai and Dent (2009) analyzed relationships between degraded 

areas and LULC, population density, aridity index, and poverty in China. Vlek et al. 

(2008) correlated LD in sub‐Saharan Africa with population, terrain, soil, and LULC. The 

relative importance of factors contributing to the spread of LD in irrigated agricultural 

regions has been less studied. Information on the relevant LD factors can be gathered 

by integration of RS techniques and spatial statistical modeling.  

In this context, an adopted approach for mapping of irrigated cropland 

degradation in the study area included spatial analysis of the LD trend based on the 

MODIS‐NDVI time series (2000‐2010). To explain the observed trend and its causes, 

the areas of vegetation decline, used as a proxy of LD, were analyzed by comparing 

these with supplementary datasets, including environmental and socio‐economic 

parameters. Further, logistic regression modeling was used to assess the relative 

importance of the possible LD factors. These factors were employed to map areas at 

risk of LD as a means to draw attention to the degraded cropland in urgent need of 

rehabilitation. 
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3.2 Data sources and processing 

The data used in the study include (i) raster data: MODIS images (MOD13Q1, 

https://lpdaac.usgs.gov/) and (ii) vector data: LULC maps (2001‐2009) derived from the 

250‐m MODIS data, infrastructure and environmental data with accuracy mainly 

equivalent to a map scales 1:25,000, 1:50,000 and 1:100,000, and (iii) ancillary data: 

datasets of GWT and GWS. All raster and vector data were converted to the same 

coordinate system (ED 1950 UTM Zone 41N). The vector and ancillary data were 

collected from the ZEF/UNESCO project database (http://www.khorezm.zef.de/) and 

South Karakalpakstan Water Resources Management Improvement Project (Mott‐

MacDonald 2011); the LULC maps were developed by Machwitz et al. (2010). In 

addition, informal discussions and guided field visits were held with the irrigation 

engineers and cadastral mangers during field visits in 2010‐2012 (Appendix 8.2). 

3.3 Methods 

The analyses were performed in three stages: (i) LD mapping based on the MODIS‐

NDVI time series, (ii) relational analysis of the vegetation trends, and (iii) spatial logistic 

regression modeling. All stages involved data preparation, i.e., pre‐processing of the 

MODIS images and making a set of factor maps as inputs to the model. The spatial 

modeling stage included logistic regression analysis comprising a multicollinearity 

check, modeling, and validation. Subsequently, the model results were used to 

produce a risk map of LD. 

3.3.1 Linear trend analysis 

Following a trend analysis of remote‐sensing time series, long‐term changes could be 

described in vegetation productivity (e.g., Sjostrom et al. 2011; Fensholt and Proud 

2012), land surface phenology (e.g., de Beurs and Henebry 2004; Verbesselt et al. 

2010b), land cover (Propastin et al. 2008; Lhermitte et al. 2011), and LD (Budde et al. 

2004; Wessels et al. 2007; Bai et al. 2008; Röder et al. 2008; Paudel and Andersen 

2010). In arid and semi‐arid environments, the sum of NDVI over the vegetation 

growing season (ΣNDVI) was strongly correlated with the vegetation [including crop] 

productivity (Nicholson et al. 1998; Hilker et al. 2008). For example, Rasmussen (1998) 
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showed a high correlation between sorghum and millet crop yields and ΣNDVI in 

Senegal. Hence, a decreasing ΣNDVI trend can be used as an indicator of the 

vegetation loss and serve as an early warning of the LD occurrence (Tottrup and 

Rasmussen 2004; Wessels et al. 2004).  

Among the methods used to analyze time series of satellite images, i.e., 

principal component analysis (Eastman and Fulk 1993), harmonic regression (Eastman 

et al. 2009), change vector analysis (Lambin and Ehrlich 1997), and Fourier 

transformation (Jeganathan et al. 2010), the trend analysis provides a clearly 

interpretable and consistent measure of change, regardless of study area and time 

period considered (Rigina and Rasmussen 2003; Verbesselt et al. 2010a; Fensholt and 

Proud 2012). Moreover, in contrast to the other methods, trend analysis is capable of 

quantifying gradual degradation processes within one land‐use class, thus allowing 

monitoring subtle land‐cover changes, caused by degradation (Röder et al. 2008). 

In this study, the time series of NDVI images, acquired from the MODIS 

MOD13Q1 product (collection 5) for the period 2000‐2010, were used. The 250‐m 

MODIS imagery was selected due to its higher spatial and temporal resolution 

compared to the other easily accessible RS time series spanning over longer time 

periods. The MOD13Q1 datasets are atmospherically corrected (Vermote et al. 2002) 

and composed of the best observations during 16‐day periods with regard to overall 

pixel quality (aerosol content, low view angle, and absence of clouds/cloud shadows) 

and observational coverage (Justice et al. 2002).  

The data were pre‐processed by (i) identifying and removing low‐quality 

pixels based on the data quality flags specified in MOD13Q1, (ii) filling data gaps with 

linear interpolation, and (iii) smoothing images with an adaptive Savitsky‐Golay filter 

(Jonsson and Eklundh 2002). During the smoothing procedure, the data quality flags 

were applied to weigh the data; higher weights were assigned to higher‐quality pixels, 

while lower‐quality data had a minor influence on the curve fit (Figure 3.1). The ΣNDVI 

was calculated for each crop growing season (April‐October) of the years 2000 till 2010 

from the preprocessed NDVI time series.  
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Figure 3.1: Raw and smoothed 16‐day, 250‐m MODIS‐NDVI time series of one pixel  

For each pixel on the map, trend coefficients, regression constant (a) and 

coefficient of linear regression (b), were calculated using a least‐square fit for every 

pixel according to: 

     f(x) = b × x + a        (3.1) 

where �(�) is a ΣNDVI over the crop growing season at year �.  

The slope of the trend b shows the direction and magnitude of the vegetation changes 

over the analyzed period of time. As these parameters are calculated pixel‐wise, the 

derived temporal changes can be shown in a spatially differentiated way (Röder et al. 

2008). 

The statistical significance of the estimated trend was tested with a T‐test. 

The class boundaries were defined for 90% and 95% confidence levels. The resulting 

trend map was regrouped into four classes (Table 3.1). A detailed analysis of neutral 

and positive slopes of the linear trend was outside the scope of this study, where the 

main research focus was on LD. 

Table 3.1: Definition of classes for mapping the negative vegetation trend in the 
study area  

Class name Class boundary 

High negative vegetation trend P‐values of the negative slope > 0.025*  

Medium negative vegetation trend P‐values of the negative slope > 0.05* 

Low negative vegetation trend P‐values of the negative slope <0.05*  

Other  Other slope values 

* P-values of both tails of the distribution 
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The quality of the calculated trends can be evaluated by assessing the impact 

of the errors associated with a particular image and its position in the time series 

(Hostert et al. 2003). The effect is greater at the beginning and end of the time series, 

while errors in the middle of the series have less influence on the direction of the trend 

(Röder et al. 2008). To test an impact on the trend by individual scenes, the calculated 

trend map was compared to the full set of 11 ∑NDVI images and 2 reduced sets of 10 

images without the 2000 and 2010 scenes. In addition, direct field observations were 

conducted for validation of the derived trend map. Altogether, 828 fields bigger than 

6.25 ha were randomly sampled in summer 2011 (Figure 2.3). For sampling, two 

classes were considered: class ‘degraded land’, representing the first two classes and 

the class ‘other’ (Table 3.1).  

3.3.2 Relational analysis of land degradation and its factors 

The areas that showed a significant negative vegetation trend were spatially related to 

the ancillary datasets, i.e., population density, land use, soil quality, and terrain, to 

interpret the decline in vegetation productivity, and specify the direction of any 

remedial action. In the irrigated study area, vegetation cover fluctuates depending on 

the stage of crop growth, which is influenced by irrigation water availability, soil 

quality, and the intensity of land use. Population density and changes in land use were 

taken as a proxy for the intensity of land use (Vlek et al. 2008; Bai and Dent 2009). 

Irrigation overrides the usually strong relationship between vegetation productivity 

and precipitation observed in rain‐fed agricultural and natural ecosystems (e.g., 

Wessels et al. 2007). Reduced irrigation water supplies negatively influence vegetation 

growth in the study region as experienced in the cropping seasons of 2000‐2001 and, 

to a lesser extent, in 2008 and 2011 (Tischbein et al. 2012). In other years, the annual 

water supply to the study region through the Tuyamuyun reservoir remained stable 

between 2000 and 2010, except during the drought years 2001, 2002, and 2008 (Figure 

2.5 and Appendix 8.4). In addition, the total size of the irrigated area hardly changed 

during this period, and the main crops cotton and winter wheat were irrigated 

according to the standardized guidelines (Rakhimbaev et al. 1992). 
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Natural soil fertility is an important factor to consider in the analysis of LD. It 

not only determines land suitability for agriculture, but can also serve as an indicator 

for vulnerability to LD, since low‐quality soils are more prone to degradation. Soil 

bonitation is a measure of a relative quantitative assessment of land suitability for 

cropping introduced in Soviet times and still used in many post‐Soviet countries 

(Ramazonov and Yusupbekov 2003). It is an aggregate of several parameters, varying 

from the physical soil characteristics (e.g., texture) to chemical soil properties (e.g., 

salinity) (Karmanov 1980). Values range from 0 to 100 points, grouped in four fertility 

rate classes: class VI ‘low’ (<40 points), class III ‘average’ (41‐60 points), class II 

‘increased’ (61‐80 points), and class I ‘very high’ (81‐100 points). To analyze how 

degraded cropland is distributed within these bonitation classes, each of the pixels 

marked as degraded was differentiated according to the corresponding bonitation 

class. 

In a next step, spatial distribution of LD was analyzed with respect to slope. In 

general, terrain characteristics such as elevation and slope define also land suitability 

for agriculture. For example, cropland with an elevation of more than 3500 m asl or 

slopes >25° (ca. 47%) is considered unsuitable for cropping (e.g., Sheng 1990). The 

terrain of the agricultural study area is flat with elevations ranging between 85 m and 

205 m and slopes of below 10%, except in the very north of the SKKP, where slopes 

could reach up to 27%. On the other hand, the flat, low‐laying terrain restricts natural 

outflow of water, making it susceptible to soil salinization, which is at present wide‐

spread (Ibrakhimov et al. 2007). Likewise, the supply of irrigation water and its 

distribution over the fields depends on terrain characteristics (Martius et al. 2012), 

eventually impacting crop growth.  

The following analysis differentiated LD in relation to population density as a 

proxy for population pressure, as recommended by the Global Assessment of Human‐

induced Soil Degradation (GLASOD) (Oldeman et al. 1990). The population densities 

were calculated per water user association (WUA), now called water consumer 

associations, within every district in Khorezm and the SKKP in 2009‐2010, since 

statistics were only available for this administrative level (UZSTAT 2010b). The 
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population densities were then reclassified into the four classes using a natural breaks 

algorithm: low density (0‐2 pers/ha), medium density (2‐17 pers/ha), high density (17‐

39 pers/ha), and very high density (39‐79 pers/ha).  

In the study area, two agricultural land‐use periods can be distinguished: a 

spring season (October‐June) dominated by winter wheat, and a summer season 

(April‐October) dominated by cotton. The NDVI temporal profiles differ between spring 

and summer crops and among the summer crops (Conrad et al. 2011). Although the 

cropping pattern is largely consistent due to the cotton‐wheat policy, a choice of the 

summer crop (after the harvest of winter wheat in June) or fallowing land can alter the 

NDVI trend. To avoid misinterpretation due to changes in cropping patterns, the 

negative NDVI trend map was cross‐referenced with the land‐use data. The LULC maps 

for the years 2001‐2009 (Machwitz et al. 2010) were used for this analysis. In case the 

agricultural land use of one pixel remained unchanged for six years between 2001 and 

2009, these areas were described as ‘no change’ areas. The same approach was used 

to derive a map of abandoned cropland, which was defined as a land in fallow for at 

least six years during the monitoring period. Previous studies in Khorezm showed that 

land abandonment occurred mostly in areas least suitable for cropping due to low 

water availability, uneven terrain, infertile soils, shallow GWT, and declining irrigation 

infrastructure (Dubovyk et al. 2012a). 

3.3.3 Spatial logistic regression modeling 

Data compilation for logistic regression  

The list of factors determining LD in the study area was summarized based on informal 

discussions with local experts from the ZEF/UNESCO Khorezm project 

(http://www.khorezm.zef.de/) and a review of literature for the study region (e.g., 

Akramkhanov et al. 2011; Ibrakhimov et al. 2011). In addition to the factors described 

in section 3.3.2, the identified factors ranged from groundwater and relief 

characteristics to land ownership and management. The main factors for which the 

data were available served as inputs to the logistic regression model (Table 3.2). 

The corresponding factor maps were prepared for each factor (independent 

variables xi). The nature of the maps was binary (presence of a factor = 1, absence = 0) 
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and continuous; they had the same spatial extent, 250 m × 250 m cell size, map 

projection, and coordinate system. The binary map for the dependent variable (y) was 

represented by the significant negative ΣNDVI trend through merging the classes ‘high 

negative vegetation trend’ and ‘medium negative vegetation trend’ into a new class 

‘degraded land’ (section 3.3.1). 

Table 3.2: Variables included in the spatial logistic regression model 
Variable  Description Nature of 

variable 

I Dependent y Degraded land (1–degraded land, 0–not) Binary 

II Independent: 

a) Site‐specific characteristics 

Change in land use  x1 Change in land use (1–no change, 0–change) Binary 

Uncultivated land 
x2 

Uncultivated land (1–lack of cultivation; 0–

cultivation) 

Binary 

Soil bonitation I* x3 Class I “very high” (1–class I, 0–other classes) Binary 

Soil bonitation II 
x4 

Class II “increased” (1–class II, 0–other 

classes) 

Binary 

Soil bonitation III 
x5 

Class III “average” (1 – class III, 0 – other 

classes) 

Binary 

Soil bonitation IV x6 Class IV “low” (1 – class IV, 0 – other classes) Binary 

Canal density x7 Density of irrigation canals (m/m2) Continuous 

Collector density x8 Density of drainage collectors (m/m2) Continuous 

Water use 
x9 

Average delta of water use per district 

(million m3) 

Continuous 

Slope x10 Slope (%) Continuous 

Groundwater table x11 Level of groundwater table (m) Continuous 

Groundwater salinity x12 Groundwater salinity (g/l) Continuous 

b) Proximity characteristics 

Proximity to canals x13 Proximity to irrigation canals (m) Continuous 

Proximity to 

collectors  
x14 

Proximity to drainage collectors (m) Continuous 

Proximity to 

pumps** 
x15 

Proximity to water pumps (m) Continuous 

Proximity to roads x16 Proximity to roads (m) Continuous 

Proximity to 

settlements 
x17 

Proximity to settlements (m) Continuous 

Proximity to water 

bodies 

x18 Proximity to lakes and the Amu Darya River 

(m) 

Continuous 

* Class soil bonitation I does not occur in the SKKP 
**Available only for Khorezm region  
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The site‐specific characteristics included land use (change in land use, lack of 

cultivation), soil suitability for crop production (as determined by soil bonitation), 

density of irrigation and drainage network, irrigation water use, slope, GWT level and 

GWS. The information on land‐use change and lack of cultivation were derived from 

the LULC maps for 2001‐2009 based on post‐classification comparison.  

For Khorezm, the maps of GWT levels and GWS were derived via spherical 

kriging interpolation based on values measured in April, July and October and averaged 

over the years 1990‐2004 for 1,798 observation points, as suggested by Ibrakhimov et 

al. (2007). These authors showed that GWT and GWS did not significantly fluctuate 

over the years except for the drought year 2000. Thus, the 1990‐2004 data were 

assumed a reasonable approximation for the time period 2000‐2010 covered by the 

NDVI analysis. As the natural and socio‐economic conditions are similar in Khorezm 

and the SKKP, the same method was used for interpolation of GWT and GWS in the 

SKKP based on values measured in April, July and October and averaged over the years 

2006‐2009 for 721 observation points. 

Available shapefiles of irrigation and drainage network were used to calculate 

the density of canals and drains. Factor maps depicting proximities to roads, 

settlements, irrigation canals, drainage collectors, and water bodies were derived 

based on the Euclidean distances. The water use, showing differences in water supply, 

was calculated per district for each pair of years 2000‐2010 and averaged over 11 years 

for the study area.  

Logistic regression  

Coupled with GIS, logistic regression is an appropriate tool for explanatory analysis of 

the factors of LULC changes (Menz et al. 2010). In this study, this model was applied to 

quantify the contribution of the LD factors and to identify areas at risk of LD. Spatial 

distribution of LD was explained as a function of these factors (Table 3.2). The nature 

of LD was regarded as binary, where values 1 and 0 were used to denote its presence 

and absence, respectively. Consequently, the probability of LD occurring was 

computed with a logistic regression model (Eq. 3.2) (Hosmer and Lemeshow 2000): 

    P(y)=1/1+����(���∑ ��
�
��� ��	)        (3.2) 
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where P(y) is probability of the dependent variable y being 1 given the independent 

factors x1…xn, ß0 is an intercept of the model, ßi (with: 1<=i<=18) are estimated model 

parameters, which can be interpreted by analyzing odds of the model (Rothman et al. 

2008). Considering differences in data availability, separate models were built for 

Khorezm and the SKKP. 

To avoid multicollinearity among model predictors, Variance Inflation Factors 

(VIF) were calculated, and correlated factors were removed when VIF exceeded the 

threshold value of 5 (Belsley et al. 1980). The sample size for logistic regression of 

8,112 observations for Khorezm and 2,939 observations for the SKKP resulted from the 

systematic unbalanced random sampling with a 3×3 cell window (750 m × 750 m). 

Sampling was applied to minimize the impact of spatial dependency between 

observations, which might cause unreliable estimation of the model parameters (Irwin 

and Geoghegan 2001). The sample was equally divided into calibration and validation 

datasets. The former was used to fit the logistic regression following a backward 

stepwise procedure. The resulting stepwise model was compared to the ordinary 

model with a Receiver Operating Characteristic test (ROC; Hanley and McNeil 1982), 

which checks the equality of the area under ROC curve (AUC) of each modality. The 

best‐performing model was selected to generate the LD risk maps for Khorezm and the 

SKKP.  

Model validation  

The statistical measures ROC and Percentage of Correct Predictions (PCP) were 

calculated to evaluate the model performance (Christensen 1997). The AUC ROC value 

ranges from 0 to 1, where 1 indicates a perfect fit and 0.5 indicates a random fit, 

(Pontius and Schneider 2001). The PCP is defined as the percentage of correctly 

predicted pixels to the total number of pixels in the map.  

For validation, the final model was applied to the validation dataset, and the 

probability of LD was computed for every pixel with the fitted logistic regression model 

(Eq. 3.2). The AUC ROC and PCP were used for comparison of the actual degradation 

and computed probabilities. In the case of the PCP, the modeled degradation was 

assigned to the pixels, i.e., if the probability exceeded a commonly accepted threshold 
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value of 0.5, the cell was marked as degraded land (Manel et al. 1999). In addition, the 

goodness of fit was evaluated with chi‐square statistics (Moore and McCabe 1998).  

3.4 Results and discussion 

3.4.1 Linear trend analysis 

The mean seasonal NDVI and significant negative slope of the NDVI trend over the 

years 2000‐2010 are shown in Figure 3.2. For each pixel in the ΣNDVI‐based trend map 

(Figure 3.2b, Figure 3.3), the retained value was the slope of the fitted linear 

regression between the values of each pixel over time and a perfectly linear time 

series; thus, the results express the rate of vegetation loss per observation year. The 

maps reveal the overall correspondence between the low NDVI values (Figure 3.2a) 

and areas of vegetation decline (Figure 3.2b). The low vegetation cover, found along 

the southern border of Khorezm and in the north and north‐west of the SKKP (Figure 

3.2a), reflects the less intensive use of the cropland compared to the rest of the 

agricultural areas during the monitoring period (Dubovyk et al. 2012b). 

Around 40% (331,597 ha) of the study region experienced significant 

vegetation trends of a different magnitudes during 2000‐2010. A pixel‐wise trend of 

vegetation decline, expressed via a negative slope of the linear trend, highlighted the 

areas of a considerable and alarming loss of vegetation cover, thus signifying LD (Figure 

3.2b, Figure 3.3). 

Overall, the spatial distribution of the LD trend was highly variable, but several clusters 

were distinguished mainly on the outskirts of the irrigation system near the borders 

with the Karakum (Yangiaryk and Khiva districts) and Kyzylkum deserts (north of the 

Ellikkala district and north and north‐east of the Turtkul districts). These areas, located 

on the edges of the irrigated cropland, were characterized by a relatively low 

vegetation cover at the beginning of the observation period, and experienced gradual 

vegetation losses thereafter. A big cluster of degraded land was found in the western 

part of Khorezm (north of the Kushkhupyr, Yangibazar, and Shavat districts) in the 

former riverbed of the Amu Darya River. 
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Another cluster was formed in the northern and north‐eastern part of the SKKP where 

problems of irrigation water supply were reported (Dubovyk et al. 2012b). Smaller 

degraded patches were scattered throughout the region and did not show any 

particular spatial pattern. 

 

Figure 3.3: Negative vegetation trend in Khorezm and Southern Karakalpakstan, 
calculated from slope of linear trend of NDVI time series, summed over 
the growing seasons 2000‐2010 

An increasing trend in vegetation occurred on 19.6% (80,538 ha) of the arable 

area, mostly along the banks of the Amu Darya River and near irrigation canals. The 

vegetation cover on 38% (156,225 ha) of the agricultural area did not change (not 

shown here). In Khorezm, a very close association (R2=0.98) of LD hotspots and the soil 

bonitation class IV, which characterizes soils with inherently low fertility, confirmed the 

low suitability of this land for cropping. As revealed by the calculated trend on desert 

margins in the southwest, this low‐bonitation cropland experienced the strongest 

decline in vegetation cover and was abandoned.  

The distribution of negative trends per district area is shown in (Table 3.3). 

About 21% of the overall area of the study region experienced degradation processes 
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of low, medium and high magnitude during 2000‐2010. The areas with the low and 

high negative trend yielded higher percentages compared to the area with the 

medium‐magnitude trend. In Khorezm and the SKKP, a similar proportion of the area 

was affected by the high and medium trends, i.e., about 14% and 16%, respectively. In 

Khorezm, the Khazarasp district had the largest area percentage affected by LD, while 

the Beruniy district of the SKKP was more affected by LD compared to the other 

districts. 

The cross validation, implemented between two pairs of the trend maps 

(trend map, based on the full set of images and two reduced sets) yielded overall 

agreement of 86% and 90%, while omitting images from 2000 and 2010, respectively. 

This confirms the robustness of the calculated trend. The validation of the trend map, 

based on the field data, yielded an overall accuracy of 68%, i.e., 72% for Khorezm and 

66% for the SKKP. The results of this assessment confirm the validity of the elaborated 

approach.  

The robustness of the calculated LD trend was comparable with that 

observed in other dryland studies using trend analysis (Hostert et al. 2003; Röder et al. 

2008). The result of the comparison of the trend map, based on direct field 

observations, was similar to or higher than the accuracies reported in related studies. 

For example, Chen and Rao (2008) yielded an overall accuracy of 65% for the regional 

LD map derived from the MODIS data in a transition zone between grassland and 

cropland in northeast China. The resulting degradation trend was also comparable with 

that observed in other studies in CA, suggesting a reliability of the obtained results. 

While using the Mann‐Kendall trend analysis of the 300‐m Medium Resolution Imaging 

Spectrometer (MERIS) NDVI time series for the years 2003‐2011, Dubovyk et al. 

(2012c) revealed similar spatial patterns of a negative ΣNDVI trend for the same study 

area (Appendix 8.3). The assessment by Propastin et al. (2008) of vegetation trends in 

CA, based on 1‐km AVHRR time series, showed the presence of the negative linear 

trend for our study region in the rate from ‐10% to ‐20% already in the summer 

seasons 1982‐2003. 
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In this study, the LD trend was analyzed based on a decrease in the 

vegetation cover which, in land‐use systems, may also occur due to changes in land 

management (Bai and Dent 2009). In Uzbekistan, the land‐use decisions largely 

remained unchanged during the study period given the area‐based, state production 

targets for cotton and the prevalence of cotton and winter wheat in the cropland area 

(UZSTAT 2010a; Mott‐MacDonald 2011). Furthermore, summing of NDVI over the 

whole growing season, thus integrating vegetation peaks in the fields with different 

land uses, reduced the possibility of misinterpretations, particularly for the remaining 

land fraction with a variable cropping pattern. This approach was previously applied in 

studies conducted in arid and semi‐arid cropland environments (Fuller 1998; Tottrup 

and Rasmussen 2004). 

For this assessment, seasonality in the data was dealt with by integrating 

NDVI over the crop growing seasons (e.g., de Jong et al. 2011). In irrigated croplands of 

Uzbekistan, the effects of precipitation on NDVI trends can be neglected due to its 

minor influence on vegetation dynamics in contrast to the effects of irrigation water 

management, which cannot be assumed constant (Dubovyk et al. 2013a). Although the 

standard guidelines are reportedly followed for crop irrigation, the regional water 

supplies fluctuate from year to year, drastically decreasing during seasonal and long‐

term droughts (Tischbein et al. 2012). Nevertheless, the existing yield quotas assigned 

for the dominant crops allow the assumption that, to fulfill these production targets in 

drought years, the fertile croplands are prioritized in leaching and irrigation decisions 

rather than the areas of low bonitation. Such strategy is likely to aggravate the LD 

processes occurring in these areas. The absence of reliable and spatially explicit 

information prevented the quantification of water‐related effects on the degradation 

trend but should be addressed in the follow‐up study if the necessary data are 

available. 

The use of time series with a finer spatial resolution than the 250‐m MODIS 

data could disclose an additional level of information, particularly considering the 

patchy structure of the agricultural landscape in the study area. With respect to the 

direction of the LD trend and its landscape patterns, results from coarse and fine 
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resolution imagery are expected to correspond, based on the experience of Stellmes et 

al. (2010) in Mediterranean drylands.  

In a recent study, based on the example of the South African semi‐arid 

rangelands Wessels et al. (2012) showed that timing and rate of the degradation 

influence the detectability of the degradation trend. The authors demonstrated that 

trend analyses are able to detect only the extreme degradation in ΣNDVI lasting 

several years. A further study should, therefore, investigate in more detail how and 

why the changes in trends emerge under these particular environmental and land‐use 

conditions. Nevertheless, RS‐based assessment is currently the only means for 

monitoring vegetation dynamics at a regional scale. 
 

3.4.2 Spatial analysis of land degradation trend 

Relational analysis of land degradation and its factors 

Spatial patterns of the LD trend were overlaid with the maps of soil bonitation (Figure 

3.4a,Table 3.4) and slope (Figure 3.4b, Table 3.5). Almost 50% of the degraded areas 

were found within the low‐bonitation classes IV and III. These areas, less suitable for 

agriculture due to soil quality constraints, require the urgent attention of land 

managers to decide on mitigation measures and cultivation techniques to forestall LD 

or whether to vacate land from cultivation.  

Table 3.4: Area of soil constraints (bonitation) classes calculated for the degraded 
land as revealed by the negative ΣNDVI trend over 2000‐2010 

Bonitation class 
Total degraded 

area, ha  

% of irrigated 

cropland 

% of degraded land 

within bonitation 

class 

Negative trend‐Bonitation IV 27,762.50 6.77 29.27 

Negative trend‐Bonitation III 17,287.50 4.22 18.23 

Negative trend‐Bonitation II 13,181.20 3.21 13.90 

Negative trend‐Bonitation I 112.50 0.03 0.12 

No bonitation data 36,491.20 8.90 38.48 

Total 94,834.90 23.13 100.00 

 
Around 14% of the cropland degradation was observed in areas with the 

steepest slopes (2‐10%). The local differences in the land relief play an important role 

in water distribution and management. Water pumping from the main irrigation canals 
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into lower‐level channels is commonly practiced in the elevated areas on the south‐

western border of Khorezm and in the SKKP when electricity costs can be afforded 

(Dubovyk et al. 2012b). The importance of micro‐topographical features for soil salinity 

distribution on field level was reported by Akramkhanov and Vlek (2012), who used 

neural networks to study the impact of environmental and management factors on the 

spatial patterns of soil salinity in Khiva district of Khorezm. In our analysis, the 

observed small percentages of degradation on the elevated areas are due to the fact 

that slopes steeper than 6% are found only on about 1% of the study area. The use of 

higher spatial resolution datasets may disclose more details of degradation distribution 

with respect to the terrain that were partly masked out by the 250‐m cell size. Yet, 

even the use of the coarse data was confirmed by the field‐level analysis limited in 

space.  

Table 3.5: Area of terrain constraint (slope) classes calculated for the degraded 
land as revealed by the negative ΣNDVI trend over 2000‐2010 

Slope class 
Total degraded 

area, ha 

% of irrigated 

cropland 

% of degraded land 

within slope class 

Negative trend slope 0‐2% 81,168.75 19.80 85.59 

Negative trend slope 2‐4% 12,941.15 3.16 13.65 

Negative trend slope 4‐6% 556.25 0.14 0.59 

Negative trend slope 6‐10% 168.75 0.04 0.18 

Total 94,834.90 23.13 100.00 

 
The map in Figure 3.4e shows clearly that most of the degraded areas have a 

low population density and constitute marginal land of limiting carrying capacity 

(compare Figure 3.4a and Figure 3.4e). Cropping of such marginal land is not profitable 

for farmers (Djanibekov et al. 2012b), and is likely to aggreveate degradation 

processes. About 3% and 19% of the degraded land were found in the areas of high 

and medium population pressure, respectively, mostly in the central parts of the study 

region (Table 3.6). Considering the high population pressure on this land, restoration 

of such land should be prioritized to sustain the livelihoods of the people.  

Up to 15% of the degradation area was found within the areas of stable 

agricultural land use (Figure 3.4c, Table 3.7), out of which about 7% was mainly fallow 

land (Figure 3.4d, Table 3.7). The latter are usually characterized by low‐bonitation 
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values (compare Figure 3.4a and Figure 3.4d), and are often abandoned from 

cultivation, particularly in drought years (Dubovyk et al. 2013a). These areas have lost 

their protective vegetation cover, and should be prioritized for rehabilitation measures 

that aim at establishing a healthy vegetation cover. This could be achieved by planting 

salt‐tolerant crops, such as sunflowers (Gao and Liu 2010). 

The present analyses were also subject to data constraints, particularly on the 

irrigation water distribution. The analytical framework of the study is, however, valid 

and can be applied again when additional data are available.  

Table 3.6: Area of population density classes calculated for the degraded land as 
revealed by the negative ΣNDVI trend over 2000‐2010 

Population density 
Total degraded area, 

ha 

% of irrigated 

cropland 

% within 

population  

density class 

Negative trend‐low density    

(0‐2 pers/ha) 
635,37.50 15.5 67.00 

Negative trend‐medium density 

(2‐17 pers/ha) 
181,56.25 4.43 19.15 

Negative trend‐high density 

(17‐39 pers/ha) 
241,8.75 0.59 2.55 

Negative trend‐very high 

density (39‐79 pers/ha) 
287,50 0.07 0.30 

No data 104,34.9 2.55 11.00 

TOTAL 94,834.9 23.13 100.00 
 

Table 3.7: Area of land‐use classes calculated for the degraded land as revealed by 
the negative ΣNDVI trend over 2000‐2010  

Land-use class 
Total degraded 

area, ha 

% of irrigated 

cropland 

% within 

land-use 

class 

Negative trend‐No land‐use changes 59,384.90 14.48 62.62 

Negative trend‐Land‐use changes 35,450.00 8.65 37.38 

Negative trend‐Fallow 28,578.65 6.97 30.14 

Negative trend‐Not fallow 66,256.25 16.16 69.86 
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Figure 3.4 Spatial distribution of degraded areas in relation to soil bonitation (a), 

terrain (b), land use (c, d) and population density (e) 

Spatial logistic regression modeling 

Statement of logistic regression model and interpretation  

For the Khorezm model, after the multicollinearity check, the final list of LD factors 

(Table 3.8) was reduced by one variable, i.e., soil bonitation class IV “low” (x6), with the 
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corresponding VIF value of 6.23. Two models were built: the full model incorporating 

all variables, and the reduced model resulting from the backward stepwise procedure. 

The ROC test yielded a significant result with p‐values < 0.05 (α = 0.05), suggesting a 

difference in prediction power between these models. Thus, the full model was 

employed for logistic regression. The final full model was significant with chi‐square 

values of 801.11 and corresponding p‐values < 0.001 (α = 0.05). The model validation 

results with an AUC ROC value of 0.70 suggesting a good prediction power which 

exceeds a random assignment by 20%. The PCP of 69% indicates higher than average 

agreement between predictions and reality.  

The logistic regression ruled out statistically insignificant variables, including 

all bonitation classes (x3, x4, and x5), density of canals and collectors (x7, x8), and 

proximity to collectors, pumps, and water bodies (x14, x15 and x18) (Table 3.8).  

Table 3.8 : Estimated parameters of logistic regression model for Khorezm 

Variable  Coefficient (ßi) Odds, % 
Standard 

error 
z 

P > 

|z| 

Change in land use x1 0.14 14.76 0.08 2.04 ** 

Uncultivated land x2 0.71 102.72 0.26 5.59 **** 

Soil bonitation I x3 0.40 48.59 0.62 0.95 n.s 

Soil bonitation II x4 0.01 1.16 0.08 0.13 n.s 

Soil bonitation III x5 ‐0.12 11.34 0.07 ‐1.57 n.s 

Soil bonitation IV x6 Omitted due to multicollinearity 

Canal density x7 ‐0.00 ‐0.27 0.00 ‐1.45 n.s 

Collector density x8 0.00 0.00 0.00 0.41 n.s 

Water use X9 ‐0.09 ‐9.71 0.02 6.86 **** 

Slope x10 0.25 28.96 0.15 2.23 ** 

Groundwater table x11 1.46 329.73 0.65 9.71 **** 

Groundwater salinity x12 0.23 25.96 0.07 4.13 **** 

Proximity to canals x13 0.08 8.39 0.02 4.91 **** 

Proximity to collectors  x14 ‐0.02 ‐1.49 0.02 0.62 n.s 

Proximity to pumps x15 0.00 0.28 0.00 0.65 n.s 

Proximity to roads x16 0.04 3.62 0.01 ‐4.81 **** 

Proximity to settlements x17 ‐0.02 ‐1.75 0.01 2.06 ** 

Proximity to water 

bodies 
x18 

 
1.57 0.01 0.63 n.s. 

Constant ßi ‐3.55 ‐ 0.16 ‐22.33 **** 

* =< 0.1; ** =< 0.05; *** =< 0.01; **** =< 0.001; n.s. = not significant 
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In accordance with the estimated model parameters, the level of GWT, 

uncultivated land, slope, and GWS had the strongest impact on the spatial distribution 

of LD in Khorezm (Table 3.8). Specifically, the degraded areas were associated with the 

land that was abandoned from cultivation for six or more years, and that were 

characterized by a deeper GWT level and steeper slopes. The odds of LD were 330%, 

103% and 29% higher on land with deeper GWT level, uncultivated land, and areas 

with steeper slopes, respectively, than on other land. These results correlate with the 

observed clusters of the negative vegetation trend. There, irrigation water is supplied 

up to the elevated areas via pumps, which are not in use when maintenance and 

electricity costs cannot be afforded.  

The importance of GWS was reflected by the odds of the factor x12, 

suggesting that an increase in GWS by 1 g/l increases the chance of LD by 26%. The 

availability and distribution of water were also observed to influence the spatial 

patterns of LD. The negative relation with the factor water use (x9) showed that 

degraded areas tended to occur in the districts with shorter water supplies. The areas 

further away from the irrigation canals (factor x13) were more prone to degradation. 

Degradation dependence on the vicinity to roads (x16) indicates that easily accessible 

land was better managed. Though the estimated odds of the factor proximity to 

settlements (x17) showed a negative relation to degradation, the low value indicates a 

comparatively weak influence on the observed spatial patterns. 

In explaining the LD trend with logistic regression, the influence of contiguous 

areas with the relatively deep GWTs outweighed that in scattered land patches with a 

shallower GWT. This contrasts with the expected impact of a shallow GWT, which 

causes soil salinization and thus LD. However, given that the deeper GWT was 

observed on cropland abandoned from cultivation for at least six years, a deepened 

GWT can be a consequence of reduced irrigation inputs. The GWT levels observed in 

these locations remained above the critical threshold of 2 m (Ibrakhimov et al. 2007), 

thus still posing the risk of soil salinization and, therefore, decline in crop growth. 

Akramkhanov and Vlek (2012) in Khiva district of Khorezm also identified higher soil 
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salinity when the GWT was deeper, and attributed this phenomenon to great 

differences in capillary fluxes in various soil textures.  

For the SKKP model, multicollinearity of independent variables was not 

significant and subsequently all variables were employed for modeling. The ROC test 

between the full model, incorporating all variables, and the reduced model resulting 

from the backward stepwise procedure, yielded a non‐significant result with p‐values > 

0.05 (α = 0.05), suggesting a difference in prediction power between these models. 

The reduced model was, therefore, employed for logistic regression.  

The final model was obtained on the eighth backward step after elimination 

of the predictor x1 (p=0.33, α=0.05), x4 (p=0.57, α=0.05), x9 (p=0.09, α=0.05), x10 

(p=0.16, α=0.05), x13 (p=0.21, α=0.05), x16 (p=0.93, α=0.05), x17 (p=0.10, α=0.05), and x18 

(p=0.87, α=0.05). The model was significant with chi‐square values of 108.84 and 

corresponding p‐values < 0.001 (α = 0.05). The model validation results with an AUC 

ROC value of 0.88 suggesting a very good prediction power. The PCP of 91% indicated 

very good agreement between predictions and reality. A summary of the results of the 

SKKP model is presented in Table 3.9  

Table 3.9: Estimated parameters of logistic regression model for Southern 
Karakalpakstan 

Variable  Coefficient (ßi) Odds, % Standard 

error 

z P > 

|z| 

Uncultivated land x2 1,58 383,72 2,75 2,77 *** 

Soil bonitation III X5 1,31 73,03 0,15 ‐2,44 ** 

Soil bonitation IV X6 1,69 81,61 0,09 ‐3,57 **** 

Canal density x7 ‐0,97 ‐164,43 0,62 ‐4,14 **** 

Collector density x8 ‐0,44 ‐54,61 0,20 ‐3,13 *** 

Groundwater table x11 ‐0,02 ‐2,04 0,01 ‐2,37 ** 

Groundwater salinity x12 1,75 474,62 3,10 3,24 **** 

Proximity to collectors  x14 0,00 0,001 0,00 ‐2,38 ** 

Constant ßi 0,46 ‐ 0,99 0,74 * 

* =< 0.1; ** =< 0.05; *** =< 0.01; **** =< 0.001; n.s. = not significant 

 
In accordance with the estimated model parameters, GWS, uncultivated land, 

and irrigation canal density had the strongest impact on the spatial distribution of LD 

in the SKKP (Table 3.9). Specifically, the degraded areas were associated with the land 

that was located in the areas with a less developed irrigation network (x7, x8, x14 ) and 
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abandoned from cultivation (x2) for six or more years, and characterized by a higher 

level of GWS (x12) and shallower GWT (x11). The odds of LD were 475%, 384% and 164% 

higher on land characterized by higher GWS, uncultivated land, and areas with a less 

dense irrigation network, respectively, than on other lands. The LD was associated with 

the poor‐quality soils, as odds were 82% and 73% higher on land with the soil 

bonitation IV (x5) and III (x6), respectively, than on other lands. These results correlate 

with the mapped clusters of the negative vegetation trend (Figure 3.3), and were 

confirmed during the informal discussions with the irrigation engineers during the field 

campaigns. In the northern and north‐eastern part of the SKKP, where the main 

clusters of LD were observed, the irrigation network is less developed compared to the 

rest of the territory, maintenance problems are also reported (Mott‐MacDonald 2011). 

The results of the logistic regression models for Khorezm and the SKKP 

confirm the occurrence of degradation on the land abandoned from crop cultivation, 

suggesting the need for prioritizing such areas for rehabilitation measures (Table 3.8, 

Table 3.9). Both models highlighted GWS in explaining the spatial distribution of the LD 

in Khorezm and the SKKP. The SKKP model revealed the irrigation and drainage 

network as an important factor influencing degradation in contrast to the Khorezm 

model, where these factors were not significant. The need for improvement of the 

irrigation network is a known problem in the SKKP, which is currently dealt with by the 

planned Water Resources Management Improvement project (Mott‐MacDonald 2011). 

Generally, very few studies have analyzed the impact of environmental and 

management factors on LD trends in irrigated croplands. Akramkhanov et al. (2011) 

focused on the spatial distribution of soil salinity at the farm scale in Khiva district of 

Khorezm. The study, confined to the year 2002, revealed a low, though a significant, 

correlation with band 7 of Landsat TM, proximity to drainage collectors, and the 

groundwater parameters, thus suggesting that management practices, particularly 

water management, outweighed the impact of environmental factors on the pattern of 

soil salinity. In a following study, Akramkhanov and Vlek (2012) used an artificial neural 

network as an alternative to the regression technique, and detected that soil salinity 

distribution was influenced by the micro‐topographical features, which tended to 
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affect surface water retention. The observed correlations with the RS parameters and 

groundwater depth and salinity (Akramkhanov et al. 2011) are in line with the results 

of the presented regional assessment. The contrasts can be explained by the different 

spatial as well as by the different temporal scales of the analyses, given that crop 

production decline and LD due to salinity only becomes obvious in the long run, as 

annual leaching practices counterbalance the salinization process.  

Mapping areas at risk of land degradation  

Spatial patterns of land at risk of LD were derived by applying the estimated 

coefficients of the model to the factor maps following Eq.3.2. The resulting map was 

reclassified into ten classes, allocating sequentially 10% of total probability values per 

class (i.e., 10% of the highest probability values are grouped in class 1) Figure 3.5 and 

(Figure 3.6) 

 

Figure 3.5: Risk map of land degradation in the Khorezm region of Uzbekistan. Class 
1 indicates areas with the highest risk of degradation that gradually 
reduces to class 10. Blue areas represent land with negative vegetation 
trend, derived from trend analysis of 250‐m MODIS‐NDVI time series  

In Khorezm, several clusters of areas at risk of LD (classes 1 to 5) were 

predicted: central part of the region near the capital, north of the region (border 



Spatio‐temporal analyses of cropland degradation at regional scale 

49 

 

between the Gurlen and Yangibazar districts), Kushkhupyr district, and the southern 

parts of Khorezm bordering the Karakum Desert. The rest of the region was classified 

as having a medium to very low risk of LD (classes 6 to 10) (Figure 3.5). 

Generally, compared to Khorezm, more areas of the SKKP were predicted to 

be further affected by degradation processes (Figure 3.6). Specifically, the LD clusters 

were predicted for the central part of Ellikkala district and northern parts of Beruniy 

and Turtkul districts. Less degradation was predicted for the areas along the Amu 

Darya River and central part of the SKKP. 

 

Figure 3.6: Risk map of land degradation in the southern Karakalpakstan, 
Uzbekistan. Class 1 indicates areas with the highest risk of degradation 
that gradually reduces to class 10. Blue areas represent land with 
negative vegetation trend, derived from trend analysis of 250‐m MODIS‐
NDVI time series 

The prediction power of the elaborated models, reflected in the PCP and ROC 

values, is comparable to the previously reported studies for ecological and LULC 

applications of logistic regression. For example, Manel et al. (1999) reported PCP 
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values in the range of 67‐81%, and Pontius and Schneider (2001) reported ROC values 

of 65‐70%. The present results from the models highlight the main advantages of 

logistic regression, such as spatial explicitness and quantitative analysis of the factors. 

Moreover, predictions are possible based on the observed relationships as also 

mentioned by Koomen and Stillwell (2007). The models’ prediction results were 

conditioned to the incorporated variables, which were assumed to represent the most 

important factors influencing the spatial distribution of LD. Incorporation of more 

variables was subject to data constraints, a common issue for LULC models (Dubovyk 

et al. 2011). Aiming to provide a regional overview, the derived risk maps render a 

visual representation of areas under risk that could be prioritized in more detailed 

analyses and the attention of decision makers.  

3.4.3 Spatial targeting of rehabilitation of degraded cropland 

The trend analysis of the MODIS‐NDVI time series, spatial relational analysis of the 

mapped negative vegetation trend, and logistic regression modeling were able to 

accurately detect the spatial dynamics of cropland degradation. These findings could, 

therefore, be used to support identification and targeting of appropriate and effective 

land management measures. If supporting corresponding policy decisions were 

implemented by the Uzbek authorities, degraded areas identified and located in this 

study could be targeted for mitigation and rehabilitation measures. As an example, 

degraded croplands located within areas of high population density could initially be 

subjected to measures designed to halt ongoing cropland degradation while 

supporting the future livelihoods of the people. Prompt actions are also necessary to 

restore croplands that have become unfavorable for agriculture. These include poor‐

quality land located on elevated areas within zones of lower population density. If such 

cropland remains under the present management approach, ongoing degradation 

could become irreversible or the required investments in soil improvement measures 

may no longer be economically viable (Vlek et al. 2008).  

The rate of degradation has substantial impacts upon decisions regarding the 

suitability of cropland for further agricultural use. Continuing cropping of severely 

degraded land is not profitable for farmers (Djanibekov et al. 2012b). A possible 
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solution might involve releasing such land from cropping and implementing alternative 

land uses, preferably uses that include remedial functions. Studies in Khorezm have 

documented successful rehabilitation of degraded croplands through afforestation 

efforts using well adapted tree species that increased the productive and economic 

capacity of the land (Khamzina et al. 2012). In such cases, farmers should be offered 

additional incentives, such as payments for ecosystem services, to encourage the 

adoption of rehabilitation practices (Thomas 2008).  

The cost of corrective measures may be substantial. However, compelling 

reasons remain for investing in sustainable land‐use measures that should consider 

compensation for the opportunity costs of farmers' foregone income. Delaying or 

postponing implementation of such measures will increase the costs of such 

compensations. If actions are not immediately implemented to reverse the on‐going land 

degradation, farming will require additional financial support or subsidies. Such future 

support would very likely exceed the present costs of implementing sustainable practices. 

It has been repeatedly demonstrated that the long‐term benefits of soil protection 

practices such as yield stabilisation, yield improvement, and natural resources protection 

more than compensate for the costs of implementation. Additionally, convincing 

evidence is emerging that it is possible to adopt agricultural conservation practices 

that enhance agro‐ecological restoration in this study region (Kienzler et al. 2012). 

The regional assessment presented in this study used medium‐resolution 

satellite data to identify hotspot areas for which more detailed understanding of the 

cropland degradation process is required. Further steps toward such understanding 

could include on‐site validations of results to enable development of site‐specific 

recommendations for land rehabilitation and/or conservation measures. At the scale 

of individual fields, detailed information on the critical factors leading to degradation 

(such as soil salinization and soil nutrient loss) as well as land and water management 

practices should be identified and compiled. This would facilitate the development and 

introduction of the most appropriate restoration technologies to counter on‐going 

cropland degradation ‐ technologies that are economically viable, socially acceptable 

and ecologically sound (Akramkhanov et al. 2011; Le et al. 2012).. 
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3.5 Conclusions 

The decreasing greenness of the vegetation signal from the MODIS‐NDVI time series 

for 2000‐2010 is adequate to generate spatial information on the distribution of 

degraded irrigated cropland. The resulting maps could support the prioritization of 

remediation measures in the Khorezm region and the SKKP in Uzbekistan.  

The MODIS data were found suitable for regional‐scale monitoring of 

negative vegetation trends, which can be interpreted in relation to LD. For improving 

the understanding of underlying factors that have caused the observed LD trend a 

series of secondary datasets were utilized. A major share of the detected cropland 

degradation occurred in marginal agricultural areas typified by poor‐quality soils and 

low population density. These degraded areas were often abandoned from regular 

cropping practices. The degradation of cropland located in the more densely populated 

areas and showing better‐quality soils can be considered for the introduction of more 

sustainable cropping practices. The marginal areas can be considered for appropriate 

rehabilitation measures including, for example, vacating the land from annual 

cropping.  

The results of this study demonstrate the use of geospatial tools for LD 

assessment. They also offer an insight into the processes involved in LD and provide 

spatial decision support for planning rehabilitation measures. The applied integrated 

approach combining spatial logistic regression and trend analysis of satellite time 

series allowed the inclusive evaluation of irrigated cropland degradation at the 

regional scale. The model made it possible to explain the factors of the observed trend 

and to map areas at risk of LD that could be targeted in a finer resolution assessment.  
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4 PARCEL-BASED IDENTIFICATION OF VEGETATION COVER DECLINE IN 

IRRIGATED AGRO-ECOSYSTEMS IN NORTHERN UZBEKSITAN 

4.1 Introduction 

The regional assessment based on medium resolution satellite data, identified hotspot 

areas of cropland degradation (chapter 3). For spatial targeting of cropland 

rehabilitation programs, parcel‐specific information on land condition and LULC 

characteristics is required (Dubovyk et al. 2013a). This information will allow better 

informed agricultural management decisions and land restoration planning at scales 

appropriate for targeted land management.  

Remote‐sensing‐based LD monitoring relies on a wide range of change 

detection methods. The gradual LD processes within one class are commonly detected 

by applying either algorithms that measure spectral change between the image 

acquisition dates (i.e., band algebra, regression analysis) (Lambin and Strahlers 1994; 

Zhao et al. 2004; Stellmes et al. 2010), or algorithms based on the objects consisting of 

adjacent pixels with similar spectra (Bontemps et al. 2008; Gao 2008). Another 

approach employs image classification when multi‐temporal LULC maps are compared 

to identify changes in the mapped LD class (Li et al. 2009; Yiran et al. 2011). Even 

though these algorithms are relatively easy to implement, their applicability depends 

on accuracies of prior classifications and availability of training data (Cardille and Foley 

2003; Zanotta and Haertel 2012). The classification‐based analysis also fails to evaluate 

gradual degradation processes within one class. Such processes can be captured by 

trend analyses of multi‐year satellite images (Hostert et al. 2003). Trend analyses were 

routinely employed for LD assessment using coarse‐scale imagery (e.g., Wessels et al. 

2007). However, for landscape‐scale assessment, the high‐resolution Landsat imagery 

recorded since 1972 is not always available on the frequent and repeatable basis 

required for trend analyses for all geographical areas, including Central Asia. 

Therefore, no optimal change detection method exists for all cases, and the choice of 

the technique often depends on data availability and quality, cost and time constraints, 

and the analyst’s experience (Radke et al. 2005). 
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Among the spectral‐based change detection methods, change vector analysis 

(CVA) (Malila 1980) has a few advantages, as it can detect gradual land‐cover changes, 

using different spectral bands or their derivatives, and provide information on change 

direction and change magnitude (He et al. 2011).  

Recent studies also demonstrated that object‐based change detection (OBCD) 

could provide improvements over the pixel‐based approach by addressing 

shortcomings of a per‐pixel strategy such as noisy outputs and isolated changed pixels 

(Blaschke 2010; Chen et al. 2012). The OBCD monitors the change of meaningful image 

objects as a single unit to minimize the within‐object reflectance variation and to 

provide consistent units for analyses (Bontemps et al. 2008). The method is also able 

to operate with user‐defined units such as field parcels of agricultural landscapes 

(Pena‐Barragan et al. 2011).  

In degraded cropland areas, where exposed soils and sparse vegetation 

predominate, the assessment of vegetation decline as a main LD indicator is 

challenging with the conventionally applied vegetation indices such as NDVI mainly 

due to their sensitivity to soil background (Baret et al. 1993; Huete et al. 2002). 

Spectral mixture analysis (SMA) provides an accurate quantitative estimation of land 

covers at a subpixel level by decomposing all the ground‐cover components within a 

pixel (Adams et al. 1986), and can thus be used as an alternative to vegetation indices 

(e.g., Elmore et al. 2000). Several studies have shown that spatio‐temporal changes in 

vegetation and soil fractional covers accurately describe the land health in drylands 

(Collado et al. 2002; Harris and Asner 2003; Jafari and Lewis 2012); however, irrigated 

agro‐ecosystems have not been specifically addressed.  

Given the potential of SMA‐based change detection for LD monitoring in 

drylands (e.g., Collado et al. 2002; Dawelbait and Morari 2012), our study comprised 

adaptation of the SMA‐based OBCD for the analysis of land conditions in irrigated 

drylands of Central Asia. In this context, by combining the Landsat‐based SMA and 

object‐based CVA, we aimed to derive parcel‐specific information on land‐cover 

changes to provide spatial guidance for land management interventions at local scales. 
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4.2 Materials  

4.2.1 Satellite data and processing 

The analyses are based on 30‐m Landsat 5 Thematic Mapper (TM) imagery recorded in 

1998 and 2009 (Table 4.1 and Figure 4.1). The selection of the years was driven by (i) 

availability of multitemporal images to cover the key crop‐growth stages, and (ii) 

comparable supplies of irrigation water between the years, as crop growth is reduced 

with decreased water availability. The images with anniversary acquisition dates were 

selected to minimize the impact of crop phenology and illumination conditions.  

Table 4.1: Acquisition dates of Landsat 5 TM images (path 159, row 31)  
1998 2009 

16 June   14 June 

18 July   16 July 

03 August   01 August 

04 September   02 September 
 

 

Figure 4.1: Coverage of Landsat 5 TM images (path 159, row 31) over study region 
illustrated by the 16th of June 1998 false‐colour composite (bands 4, 3, 
2) image  

All images were geometrically adjusted to a 2.5 m SPOT‐5 image and 

projected to the UTM coordinate system (zone 41) based on the differential GPS points 
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(Conrad et al. 2010). On average, 550 tie points per image, selected via an automated 

point matching (LeicaGeosystems 2006), were used to co‐register the images, resulting 

in an overall positional error of less than 0.5 pixels. Radiometric calibration and 

atmospheric correction was performed for the July 2009 image using the ATCOR2 

(version 10) software (Richter 2010). Subsequently, all other images were 

radiometrically normalized to this reference, applying the Iteratively Re‐weighted 

Multivariate Alteration Detection transformation (Canty and Nielsen 2008). 

The Quickbird image, acquired on 12 July 2009, with a spatial resolution of 

2.4 m and 0.6 m in the multispectral and panchromatic bands, respectively, was 

acquired to assess the accuracy of the SMA. 

4.2.2 Ancillary data 

To derive field objects, the current cadastral maps were collected from the regional 

offices of the Uzbek State Committee on Land Resources, Geodesy, Cartography and 

State Cadastre and digitized. The field samples collected through stratified random 

sampling in 2009 showing cultivated crops on 346 fields and 3,155 fallow fields were 

taken from the German‐Uzbek project database (http://www.zef.de/1631.html) and 

digitized from cadastral maps. These are based on information on spatial distribution 

of uncultivated fields provided by cadastral managers during field visits in 2010‐2012 in 

SKKP. The samples were used to derive maps of agricultural land use in 2009 and 1998 

for interpreting the change detection results. The LD trend map (chapter 3) was used 

to evaluate the change maps. 

4.3  Methods 

The methodology for providing the object‐specific change information consisted of 

two stages as illustrated in Figure 4.2. First, fraction images were derived from the 

preprocessed Landsat data applying the linear spectral unmixing model. Second, the 

object‐based values of vegetation and soil fraction images were used as an input for 

the CVA to detect per‐field changes between 1998 and 2009. The results were 

subsequently evaluated and interpreted with respect to the current land use.  
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Figure 4.2: Flow chart of parcel‐based change detection for vegetation cover 

monitoring 

4.3.1 Spectral mixture analysis 

As an input for the SMA, reference spectra or endmembers can be derived from 

spectral libraries (Asner and Lobell 2000), field spectra (Chikhaoui et al. 2005), the 

imagery itself (Plaza et al. 2002), or simulated using radiative transfer models 

(Dennison et al. 2006). In this study, the image‐based approach was implemented, so 

that the derived endmembers represent the spectra measured at the same scale as the 

satellite data used (Lu et al. 2007). A mask comprising cadastral parcel boundaries was 

applied to only include cropland areas in the analysis. 

To segregate noise in the image data and to determine the inherent 

dimensionality of the data, the Minimum Noise Fraction (MNF) transform (Green et al. 

1988) was applied to the July 2009 image. Subsequently, the first three bands of the 

MNF images, containing high eigenvalues, were further used to extract endmembers 

with the Pixel Purity Index (PPI) (Boardman et al. 1995).  

In view of the successful application of the linear mixture approach for LD 

studies (e.g., Sonnenschein et al. 2011), a linear constrained unmixing model was 

applied to derive a fraction image for four endmembers, i.e., green vegetation (GV), 

bright soil (BS), dark soil (DS), and water (Zerger et al.), considering the spectral 
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dimensionality of Landsat TM (Small 2004). The GV was associated with 

photosynthetically active vegetation within the fields. The BS and DS represented 

bright soils, often associated with sandy soils and salt crust on the fields, and dark 

soils, respectively. The WT referred mainly to shallow water surfaces within the 

flooded rice fields. After analysis of the SMA results, the set of endmembers selected 

from the July 2009 image was applied to the other images. Applying the same model to 

the full set of Landsat images allows consistent estimations of green vegetation and 

soil fractions (e.g., Collado et al. 2002; Hostert et al. 2003; Quintano et al. 2012) and 

for direct comparison of calculated fraction images, which ultimately improves the 

accuracy of change detection (Elmore et al. 2000). 

To assess the fit of the spectral unmixing model, the root mean square error 

(RMSE) was calculated and the histograms of the derived images were analyzed. 

Further, the accuracy of the vegetation fraction was assessed by analyzing the scatter 

plot correlation comparing per‐field percentages of the vegetation cover calculated 

from the pan‐sharpened QuickBird image (12 July 2009), and the corresponding 

Landsat‐based vegetation fraction image (16 July 2009) for 92 randomly selected 

fields. The QuickBird‐based vegetation cover estimates were classified using the 

object‐based approach in the commercial software eCognition 8.7 (Trimble Geospatial 

Imaging, Munich, Germany). 

4.3.2 Change detection  

Object-based change vector analysis 

The parcels from the cadastral maps were used as the input objects for the OBCD. The 

parcel boundaries were assumed the same in 1998 and 2009. This was confirmed by a 

visual assessment of the images and discussions with the local cadastral engineers, and 

explained by the area‐based, state‐driven cultivation of irrigated crops that relies on 

the constructed irrigation‐drainage network (Van Assche and Djanibekov 2012). 

An input for the parcel‐based CVA was the fraction images of the DS, BS and 

GV. The WT was not considered, as the presence of the water on the fields was mainly 

associated with rice cultivation. For each cadastral parcel, the mean values of DS, GV 

and BS were calculated for each time step. Further, the mean parcel values were 
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averaged over the growing seasons 1998 and 2009 to minimize the influence of crop 

phenology and vegetation variability within the parcels.  

The CVA allows determining the magnitude of change and change direction 

between two or more time steps (He et al. 2011). If a pixel's spectral values in two 

images, acquired on dates T1 and T2, are represented by AT1=(a1, a2, …, an) and AT2=(a1, 

a2, …, an), and n is the number of spectral bands, a change vector is defined as:  

     
21 TT A-A= A           (4.1) 

where A represents change information between T1 and T2 for a pixel. The change 

magnitude A  can be calculated as:  

 2

TnT

2

T2T2
2

T1T1 )a-a(...)a-a()a-a(= 
212121 nA         (4.2) 

A decision on change is made when the change magnitude exceeds a certain 

threshold that can be defined quantitatively or qualitatively (Rogerson 2002). The 

threshold’s value of 0.26 was selected for change detection after testing several 

thresholding algorithms (Otsu 1979; Johnson and Kasischke 1998; Rosin 2001). This 

threshold value resulted from both the empirical method based on the analysis of A  

distribution (Johnson and Kasischke 1998) and the OTSU‐based method and produced 

a plausible change image (Bruzzone and Prieto 2000). 

As three spectral dimensions were involved in the CVA, the type of change 

was determined using sector coding, where the change category is assigned by a 

combination of the symbols “+” (for increase) or “‐” (for decrease) of each band and by 

image interpretation (Chen et al. 2003). A decrease in GV and increase in either or 

both BS and DS indicated a declined vegetation cover per parcel. In contrast, an 

increase in GV and decrease in either or both BS and DS signified increased vegetation 

cover per parcel. All other combinations of sector codes showed increased, decreased 

or stable DS, GV and BS, indicating persisting land‐cover conditions between the two 

time steps. 

Evaluation of change map 

To assess the CVA performance specifically in relation to LD detection, the change map 

was compared to the MODIS‐based LD trend map. Two maps were clipped to the same 
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spatial extent and the change map was resampled to the MODIS resolution. The LD 

trend map consists of the class ‘LD’ indicating the significant negative vegetation trend 

and the class ‘other trends’. In such way, only two classes from the change map were 

considered, i.e., class ‘vegetation cover decrease’ and class ‘other’. The maps were 

compared based on the random stratified sample of 21,394 pixels; each subset 

contained 25% pixels of the sampled class so that both classes had the same chances 

of being evaluated (Morisette and Khorram 2000). Also, 379 randomly selected fields 

with decreased vegetation cover were visited in the study region in summer 2012.  

In cropland areas, a decreased vegetation cover may be associated with 

changes in cropping patterns. To investigate whether variations in cropping pattern 

cause substantial differences in the detected land‐cover changes as opposed to 

disrupted cultivation (fallow), we conducted a simulation based solely on available 

field samples for which the land‐use type (i.e., cropping or fallow) was known in 2009. 

Subsequently, changes in the cropping patterns were compared in aggregated soil 

fraction per parcel between two groups of crop rotations: (I) changes caused by 

common crop rotations, i.e., cotton‐winter‐wheat/summer crop (such as rice, maize, 

sorghum), and (II) changes caused by crop rotations among any crop to fallow.  

4.3.3 Land-use classification  

For interpreting the change detection results, the agricultural land‐use map for 2009 

and the land‐use map showing cropped and fallow parcels in 1998 were used. Random 

Forest, a non‐paramtetric classification algorithm, (Breiman 2001) was applied 

according to Liaw and Wiener (2002) to derive parcel‐specific land‐use information for 

2009 as suggested by Conrad et al. (2010). The 2009 samples were split in two halves 

for training and validation. The mean and standard deviation of the Landsat TM bands 

(except the thermal band 6) and NDVI for every available image (Table 4.1) were used 

as input features for classification. The mapped classes in 2009 included cotton, winter 

wheat, rotation of winter wheat with the summer crop (maize and sorghum) rice, 

fallow land and other crops such as maize, sorghum, watermelons, melons, and 

sunflower. The input features for classification of the land use in 1998 was a randomly 

selected subset of fallow parcels identified by experts (section 3.2) complemented by 
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the samples of cropped parcels derived via visual interpretation of multitemporal 

images from 1998. In this way, the 250 fields cropped in 1998 were randomly selected. 

The final reference layer consisted of 500 samples (250 cropped and 250 fallow fields). 

4.4 Results and discussion 

4.4.1 Spectral mixture analysis 

The accuracy assessment suggested overall plausibility of the SMA results (Figure 4.3 

and Figure 4.4). For all images, the statistical validity of the spectral unmixing was 

confirmed by the low values of the RMSE. The histograms of the fraction images did 

not generally exceed the range from 0 to 1, and the residual bands showed no 

systematic patterns. The comparison of the QuickBird‐and Landsat‐based vegetation 

covers yielded an R2-value of 0.80.  
 

 

Figure 4.3:  Scatter plot correlation between per‐field percentages of vegetation 
cover, calculated from the QuickBird image and the Landsat‐based 
green vegetation fractional cover image 

The obtained correlation was good, but the R2-value was slightly lower than 

values reported in other dryland studies using field data for validation. For example, LD 

monitoring with Landsat‐based SMA by Dawelbait and Morari (2012) in Sudan and by 

Röder et al. (2008) in the Mediterranean region reported an R2-value of 0.91. The 

observed misestimates in the lower values of the SMA‐based vegetation fractions as 

shown in Figure 4.3 was also reported by Dawelbait and Morari (2012).  
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Figure 4.4: Subset of fraction images derived from linear unmixing of the July 2009 
Landsat TM image and their corresponding landscape elements. Areas 
that donot belong to agricultural parcels are shown in yellow  
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After conducting the field survey, the authors stated that SMA provided 

consistent estimates of vegetation fractions for the values higher than 0.2. In this 

study, this could be mainly attributed to the difference in the spatial scales of 

observations as discussed by Elmore et al. (2000) and Kuemmerle et al. (2006) or to 

the complex nature of irrigated agro‐ecosystems. 

4.4.2 Cropping patterns in 2009 and 1998 

Spatial patterns of crop classes in the study area formed several clusters in 2009 

(Figure 4.5). The cotton and winter wheat fields were scattered throughout the region 

according to the state order system. The mapped rice cluster close to the Amu Darya 

River and along the big canals could be due to good access to irrigation water. Crop 

diversity was highest in the central part of the irrigation system in Khorezm, where 

winter wheat rotation was mainly found. The distribution of cropping areas in 1998 

and 2009 were similar, with the distinguished patterns of fallow areas mainly on the 

outskirts of the irrigation system on the borders with natural deserts. 

The accuracy assessment confirmed the validity of the produced maps (Table 

4.2 and Table 4.3). They were also comparable to the results of the existing crop 

classifications in the Khorezm region, based on MODIS (Conrad et al. 2011) and ASTER 

data (Conrad et al. 2010). The commission errors for the classes rice and winter wheat‐

summer rotation and omission errors for class other crops in the agricultural land‐use 

map for 2009 were higher compared to the other mapped crops, probably due to the 

smaller number of sampled parcels available for these classes.  

Table 4.2:  Accuracy assessment of the agricultural land‐use map for 1998 
Land-use map Reference (parcels) 

 Cropped Fallow TOTAL 

 Cropped 122 14 136 

Result (parcels) Fallow 3 111 114 

 TOTAL 125 125  

Overall accuracy=93% 

Omission error Commission error 

Cropped=2% Cropped=10% 

Fallow=11% Fallow=3% 
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Table 4.3:  Accuracy assessment of the agricultural land‐use map for 2009 
 

Land-use 
map 

Reference (parcels) 

Result 
(parcels) 

Cotton Fallow Rice 
Winter 
wheat 

Winter 
wheat‐
summer 
crop 

Other TOTAL 
Commis-
sion error 

 

Cotton 39 2 0 0 0 2 43 9 

Fallow 1 30 0 0 0 3 34 12 

Rice 4 0 8 0 1 0 13 38 

Winter 
wheat 

0 0 0 31 0 3 34 9 

Winter 
wheat‐
summer 
crop 

0 1 0 3 16 3 23 30 

Other 0 4 1 2 1 18 26 31 

TOTAL 44 37 9 36 18 29   

Omission 
error 

11 19 11 14 11 38   

Overall accuracy=82%        
 

4.4.3 Spatial distribution of parcel-based vegetation cover decline  

The produced change map highlights areas that experienced vegetation cover decline 

between 1998 and 2009 (Figure 4.6). In general, distribution of such parcels was 

spatially variable, but several clusters were distinguished along the borders with the 

natural deserts of Karakum and Kyzylkum in the south and north of the study region. 

The parcels with decreased vegetation cover were mainly found in the far reaches of 

the irrigation system, where poor sandy soils and hampered water supply trigger poor 

crop development (Dubovyk et al. 2012b).  

The 29% (15,343 ha) of the area with decreased vegetation cover was under 

cotton cultivation in 2009 (Figure 4.7). Cotton cropping has remained the predominant 

land use in the study area due to the area‐based state production (Djanibekov et al. 

2010), and was grown on approximately the same cropland area in Khorezm in 1998 

(100,000 ha) and 2009 (95,000 ha) (UZSTAT 2010a). Given the standard guidelines for 

crop irrigation and fertilizer application and an adequate water supply, amounting to 

3.5×106 m3 in 1998 and 3.3×106 m3 in Khorezm in 2009 (SIC‐ICWC 2012), the decrease 
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in vegetation cover within the cotton fields was likely caused by LD rather than by 

reduced agricultural inputs.  

 

Figure 4.6: Object‐based change image based on change vector analysis and 
fraction images calculated from multitemporal Landsat TM. On the right, 
the corresponding enlarged subsets of the July 1998 and July 2009 
images and the parcel‐based change map are shown. The 16 July 2009 
Landsat image (band 4) is in the background 

The comparison with the land‐use maps (Figure 4.7) showed that 17% 

(29,029 ha) of the analyzed cropland area with decreased vegetation cover was fallow 

in both 1998 and 2009. As uncultivated lands are commonly used for herding livestock, 

this change might be associated with grazing of the fallow vegetation (Djanibekov 

2006). About 20% (11,064 ha) of the vegetation decline areas was cultivated in 1998 

and left fallow in 2009. The field visits to these parcels revealed that 74% were also 

fallowed in 2012, and thus likely abandoned from cultivation. Abandonment of 

cropping sites characterized by a low fertility status appeared a common phenomenon 

in the study area (Dubovyk et al. 2013a). Furthermore, 12% (6,580 ha) of the cropland 

with decreased vegetation cover was fallow in 1998 and cultivated in 2009. Such land 

parcels, small in size were sporadically distributed over the study regions and did not 

form distinct clusters.  
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Figure 4.7:  Spatial distribution of parcels with decreased vegetation cover in 
relation to land‐use changes between 1998 and 2009 

The rest of the parcels with decreased vegetation cover (26,142 ha) were 

found within the cropping areas, and could be attributed to either LD processes or 

changes in agricultural management, thus requiring further investigation into the 

causes of the vegetation decline. 
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The results of the change detection also reveal increasing vegetation cover on 

19% (54,673 ha) and persisting conditions on 63% (185,312 ha) of the cropland. 

Vegetation cover mostly increased along the river and near the main irrigation 

channels, likely due to a better accessibility of the cropped fields to water (Dubovyk et 

al. 2012a). Only 4% of the area with increased vegetation cover was fallow in 1998 and 

2009, probably signifying natural succession and low grazing pressure on these parcels. 

4.4.4 Evaluation of change map 

The change map evaluation using the MODIS‐based LD trend map confirmed the 

validity of the elaborated approach. The map comparison, based on two classes, 

yielded an overall agreement of 93%. The omission and commission errors, i.e., 2% and 

5% respectively, were small for the class ‘other trends’, suggesting an agreement 

between both maps for this class. The commission error of 23% for the LD class was 

acceptable, whereas the omission error of 43% for the LD class showed that the CVA 

underestimated the vegetation cover decline. This confirms the main drawback of 

applying bi‐temporal change detection for LD monitoring in contrast to trend analysis, 

which monitors gradual LD processes within one class based on continuous 

information from image time series (Röder et al. 2008). The prerequisite of trend 

analysis is, however, availability of satellite data spanning several years, which is not 

fulfilled for Central Asia due to absence of continuous Landsat coverage. However, the 

CVA, based on the finer resolution satellite data of two years, may thus detect subtle 

changes not captured by the MODIS‐based assessment. The combination of both 

methods is, therefore, advisable in the complex context of irrigated agro‐ecosystems in 

Central Asia. In detecting desertification in drylands , SMA‐based CVA analysis was 

found robust in providing landscape‐scale information on land condition (Dawelbait 

and Morari 2012).  

The simulation results based on the field samples suggest that the proposed 

method was able to discriminate between changes due to crop rotation and LD. The 

differences in soil cover per parcel due to all crop combinations in 2009 were minor, 

mostly from ‐0.1 to 0.1. In the case of cropland conversion to fallow, the differences 

were a great deal higher (Figure 4.8). In the overlapping area of the two distributions, 
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only 1% of the crop‐fallow differences (values > ‐0.08) and 5% of the crop‐crop 

differences were located (values < ‐0.08). Thus the detected CVA‐based changes 

referred to land‐cover changes and were not caused by crop rotations but rather by 

other factors, such as LD.  

 

Figure 4.8:  Kernel density plot showing differences in aggregated soil cover per 
parcel due to crop rotations. Vertical lines indicate reference lines for 
overlapping areas of two distributions 

 

The object‐based CVA approach has several limitations. Good data quality 

impacts the change detection results (He et al. 2011). Additional challenges are the 

selection of the optimal threshold (e.g., Zhang et al. 2009) and availability of the 

ancillary data for interpreting the change map for irrigated cropland, where changes 

are largely driven by agricultural management. 
 

4.4.5 Implications for land-use planning 

The lowlands of the Amu Darya River are among the oldest agricultural areas in the 

world and have been under intensive farming since the 1950s (Saiko and Zonn 2000). 

The major agricultural constraints in the study area are physical, i.e., shallow soils, arid 

climate, flat terrain with enclosed saline lakes and depressions, and can lead to LD 

(Akramkhanov et al. 2012; Dubovyk et al. 2013a). In order to sustain the productive 

capacity of these valuable agro‐ecosystems, land‐ and water‐use practices need to 
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consider the site‐specific suitability of the land for agriculture, and that some 

landscape fractions are better left for provision of other essential ecosystems services.  

The parcel‐based differentiation of landscape segments in need of 

reclamation as well as resilient farming areas could support the decision making of 

agricultural planning institutions, cadastral authorities and individual farmers, as the 

developed maps identify LD hotspots at the scale relevant to agricultural planning. Our 

analysis reveals higher prevalence of areas with decreased vegetation cover, often 

caused by the occurrence of uncultivated land, in the outreaches of the irrigation 

system and on borders with natural deserts. The farmers would, thus, benefit from 

having this cropland exempted from cotton cultivation towards more appropriate 

land‐use practice that sustains and enhances their productive capacity.  

To enable development of site‐specific recommendations for land 

conservation and rehabilitation measures, further steps could include systematic field 

surveys and on‐site validation of remote‐sensing results. For individual parcels, the 

main drivers, including management practices, leading to vegetation decline and LD 

should be identified and analyzed. In our case, it was not necessary to apply image 

segmentation to derive field objects for OBCD as a cadastral map was available. 

However, for the cases when the cadastral information is missing, segmentation can 

be used to derive objects that match field parcels (e.g., Pena‐Barragan et al. 2011). 

4.5 Conclusions 

The results of the assessment reveal a vegetation cover decline of significant spatial 

extent within the cropland area in the irrigated lowlands of the Amu Darya River. The 

detected decline was most strongly associated with reduced cultivation, and thus 

occurrence of fallow land in areas presumably less suitable for farming. Such areas at 

the tail ends of the irrigation canals or on sandy desert soils should be considered for 

alternative land uses.  

This paper demonstrates the use of the OBCD based on multitemporal 

imagery of high spatial resolution for monitoring land conditions in irrigated agro‐

ecosystems in Uzbekistan. The analysis involved several consecutive steps, i.e., SMA, 

parcel‐based CVA, and map interpretation. The derived information on vegetation 



Parcel‐based identification of vegetation cover decline in irrigated agro‐

ecosystems in northern Uzbeksitan 

71 

 

cover decline in the study region and the associated maps can directly support parcel‐

specific agricultural planning decisions, including land rehabilitation measures in 

Khorezm and southern Karakalpakstan, Uzbekistan. 

The proposed automated technique is based on high‐resolution Landsat TM 

data available free of charge, and thus especially attractive for developing countries 

with limited funds available for environmental monitoring. The proposed approach can 

be used as an alternative to routinely used trend analysis of image time series for cases 

when spatial information is required on scales appropriate for targeted land 

management interventions and high spatial resolution time series are not available. 
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5 LAND SUITABILITY ASSESSMENT FOR AFFORESTATION WITH ELAEAGNUS 

ANGUSTIFOLIA L ON DEGRADED IRRIGATED CROPLAND 

5.1 Introduction 

Agricultural land evaluation aims to estimate land suitability for a specific agricultural 

land use such as planting of a specific crop. By analyzing various land conditions 

including topography, water supply, soil, etc, such evaluation can be carried out by 

matching the requirements of specified crops with the land characteristics (FAO 1976).  

The approaches for land evaluation are both quantitative and qualitative. 

Qualitative methods, which are less detailed and less data‐driven, are used for land 

appraisal using expert knowledge and literature resources (e.g., Joss et al. 2008; Eslami 

et al. 2010; Jarnevich and Reynolds 2011). The results of these analyses are quite 

broad and often expressed in qualitative terms. The quantitative approaches use 

computer models (e.g., tree growth models, crop yield simulation models) to provide 

detailed outcomes; however, such models are very data demanding (van Lanen et al. 

1992; Rossiter 1996). The choice of the method is thus case specific and depends on 

data availability and the level of detail of the required output (Mandere et al. 2010). 

Multi‐criteria decision making (MCDM) is a useful approach to serve land 

evaluation purposes due to its ability to combine qualitative and quantitative criteria 

to select a suitable alternative. Geographic information systems (GIS) are well suited 

for manipulating a wide range of data from various sources for a cost‐effective and 

time‐efficient analysis (Chen and Paydar 2012). A number of GIS‐based multi‐criteria 

evaluation methods have been used for different studies (Store and Kangas 2001; 

Malczewski 2004; Mashayekhan et al. 2012) and purposes including land‐use planning 

(Shalaby et al. 2006; Kurtener et al. 2008; Bandyopadhyay et al. 2009), water 

management (Wang et al. 2011), and habitat suitability assessment (Joss et al. 2008; 

Nekhay et al. 2009; Armin and Abdolrassoul 2010; Jarnevich and Reynolds 2011; Davis 

et al. 2012). 

Generally, a GIS‐based MCDM for agricultural land suitability analysis for 

cultivation of a specific crop involves: (i) specification of the environmental 

requirements of a target crop, (ii) identification of the quantitative relationship 
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between crop establishment/growth/productivity and each considered environmental 

criterion, (iii) calculation of a suitability class for each criterion, and (iv) combination of 

the classes in order to determine the overall suitability. The most important issue is 

how to parameterize and combine land characteristics to model the target response of 

the crop to the considered environmental criteria so as to rank each evaluation unit 

(e.g., cell, polygon) with an overall suitability score (Malczewski 2006a). To address this 

issue, a specific rule set is usually constructed. It consists of a number of decision rules 

used to define the range of criteria values for a suitability class and of a weighting 

system that assigns the degree of importance for each considered criterion according 

to the attribute values and decision maker's preferences (based on criteria weights) 

(Corona et al. 2008).  

For multi‐criteria aggregation of the weighted criteria, the Ordered Weighted 

Averaging (OWA) is often used (Yager 1988). Malczewski (2006b) incorporated the 

concept of fuzzy set theory or fuzzy logic (Zadeh 1965) into a spatially explicit OWA‐

based land suitability analysis in order to generate a broad range of decision scenarios. 

Land evaluation based on fuzzy logic has been used in land evaluation studies since the 

1980s (e.g., Burrough 1989). Whereas classical methods assume that land parcels are 

crisply delineated in both geographic and attribute space, which results in 

homogenous polygons with a single suitability class, fuzzy logic generates realistic 

continuous classifications (Schlüter et al. 2006; Liu et al. 2013). A number of studies 

showed that combination of fuzzy logic and OWA yield promising results for land 

suitability analysis (Eastman and Jiang 2000; Jacek 2006; Malczewski 2006b; Armin and 

Abdolrassoul 2010; Chen and Paydar 2012). Weighted linear combination (WLC) is one 

of the most frequently used decision rules in GIS, and is also a specific case of an OWA. 

The WLC allows a fusion of OWA operators and fuzzy variables (e.g., Boroushaki and 

Malczewski 2008), an approach that was also adapted in this study. 

The main aim of this study was to contribute to sustainable land management 

options as well as to land restoration efforts in the irrigated lowlands of the Amu Darya 

River. This was achieved by applying a GIS‐based MCDM methodology for assessing 

suitability of degraded irrigated cropland for establishing tree plantations considering 
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the specific environmental setting of irrigated agro‐ecosystems in northern Uzbekistan. 

The selected tree species for assessment is E. angustifolia (Appendix 8.1), a local 

species that was proven to be a promising species for afforestation of the degraded 

land in the study region (Khamzina et al. 2006b; Khamzina et al. 2008; Djanibekov et al. 

2012b; Schachtsiek et al. submitted). Also, the farmers would prefer this tree species 

for establishment of tree plantations among other tree species that can grow on 

degraded cropland in the study region such as Populus euphratica and Ulmus pumila L. 

(Khamzina et al. 2006b; Schachtsiek et al. submitted), as suggested by the results of 

the survey conducted in 2012 (Dubovyk, unpublished).  

5.2 Multi-criteria evaluation 

The analyses were accomplished in the following stages: criteria development, GIS‐

based land suitability modeling, and results interpretation. The first stage produced a 

set of fuzzy maps reflecting the relation of each evaluation criterion to suitability for 

the considered objective. The suitability assessment comprised the weighted‐order 

multi‐criteria evaluation (MCE) procedure based on the developed criteria maps and 

weights assigned by experts. The results were subsequently evaluated and interpreted 

with respect to the current land use.  

5.2.1 Selection of evaluation criteria and generation of criterion maps  

Fundamental for land suitability assessments is an understanding of how 

environmental conditions control tree species growth. Optimal conditions of different 

species vary depending on their physiological requirements. Thus, a unique set of site‐

specific environmental conditions determines tree growth of different species (van 

Straaten et al. 2005).  

The suitability criteria for afforestation are usually selected based on 

literature review (Bydekerke et al. 1998; van Straaten et al. 2005) and expert 

knowledge (Al‐Kloub et al. 1997; Hansen et al. 2007). In this study, the final list of 

criteria was compiled based on both literature and expert opinions and included 

environmental requirements of E. angustifolia as well as the specific characteristics of 

Khorezm and the SKKP (e.g., irrigation water availability). The selected criteria for 
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which data were available included parameters describing irrigation water availability, 

groundwater parameters, and slope (Table 5.1). 

Table 5.1:  Evaluation criteria and their value ranges used for assessment of land 
suitability for E. angustifolia 

Evaluation criteria* 
Khorezm SKKP 

min max min max 

Average groundwater salinity, g/l 0.05 9.04 2.01 7.21 

Average groundwater table level, m 0.45 2.72 1.07 4.59 

Canal density, m/m2 0.00 11.78 0.00 14.76 

Proximity to canals, m 0.00 6,000.00 0.00 6,000.00 

Collector density, m/m2 0.00 8.45 0.00 11.15 

Proximity to collectors , m 0.00 4,256.30 0.00 9,999.54 

Delta water use, milliom m3 ‐2,371.53 ‐214.72 ‐4,238.00 4,037.00 

Slope, % 0.00 10.00 0.00 27.97 

*For details on calculation of evaluation criteria see section 3.2, section 33.2 and section 3.3.3. 

 
To quantify the relation between evaluation criteria and site suitability, 

literature review was performed, and two experts for afforestation from the research 

project “Opportunities for climate change mitigation via afforestation of degraded 

lands in Central Asia” (http://www.zef.de/1631.html) were interviewed. This 

information was formalized using a fuzzy set approach. For each criterion, a suitability 

curve was defined that assigned a degree of suitability to every value of the variable. A 

fuzzy set is characterized by a fuzzy membership grade that ranges from 0 to 1 (or from 

0 to 255 for a byte scaling), indicating a continuous increase from non‐membership to 

complete membership.  

In this study, the following types of fuzzy membership functions were used: 

the monotonically decreasing/increasing linear function and monotonically 

decreasing/increasing sigmoidal function (Appendix 8.5). Mathematical definitions of 

specified functions are provided by Dubois and Prade (1982) and Eastman and Jiang 

(2000). To shape a fuzzy curve, the positions of four crossover points should be 

specified to indicate a point where membership rises above 0 (point a), membership 

becomes 1 (point b), membership falls below 1 (point c), and membership becomes 0 

(point d). When "monotonically increasing" or "monotonically decreasing" curves are 
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chosen, two control points are needed to define the fuzzy set membership function 

(Eastman 2012).  

The corresponding criterion maps were prepared for each evaluation 

criterion using earlier collected and preprocessed data (section 3.2, section 33.2 and 

section 3.3.3). The nature of the maps was continuous; they had the same spatial 

extent, 250 m × 250 m cell size, map projection, and coordinate system. 

Irrigation water availability 

Irrigation water use 

Irrigation water input secures the initial establishment of tree plantations until trees 

are able to rely on shallow groundwater (Khamzina et al. 2008). To account for this 

important condition, the regional irrigation water use showing differences in water 

supplies for each pair of years between 2000 and 2010 was calculated per district and 

averaged over 11 years. Negative values indicate that the water supply has decreased 

for some districts over the last decade, whereas positive values indicate an increase. 

The district with the highest increase was considered as the most suitable for 

establishment of tree plantations (suitability score 1), while the district with the 

highest decrease in water supply was considered as the least suitable (suitability score 

0) (Table 5.1, Table 5.5).  

To rescale the water use criterion, the monotonically decreasing linear 

function was selected. This function used minimum and maximum values from the 

water use image as the control points at the end of the linear curve. 

Irrigation network 

As an access to irrigation water depends on a location’s proximity to irrigation 

infrastructure, the criteria ‘proximity to irrigation canals’ and ‘density of irrigation 

canals’ were incorporated into the analysis. The criterion ‘proximity to irrigation canal’ 

was rescaled using the monotonically decreasing linear function. Areas closest to 

current irrigation canals were considered most suitable (suitability score 1) than areas 

further from the canal (suitability score 0) (Table 5.1, Table 5.5). The criterion ‘density 

of irrigation canal’ was rescaled using a monotonically increasing linear function. Areas 

with the highest canal density were considered most suitable (suitability score 1) in 
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contrast to the areas with lowest density of the canals (suitability score 0) (Table 5.1, 

Table 5.5).  

In addition, the criteria ‘proximity to drains’ and ‘density of drains’ were 

included in the analysis. Although these factors donot directly influence irrigation 

water availability, operation of the drainage network is important for controlling the 

salt balance in the irrigated areas (Ibrakhimov et al. 2011). In the past years in the 

study region, irrigation water has frequently been insufficient for irrigation and human 

consumption (Glantz 1999). In water‐scarce years, local drainage canals are 

occasionally used for irrigation in some districts (Ibrakhimov 2004) 

The rescaling of these criteria was performed similarly to that of the factors 

related to irrigation canals. Available shapefiles of irrigation and drainage network 

were used to calculate the Euclidean distances to canals and drains and their density.  

Groundwater table  

A crucial environmental parameter is access of the trees to groundwater when this is 

the only available water resource due to lack of rainfall and low availability of irrigation 

water (Horton et al. 2001; Khamzina et al. 2012). Within the irrigated cropland of the 

study area, the depth of the GWT and the associated levels of soil salinity and GWS 

determine tree growth, as tree establishment with low irrigation input is conditioned 

to the presence of the shallow GWT (Horton et al. 2001; Schachtsiek et al. submitted). 

In general, a shallow GWT usually prevails in the region but can be reduced on the sites 

long‐term abandoned from cropping and irrigation (Ibrakhimov et al. 2007; Ibrakhimov 

et al. 2011; Tischbein et al. 2012).  

A shallow GWT significantly contributes to soil salinity when it exceeds a 

certain threshold level above which it rises by capillarity towards the soil surface (Hillel 

2000; Forkutsa et al. 2009). For the study region, this threshold level was defined as 

1.5 m (Rakhimbaev et al. 1992). An optimal GWT for E. angustifolia, which is a salt‐

tolerant plant, occurs in a range of 1.5‐3 m (Katz and Shafroth 2003; Kang et al. 2004). 

Although experts noted that the very shallow GWT (>0.5 m) could be suitable during 

the establishment phase when tree roots are not completely developed, this 

groundwater depth would restrict root growth in the long‐run (Ruger et al. 2005). The 
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sites characterized by a GWT deeper than 3.0 m would require higher irrigation inputs 

when planting E. angustifolia. It was also observed that this species didnot grow well 

on the sites with a GWT in the range of 3‐5 m. A few of them degenerated and died, 

and many trees died if the GWT>5 m due to lack of soil moisture (Kang et al. 2004). 

Suitability of the site, therefore, decreases when the GWT exceeds 3 m. 

Consequently, a symmetric sigmoidal curve was selected to rescale the GWT 

layer into a continuous variable. The suitability increases monotonically from 0.5 m to 

1.5 m. Then it does not change for GWTs in the range of 1.5‐3 m, and decreases 

monotonically with further increasing GWT level. To capture within‐seasonal 

fluctuations of the GWT, three factors representing the GWT in spring, summer, and 

autumn, averaged over years (section 3.3.3), were included in the analysis (Table 5.2, 

Table 5.5). The maps of GWT level and GWS were derived via spherical kriging 

interpolation, as suggested by Ibrakhimov et al. (2007). 

Table 5.2: Ranges of values for GWT and GWS used for assessment of land 
suitability for E. angustifolia 

Evaluation criteria 
Khorezm SKKP 

min max min max 

Groundwater salinity in spring, g/l 0.22 8.57 1.96 9.88 

Groundwater salinity in summer, g/l 0.55 7.66 1.97 7.03 

Groundwater salinity in autumn, g/l 0.95 7.75 ‐ ‐ 

Groundwater table in spring, m 0.57 2.34 1.00 4.39 

Groundwater table in summer, m 0.45 1.81 1.37 3.69 

Groundwater table in autumn, m 0.58 3,23 1.17 4.15 

 

Groundwater salinity 

Elaeagnus angustifolia is known as a salt‐tolerant species (Miyamoto et al. 2004; 

Khamzina 2006a; Sudnik‐Wójcikowska et al. 2009; Shah et al. 2010; Hbirkou et al. 

2011). However, the reported tolerable soil and water salt concentrations vary among 

studies, as they depend on plant growth stage, soil moisture and nutrient conditions as 

well as on type of salinity, and methods applied for determining the salt tolerance 

(Katz and Shafroth 2003). Kefu and Harris (1992) mentioned that growth of E. 

angustifolia was not affected by applying 8 g/l solution of sodium chloride (NaCl) every 

week with only slight damage resulting from a 10 g/l salinity level, severe damage 



Land suitability assessment for afforestation with Elaeagnus angustifolia L on 

degraded irrigated cropland 

79 

 

occurring at 14 g/l, and frequent mortality at 16 g/l and higher. In view of the highly 

dynamic nature of soil salinity under irrigation, presence of shallow GWT, and absence 

of data on soil salinity, the land suitability parameters only included GWS. 

Information on the relationship between establishment and growth of E. 

angustifolia and GWS is still very sparse. In Khorezm, several studies reported that E. 

angustifolia was established on the sites with GWS ranging from 0.6 g/l to 3.2 g/l 

(Khamzina et al. 2009; Khamzina et al. 2012). Schachtsiek (submitted) observed 

establishment of E. angustifolia on a silt‐loamy site in Khorezm with GWS in the range 

of 0.5‐3.8 g/l over the crop growing season, and on a sand‐loamy site in the SKKP with 

GWS in the range of 0.6‐3.8 g/l over the crop growing season.  

Cramer et al. (1999) observed that tree species with high salt tolerance used 

more groundwater to restrict uptake of salts from the upper, drier and more saline soil 

layer. A high groundwater use by salt‐tolerant, non‐halophytic plants results in higher 

accumulation of salts in the soil profile, due to their exclusion from the uptake. In the 

study region, the salinity in the plots of E. angustifolia was higher than in the plots with 

less groundwater consuming species, even though there was no evidence that the tree 

roots took up the water directly from the groundwater; the roots rather resided in 

unsaturated soil layers above the GWT (Khamzina et al. 2009; Hbirkou et al. 2011).  

Due to the absence of experimental data on GWS tolerance of E. angustifolia 

in the study region, after discussion with the afforestation experts and considering the 

salt tolerance of E. angustifolia, the GWS tolerance levels for this species were 

assumed according to the FAO classification (Rhoades et al. 1992). The optimal GWS 

level was assumed up to 7.0 g/l (Table 5.3). Suitability of the site for E. angustifolia was 

assumed to decrease exponentially with a further increase in GWS. Such relationship is 

best described by a monotonically decreasing sigmoidal curve (Table 5.5).  

Similar to the GWT, the analysis on three factors representing GWS in spring, 

summer, and autumn averaged over years were included in the analysis to capture 

within‐seasonal fluctuations of GWS (Table 5.3, Table 5.5). 
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Table 5.3 : FAO classification of saline waters  
Water class Salt concentration, g/l Type of water 

Non‐saline <0.50 Drinking and irrigation water 

Slightly saline 0.50 ‐ 1.50 Irrigation water 

Moderately saline 1.50 ‐ 7.00 Primary drainage water and groundwater 

Highly saline 7.00 ‐ 15.00 Secondary drainage water and 

groundwater 

Very highly saline 15.00 – 35.00 Very saline groundwater 

Brine >45.00 Seawater 

 

Slope 

The terrain characteristics elevation and slope define the suitability of land for 

agriculture (section 3.3.2). Even small differences in the terrain influence accumulation 

of topsoil salt in the fields (Akramkhanov et al. 2011) and also the supply of irrigation 

water and its distribution in the fields (Mott‐MacDonald 2011). The suitability of a site 

in relation to slope can be based on the generally accepted criteria for slope suitability 

for agriculture (Table 5.4) (Sheng 1990). This classification was, however, not 

applicable for the analysis due to predominantly flat study area (Table 5.1). 

Table 5.4:  FAO classification of slopes according to their suitability for agriculture 

Suitability class Range of slope values, % 

Suitable 0° ≤ slope ≤ 26.8 

Marginally suitable 26.8 < slope ≤ 46.6 

Unsuitable slope > 46.6 

 
In order to incorporate the small but nevertheless important differences in 

slope, it was assumed that the site suitability for E. angustifolia decreases with 

increasing slope steepness. Thus, the criterion slope was rescaled using the 

monotonically decreasing linear function (Table 5.5). 

5.2.2 Weighted linear combination 

An overall land suitability was computed using the convex combination rule, which is a 

weighted linear combination (WLC) of membership values of each factor Ai: 

     � = ∑ �� ×	���
�
���         (5.1) 

where wi are the weights of the memberships values. 
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In WLC, criterion weights indicate the relative importance of each criterion to the 

objective under consideration. In general, the higher the criterion weight, the more 

influence that factor has on the final suitability map. A criterion with a high weight may 

compensate for low suitability in other factors that have lower weights (Eastman 

2012). Therefore, the choice of weights is very important for determining the overall 

land suitability (Braimoh et al. 2004). Davidson et al. (1994) suggest that weights 

should be selected based on knowledge of the relative importance of evaluation 

criteria to crop growth. In this study, simple ranking was applied to rate criteria from 1 

(least important) to 5 (most important). This ranking is based on the knowledge of 

experts who supervised the establishment of experimental tree plantations on the 

degraded cropland in the study region (Khamzina et al. 2006b; Schachtsiek et al. 

submitted). The final parameters of the evaluation criteria used in the land suitability 

analysis are shown in Table 5.5. 

5.2.3 Model evaluation 

The analysis was conducted to test the sensitivity of the results to the changes in the 

assigned weights. Subsequently, the suitability map based on the equal‐weight WLC 

was computed and compared with the suitability map based on the WLC with expert‐

defined weights. The validation of the results based on commonly conducted 

comparison with the field data on crop distribution (Braimoh et al. 2004; Chen and 

Paydar 2012) was not possible, as tree planting is not a conventional land use in the 

study region, and only few E. angustifolia experimental plantations currently exist 

(Khamzina et al. 2006b; Schachtsiek et al. submitted). 

5.3 Results and discussion 

5.3.1 Land suitability for E. angustifolia 

The result of MCE is a continuous layer of land suitability where values 0 and 1 indicate 

not suitable and most suitable sites, respectively. The assessment revealed that most 

of the irrigated cropland is characterized by average and higher than average 

suitability values for E. angustifolia (Figure 5.1). The suitability was lower in eastern 

and central parts of the SKKP, in the central part of Khorezm, and along the desert 
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margins of the irrigated land. The visual comparison of the resulting map and criterion 

maps (not shown here) revealed that spatial distribution of suitability was largely 

predefined by irrigation water use. High suitability values were observed in the north‐

west of the region where irrigation water use has increased over the last decade, 

whereas the areas with the low suitability values experienced a decrease. The lowest 

suitability was detected in the eastern part of the SKKP, also likely due to the enhanced 

GWS reinforced by poorly developed drainage network (Mott‐MacDonald 2011).  

For further interpretation of the suitability map in relation to the selected 

criteria, the reduced‐criteria suitability maps were calculated by sequentially omitting 

one criterion per calculation. The obtained maps were compared with the full‐criteria 

suitability map. The results show that omitting the factor irrigation water use had the 

strongest impact on the suitability results as the correlation between the maps was 

average (R2=0.65). Almost no impact was observed when omitting the criteria slope 

(R2=0.99), GWS (R2=0.95) for GWS in spring, and summer and R2=0.99 for GWS in 

autumn), and factors related to irrigation network (R2=0.98 for all criteria) excluding 

proximity to irrigation canals (R2=0.90). By omitting criteria related to GWT, the 

correlation between the maps dropped (R2=0.85). This confirms the importance of the 

criteria choice and assigned weights for suitability assessment (Lu et al. 2012).  

In this study, the evaluation criteria were selected by experts and based on a 

literature review. Such selection procedure is rather subjective compared to statistical 

methods, e.g., multiple discriminant analysis (Joss et al. 2008). As a consequence, the 

selected criteria, while considered reasonable, might not necessarily be the most 

optimal to fully reflect the variability of land suitability for E. angustifolia. While the 

study identified cropland potentially suitable for E. angustifolia it was not possible to 

include all the relevant information, e.g., soil characteristics. Whereas the absence in 

the model of parameters such as soil type and texture could be neglected, as E. 

angustifolia grows under a wide range of soil types and textures from sand to heavy 

clay (Tu 2003), the absence of spatial data on soil salinity dynamics could have 

influenced the results of this assessment. Nevertheless, land management practices in 

the study region such as annual soil leaching, which is also recommended for the 
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establishment phase of E. angustifolia plantations (Khamzina et al. 2006b), partly 

justify exclusion of this factor. There might also be an effect on the results due to the 

data quality and their resolution, which is a common problem of data‐driven GIS‐based 

studies especially in the developing countries (e.g., Ruger et al. 2005). 

 

Figure 5.1: Overall suitability of land for E. angustifolia in the irrigated agro‐
ecosystems of northern Uzbekistan 

The test of the model’s sensitivity to the change in the assigned weights did 

not reveal substantially different results, as the compared  maps (i.e., the suitability 

map based on the equal‐weight WLC and the suitability map based on the WLC with 

expert‐defined weights) were similar (R2=0.93 for Khorezm and R2=0.89 for the SKKP). 

The knowledge‐based approach, commonly applied in land evaluation studies (e.g., 

Nekhay et al. 2009; Tuan et al. 2011; Krueger et al. 2012), was also used here to assign 

weights and determine fuzzy membership functions. This approach is rather subjective 

compared to the automated approaches (Lu et al. 2012; Liu et al. 2013). 

Implementation of the data‐driven approach to model suitability is, however, 

preconditioned to availability of extensive quantitative information on environmental 

variables (e.g., Bradshaw et al. 2002). Still, the applied approach based on fuzzy logic 



Land suitability assessment for afforestation with Elaeagnus angustifolia L on 

degraded irrigated cropland 

85 

 

and WLC allowed formalizing available expert knowledge in the formal algorithm 

(Ruger et al. 2005) and eventually achieving the objectives of the study. Further work 

could incorporate an empirical approach towards parameterization of the land 

suitability model if the necessary data are available, for example, from the established 

network of permanent E. angustifolia plantations in an environment similar to that of 

the presented case. 

5.3.2 Suitability of degraded land for E. angustifolia  

The overall suitability map (Figure 5.1) was subsequently overlaid with the MODIS‐

based LD trend (chapter 3) to highlight the suitability of E. angustifolia for degraded 

cropland (Figure 5.2). The parcel‐specific Landsat‐based map (chapter 4) was not used 

due to the differences between the spatial scales of this map and the suitability map. 

The descriptive statistics of the suitability values of the degraded cropland 

(only significant NDVI trends were considered) is shown in Table 5.6. Overall, suitability 

was higher for Khorezm compared to the SKKP, while the highest suitability was 

observed for the Yangibazar district of Khorezm and the lowest suitability for the 

Turtkul district of the SKKP. Also, the range of suitability values was wider for the SKKP, 

suggesting higher spatial variability of the evaluation criteria in this area compared to 

Khorezm. In general, higher suitability was observed in the districts bordering the Amu 

Darya River such as Gurlan, Bagat, Khanka, and Khazarasp, most probably due to the 

better access to irrigation water. This degraded cropland, located inside high 

population density areas, should be preliminary targeted by land rehabilitation 

measures including afforestation in order to support the livelihoods of the people 

(Dubovyk et al. 2013b). In contrast, lower suitability was found in the districts in the 

tail‐ends of the irrigation system such as Khiva, Kushkhupyr and Ellikkala. Even though 

prompt action is also required to stop ongoing LD in these areas, abandoned degraded 

cropland at the far reached of irrigation systems, are more prone to water scarcity and 

deeper GWT due to infrequent irrigation water supply (Dubovyk et al. 2012a; Dubovyk 

et al. 2013a). In these areas, establishment of tree plantations will require higher 

irrigation water inputs which, in turn, will increase transactions costs. Afforestation 
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decisions for such cases should also be based on economic assessment of whether 

afforestation actions under increased irrigation is a viable alternative land use. 

 

Figure 5.2 Land suitability map for E. angustifolia in relation to all classes of 
negative vegetation trend in Khorezm and Southern Karakalpakstan  

Table 5.6: Descriptive statistics of degraded cropland suitability for E. angustifolia 

Districts‘ name 
Land suitability for E. angustifolia 

min max mean Stdev* 

Bagat 0.62 0.88 0.78 0.05 
Gurlen 0.66 0.85 0.78 0.03 
Khanka 0.65 0.91 0.82 0.03 
Khazarasp 0.59 0.87 0.76 0.05 
Khiva 0.58 0.84 0.71 0.06 
Kushkhupyr 0.56 0.79 0.72 0.04 
Shavat 0.67 0.85 0.75 0.02 
Urgench 0.63 0.85 0.71 0.02 
Yangiaryk 0.50 0.83 0.66 0.07 
Yangibazar 0.68 0.88 0.83 0.02 

Khorezm 0.44 0.91 0.76 0.06 

Beruniy 0.33 0.91 0.78 0.07 
Ellikkala 0.26 0.83 0.61 0.04 
Turtkul 0.18 0.74 0.53 0.10 

Southern Karakalpakstan 0.18 0.91 0.65 0.13 

*Standard deviation  
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The irrigated croplands are not conventional forestry areas, thus there is little 

published research on tree growth in this environment in general (Khamzina 2006a), 

and studies on spatial suitability assessments for afforestation of the degraded 

irrigated cropland are missing. Laube (2005) focused on the spatial distribution of land 

suitability for different ecosystem services of 11 tree species (including E. angustifolia) 

at the farm and district level (Khiva and Kushkhupyr districts, Khorezm). The study 

demarcated 31% very suitable and suitable areas for timber production, 23% for 

biodrainage, and 44% for fruit production at district level. Overall, the spatial patterns 

of suitability values were similar for fruit and timber production. The revealed 

dissimilarities  can be attributed to the differences in research objectives, methods and 

datasets used as well as to the spatial scale of the analyses. However, the results of 

both studies reveal a trend of decreasing suitability values towards the southern 

borders of the considered districts. 

5.3.3 Implications for land-use planning 

Agroforestry practices are not a common land use in the irrigated agro‐ecosystems in 

northern Uzbekistan. A number of bio‐physical and socio‐economic studies were 

therefore conducted during the last decade in the study region aiming to assess the 

potential of plantation forestry as an alternative land‐use option, which could 

rehabilitate degraded cropland, provide ecosystems services, and generate 

opportunities for income generation for the local population (Martius et al. 2003; 

Lamers et al. 2008; Hbirkou et al. 2011; Djanibekov et al. 2012b; Djumaeva et al. 2012). 

In total, evidence was obtained on ecosystem rehabilitation and financial benefits, 

suggesting that afforestation of the degraded cropland is an attractive land use 

(Khamzina et al. 2012). In this context, the performed land suitability assessment 

allows improved understanding of the spatial variability of suitability of degraded 

irrigated cropland for E. angustifolia and, subsequently, for better‐informed spatial 

planning decisions on land rehabilitation via afforestation. The generated data also 

provide a basis for assessment of spatial distribution of the potential costs and 

benefits, and thus eventually allow efficient environmental policy interventions (van 

der Horst 2006).  
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The developed suitability model can be easily modified and has relatively 

small input data requirements. This enables its further use for suitability analysis for 

other tree species and ecosystem services from tree plantations, always considering 

the specific conditions that apply to the species/services concerned. Furthermore, the 

obtained results could be used as input for other types of analysis (e.g., economic 

assessment) and coupled with other models (e.g., agent‐based models).  

The performed assessment was intended only for broad‐scale planning 

purposes due to data constraints and absence of validation datasets. Subsequently, 

caution is needed when deciding on the most suitable outputs for spatial planning. 

Nevertheless, the results facilitate a better understanding of the suitability potential of 

alternative land use of the degraded cropland which, in turn, forms a basis for future 

land rehabilitation action in this region (Dubovyk et al. 2013b).  

5.4 Conclusions 

A GIS‐based multi‐criteria decision‐making tools was utilized for a regional‐scale 

suitability assessment for E. angustifolia on the degraded cropland in the irrigated 

agro‐ecosystems in northern Uzbekistan. The approach used expert knowledge, fuzzy 

logic and WLC to produce a suitability map for the irrigated land in the study region. 

This map was further overlaid with the MODIS‐based LD trend map to extract 

suitability values for degraded cropland. Altogether, the results reveal that degraded 

cropland has higher than average suitability potential for afforestation with E. 

angustifolia. 

The generated information can support planning of spatially explicit policy 

incentives for agricultural land on a regional level. For more specific recommendations, 

possible implications of the changing land use to tree plantations, for example on the 

water balance, socio‐economic assessment of future land‐use scenarios as well as 

higher spatial scale datasets for suitability modeling should be considered. 
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6 CONCLUSIONS AND OUTLOOK 

Irrigated agro‐ecosystems in Central Asian drylands have experienced observable 

degradation due to anthropogenic factors mostly related to land management and 

water‐use practices. Despite the profound social and ecological implications of LD, 

spatially explicit information on land conditions is rare, and particularly lacking for 

irrigated agro‐ecosystems in the region. Concerns are also raised about the accuracy of 

locally available soil degradation maps, which are often static and irregularly updated. 

Moreover, the existing assessments based on satellite data mostly focused on LULC 

changes and were implemented at large scales using low to medium resolution 

satellite data (e.g., Klein et al. 2012; Gessner et al. in press).  

In Uzbekistan, irrigated agriculture remains the basis of the economy, while 

the share of the land affected by high soil salinity, waterlogging, and declined soil 

fertility has increased over years. For guiding the measures for land rehabilitation 

planning, up‐to‐date information on land conditions on different spatial scales should 

become available. To derive such information, RS techniques have been commonly 

applied (Wessels et al. 2007; Prince et al. 2009; Le et al. 2012); however, irrigated agro‐

ecosystems have not been yet explicitly addressed.  

Afforestation has proved to be an effective land restoration measure for 

saline environments elsewhere and also in northern Uzbekistan (Khamzina et al. 2012). 

As land suitability for trees differs spatially, planning of afforesting the degraded 

irrigated cropland has to be based on the results of spatial land evaluation for the 

region considered.  

In order to contribute to sustainable land management options as well as land 

restoration efforts in the irrigated lowlands of the Amu Darya River, this research 

provides multi‐scale information on land conditions and the drivers of LD as well as 

spatial evaluation of the suitability for afforesting degraded land with the selected tree 

species, i.e., E. angustifolia. This study also contributes to the development of methods 

that will support future assessments in similar landscapes. 
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In the following sections, the major findings of this research are highlighted. 

These are used to provide an outlook on the implications of this research and to 

provide recommendations for follow‐up studies. 

6.1 Reflections on multi-scale targeting of land degradation in irrigated agro-

ecosystems in northern Uzbekistan 

Degradation of cropland is a typical phenomenon of irrigated agro‐ecosystems in CA. 

In the Central Asian region, a huge expansion of irrigated land occurred during the 

Soviet era when the massive irrigation infrastructure was constructed. Irrigated agro‐

ecosystems of CA have thus several common characteristics and similar problems such 

as elevated soil salinity. Also, it is evident that there are some dissimilarity between 

the irrigated landscapes, mainly due to the differences in land and water management 

after the collapse of Soviet Union and the states’ independence in the beginning of the 

1990s.  

The aim of this research was to illustrate the situation of LD in the irrigated 

lowlands of the Amu Darya River in northern Uzbekistan. The case study was 

implemented at two different but inter‐related spatial scales, i.e., a region‐wide 

analysis of cropland degradation that is typically concerned with the strategic planning 

process, and the local level in which the subset of the study area was used to describe 

LD patterns in detail. The findings for both scales are presented below. 

6.1.1  Lessons related to the regional scale 

The research at the regional level provided insights into several topics related to LD in 

the irrigated agro‐ecosystems, and into the applicability of a diversity of methods that 

were developed and applied in the course of this study. These are discussed briefly in 

the following section. 

Spatio-temporal analyses of cropland degradation 

In general, vegetation cover loss over time, irrespective of whether caused by 

worsening soil quality or decreased cultivation, denotes a decline in the economic 

productivity of irrigated cropland and can be considered as degradation of its 

productive function (UNCCD 1994).  
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Spatial trends of vegetation cover decline, calculated from the MODIS‐NDVI 

time series for the monitoring period 2000‐2010, revealed a gradual negative 

vegetation trend on 23% (94,835 ha) of the arable area. Spatial distribution of the 

trend was highly variable and scattered throughout the region, but several clusters 

were observed on the outskirts of the irrigation system near the borders with the 

natural deserts Karakum and Kyzylkum. In Khorezm, a big cluster of degraded land was 

located in the western part in the former river bed of the Amu Darya River, and 

another big cluster was formed on the northern and north‐eastern part of the SKKP. 

The validation results based on collected field data for the LD trend map (overall 

accuracy is 68%) and statistical tests affirm the validity of the developed approach.  

The results of spatial relational analysis based on a suite of ancillary datasets 

explain the observed patterns of degraded cropland in the study area. The majority of 

cropland degradation was observed on marginal cropland. These marginal areas are 

typically characterized by poor‐quality soils and low population density. In addition, 

these areas are commonly taken out of the regular cropping cycle and are often 

abandoned. Fewer degraded cropland patches were found within areas of high 

population density.  

The results of logistic regression modeling allowed explanatory analysis of the 

causative factors of LD and identification of areas at risk of LD. In Khorezm, the factors 

GWT, GWS, uncultivated land, and slope (odds=330%, odds=26%, 103%, and 

odds=29%, respectively), had the strongest impact on the spatial distribution of 

degraded cropland, while for the SKKP these factors were GWS, uncultivated land, and 

irrigation canal density (odds=475%, odds=384%, and odds=‐164%, respectively). For 

Khorezm, the remaining factors, i.e., change in land use, proximity to irrigation canals, 

and proximity to roads, were positively related to LD occurrence, whereas factors 

water use and proximity to settlements were negatively related. Similarly, for the 

SKKP, the factors soil bonitation classes III and IV and proximity to collectors were 

positively related to spatial distribution of degraded areas, whereas the factors 

collector density and GWT were negatively related. The predictions of areas at risk of 

LD show that more areas are likely to be affected in the region if no preventive 
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measures are taken. The computed evaluation and validation statistics indicate that 

the model results are valid (AUC ROC=0.70 for Khorezm and 0.88 for the SKKP). 

From the point of view of land management implications, those degraded 

croplands that are located in more densely populated areas and include higher quality 

soils may be appropriate areas for the introduction of more sustainable cropping 

practices. Marginal croplands, however, should be considered as candidate areas in 

which to implement appropriate rehabilitation measures. Such measures may include 

cessation of annual cropping and fallowing or vacating the land.  

6.1.2 Lessons related to the local scale 

The issues investigated at the local level were mainly related to generation of spatial 

information on land conditions and LULC characteristics at a scale appropriate for 

targeted land management interventions.  

Plot-based assessment of irrigated cropland degradation  

The agricultural land‐use map, derived from the analysis of the multi‐temporal Landsat 

TM images, revealed the following cropping patterns in 2009. The cotton and winter 

wheat fields were scattered throughout the area, while there were several rice clusters 

close to the Amu Darya River and along the big irrigation canals. Diversity of crops and 

crop rotations were mainly found in the central part of the irrigated area. The 

distribution of cropping areas in 1998 and 2009 was comparable to that of fallow land 

mainly on the desert outreaches of the irrigation system. The accuracy assessment 

confirmed the validity of the produced maps (overall accuracy=93% for the 1998 map 

and overall accuracy=82% for the 2009 map). 

An adaptation of the SMA‐based OBCD for the analysis of land conditions in 

irrigated agro‐ecosystems yielded a change map that highlights parcels that 

experienced vegetation cover decline between 1998 and 2009. Similar to the MODIS‐

based map, spatial distribution of the parcels with decreased vegetation cover was 

variable, but large clusters were found along the borders of irrigated land in the south 

and north of the study region. The comparison with the land‐use maps showed that 

17% (29,029 ha) of the analyzed cropland area was fallow in both 1998 and 2009 and 

experienced decreased vegetation cover probably due to grazing pressure. About 20% 
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(11,064 ha) of the areas with vegetation decline was cultivated in 1998 and left fallow 

in 2009. As revealed by field visits, these parcels are likely abandoned from cultivation. 

The remaining parcels with decreased vegetation cover (26,142 ha) were located 

within the cropping areas. The areas under cotton cultivation (15,343 ha) that 

exhibited vegetation cover decrease seem to be more affected by degradation 

processes than by reduced agricultural inputs.  

The evaluation of the change map using the MODIS‐based LD trend map 

confirms the overall similarity between both maps (overall agreement=93%). The 

evaluation results also show that the Landsat‐based change map based on the 

bitemporal dataset underestimated the vegetation cover decline compared to the 

MODIS‐based trend map based on satellite time series spanning over 11 years 

(omission error=43% for the LD class). 

6.1.3 Spatial decision support for land rehabilitation via afforestation 

MCDM approaches based on MCE are closely related to GIS overlay analyses, and the 

development of spatial MCE applications is thus a useful GIS application for agricultural 

planning. In this study, a MCE model for assessing suitability of degraded land for E. 

angustifolia was developed incorporating criteria based on biophysical and spatial 

characteristics of the studied agro‐ecosystems. Even with the relatively small dataset, 

it was possible to discriminate between degraded irrigated areas on the basis of their 

potential suitability for planting this tree species. This could be considered by local 

authorities as a possible land rehabilitation measure.  

The assessment revealed that most of irrigated cropland is characterized by 

average and higher than average suitability values for E. angustifolia. The higher 

suitability values were observed in the north‐west of the region, which is characterized 

by adequate water use, whereas the lower values were found in the eastern and in 

central parts of the SKKP, in the central part of Khorezm, and along the desert margins 

of the irrigated land.  

Suitability of the degraded irrigated cropland for E. angustifolia was higher 

for Khorezm than for the SKKP (mean=0.76 and mean=0.65, respectively). Also, the 

range of suitability values was wider for the SKKP, suggesting higher spatial variation of 
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the evaluation factors within the region. Higher suitability was observed in the areas 

bordering the Amu Darya River, whereas lower suitability characterized the outskirts of 

the irrigation system. 

Similar to the general recommendation on the prioritization of the land for 

land rehabilitation measures, it is advised to first select degraded land located inside 

high population density areas for establishing E. angustifolia plantations in order to not 

only contribute to land restoration but also to support the people’s livelihoods. 

Establishing tree plantations on the degraded margins of the irrigated area, which are 

characterized by deeper GWTs, will require higher management inputs, and thus 

should be subjected to further evaluation to determine the economic feasibility of tree 

planting on such land. 

6.1.4 Methods and techniques for spatial data analyses  

The results of this study clearly demonstrate the use of a variety of geospatial tools for 

multi‐scale LD assessment and spatial targeting of land restoration in irrigated agro‐

ecosystems. The resulting increased knowledge on cropland degradation could provide 

improved spatial decision support for planning land rehabilitation measures and 

sustainable land management options. 

The basis for the analyses of the LULC changes was the freely available 

satellite imagery from the MODIS and Landsat TM sensors. Even though the free of 

charge distribution of this imagery makes its use for land management applications an 

attractive option for resource‐sparse countries, it has not been routinely applied for 

environmental monitoring and agricultural planning purposes in Uzbekistan. This 

research has demonstrated how such data can be used in the analysis of cropland 

degradation in a manner that can generate potentially useful datasets for spatial 

planning and policy making. In such a setting, where reliable data are in short supply 

and resources are constrained, methods that create added value from free‐of‐charge 

satellite data could be of considerable benefit. An important asset is the generation of 

broad‐scale spatial information, e.g., on LULC changes, which would be otherwise 

unavailable to the agricultural planning community. 
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However useful these examples are, they were only made available through 

considerable investment in image processing and analyses. This weakness was not 

overwhelming though, and the staff training in the use of the elaborated geospatial 

tools as well as the development of automated routines for data capture and analyses 

would do much to enhance the usability of satellite data in the local setting. More 

importantly, this would facilitate the establishment of a periodic LD monitoring system 

(Sommer et al. 2011) that would produce useful data on land conditions, thus enabling 

operational decisions on land management. 

The development of the approach to generate spatial information on the 

scales required for targeted land interventions using multi‐temporal Landsat imagery 

from 1998 and 2009 was a useful means to accommodate the disadvantage of the 

medium scale (250 m) MODIS images. Although Landsat images were also freely 

available and their spatial resolution (30 m) allowed generation of the parcel‐specific 

LULC data, the suitability for LD monitoring is constrained due to the absence of the 

continuous time series in this part of the world; this is needed for trend analysis. 

Although the use of Landsat imagery has been shown to be beneficial in a technical 

sense, the generated information should be regarded as supplementary to the results 

of the MODIS‐based trend analysis, and should be placed in the specific context 

utilizing additional datasets such as agricultural land‐use maps as used in this work.  

Despite the above reservation concerning the use of Landsat imagery, the 

performed analyses were able to successfully generate the historical LULC data on a 

per‐parcel basis that could not otherwise have been collected for this region with the 

available resources. Furthermore, the Landsat archive is currently the only available 

source of RS images dated back to the 1970s, and thus has to be utilized when a 

retrospective assessment on high spatial scale is intended. 

The maps showing changes in NDVI and also other vegetation indicators over 

time are operationally produced for LD monitoring (Buenemann et al. 2011). While 

broadly available and well documented data is in principle creditable, there is a call 

within the scientific community for caution with the interpretation of such information 

(Bai et al. 2008; Wessels et al. 2012). Specifically, for irrigated agro‐ecosystems only 
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when placed in the context of land‐use changes and land‐use systems via utilizing 

secondary datasets and expert knowledge, vegetation‐related indicators may provide 

an indication where problems can arise. Independent of the above‐mentioned 

criticism, it should be noted that the general approach based on vegetation 

monitoring, as applied in this research, is currently the only available option for 

operational LD observation over large areas (Vogt et al. 2011).  

This research used a set of ancillary datasets and a number of geospatial tools 

including logistic regression modeling, relational analysis, and MCE to understand 

cropland degradation in the study region and to guide land management interventions 

for afforesting degraded land. The results of these analyses are, however, conditioned 

to the data availability and quality. The utilized ancillary datasets were collected from a 

variety of sources in different formats over an extended period of time, and were 

processed by several persons, most of them with basic knowledge and skills in GIS. 

Also, problems were anticipated related to the general availability of some datasets 

(e.g., soil salinity, crop yields), and to the availability of data at the required spatial unit 

and with their temporal correlation. The datasets were available only on a scale 

appropriate for regional‐wide analyses. Further, as LD is a dynamic process, the 

additional spatially explicit data for some of the variables such as water use, GWT and 

GWS should ideally be available in a uniform continuous manner and cover the same 

monitoring period as satellite data. Given the resources available for such work in 

Uzbekistan, however, pragmatic approaches that rely as much as possible on 

accessible data might offer the best possibility of application and acceptance by local 

decision makers. 

6.2 Recommendations for future work 

In the course of this research, several issues were encountered that were not directly 

addressed mainly due to resource constraints. In the following section, these issues are 

highlighted along with other topics where additional research could further enhance 

the scope for sustainable land management based on spatial data provision in 

Khorezm and the SKKP. The section concludes with some remarks on the need for 

integrated assessment of LD and sustainable land management. 
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6.2.1 General remarks on issues for further investigation 

The results of this research contribute to formation of a more complete and spatially 

explicit picture of the cropland degradation that was previously not available in the 

study region. The outputs and the elaborated approach to generate such information 

are useful contributions to the spatial data provision for agricultural planning and 

management; however, a diversity of issues can be further investigated. 

From the technical side, the approaches developed at the regional and local 

scales showed usefulness and applicability, but also require further validation and 

refinement, and ideally the inclusion of additional environmental and socio‐economic 

datasets at the higher spatial scale to unable further insights into drivers of land‐cover 

changes as well as for land suitability analysis at the local level. Also, historical mapping 

of agricultural land‐use changes with Landsat images can allow more comprehensive 

interpretation of the observed patterns of vegetation cover decline in the study area. 

From the application side, further refinement of the developed tools should 

be done in close cooperation with local agricultural planners, land managers, and 

scientists to capture the local needs and to assure applicability of the results. This 

research ignored the important issues related to institutional and organizational 

setting, as well as sociological aspects of the geospatial tools adoption in the study 

region that must be considered in an operational environment. These issues can be a 

part of further research that should be conducted with the full cooperation of local 

actors and the potential user community for the developed tools and generated spatial 

information. The legal settings which would allow alternative land management of 

degraded cropland in Uzbekistan have also to be looked at, as currently there is no 

legal support for alternative use of agricultural land (Djanibekov et al. 2012b). 

6.2.2 Specific remarks on issues for further investigation 

This section elaborates on some topics which ideally should be addressed in the course 

of follow‐up studies to support the findings of this research and also to assure their 

further applicability to similar environments in CA and elsewhere. 
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Integration of remote sensing data and terrestrial/in situ measurements 

Earth observation can considerably contribute to the LD identification and monitoring 

of land conditions over time. The obtained RS‐based results highlight hotspots of 

significant change that need subsequent detailed investigation on the ground. A 

meaningful interpretation of satellite imagery, for example, requires the careful 

calibration and validation of RS data against ground measurements such as vegetation 

productivity and soil fertility. It is therefore advisable to conduct ground 

measurements in the study region for further affirmation of the validity of produced 

results and for creating linkages with quantitative in situ data. 

This research relied on different types of satellite imagery as well as on 

various indicators (i.e., NDVI and SMA). SMA is known for its superiority over simpler 

vegetation indices in quantifying vegetation cover elsewhere (Sonnenschein et al. 

2011). Still, for the specific settings of irrigated agro‐ecosystems, the trade‐off 

between these different estimates should be a subject of further investigation. In 

addition, the nature of the differences in spatial information generated from MODIS 

and Landsat has to be studied in more detail to allow improved interpretation of the 

obtained results and their supplementary usage.  

Multi-criteria evaluation for spatial decision support 

The aim of the performed land suitability assessment was to demonstrate applicability 

of GIS‐based decision support tools with the available data for regional planning of 

land rehabilitation measures using an example of afforestation with E. angustifolia. It 

illustrates the principles involved and shows that there is scope for further refinement 

of the operational model. This should be done in close cooperation with local actors. 

The model can be improved by (1) adding criteria in addition to the sort of data already 

used in the analysis that were not available for this study, (2) incorporating 

quantitative methods for weights generation and criteria ranking, (3) considering 

preferences of different groups of local actors (e.g., farmers, cadastral engineers, and 

agricultural planners), and (4) adding new modules to accommodate the multi‐

functional nature of afforestation (Webb and Thiha 2002; Lexer et al. 2005). 

Furthermore, the spatial MCE approach can be used in a similar fashion to generate 
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information on land suitability for other tree species or different types of land 

restoration measures as well as alternative land uses of degraded land (e.g., Zerger et 

al. 2011).  

6.2.3 Towards an integrated assessment of land degradation and sustainable land 

management 

Current approaches for LD assessment and sustainable land management increasingly 

aim to integrate information and data from different sources in order to achieve an 

accurate representation of this complex problem (Reynolds et al. 2011). Approaches 

aimed at assessing only selected aspects of these issues such as net primary 

productivity or farm income often do not provide adequate information for sound 

policy and decision making (Buenemann et al. 2011). Such approaches, for example, do 

not provide an understanding of interactions between elements of environmental and 

human systems and of costs and benefits of alternative land management options or 

of conflicting interests of different stakeholders.  

The follow up study should thus link generated spatial information and a 

variety of environmental and socio‐economic data in a spatially explicit framework for 

comprehensive assessment of the sustainable land management options of the 

degraded land in the studied agro‐ecosystems. For example, valuation of the economic 

costs of LD would increase awareness of the spatial extent of the cropland degradation 

phenomenon and its impacts on agriculture and rural development. While linking 

generated spatial information to human processes on the ground, i.e. ‘socializing the 

pixel’, new insights on land management sustainability and its relation to human well‐

being could be obtained. The results of such integrated assessment could not only 

facilitate agricultural planning and land management decisions but also be a useful tool 

for decision‐making on sectoral orientations for development assistance that will 

target cropland degradation. 

6.3 Overall conclusions 

This research allows to highlight the following points related to the multi‐scale 

targeting of LD with satellite RS in the irrigated lowlands in northern Uzbekistan: 
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 The problem of irrigated cropland degradation is very acute in the irrigated 

agro‐ecosystems in Khorezm and the SKKP. 

 The obtained spatial knowledge on the irrigated cropland degradation allows 

an improved understanding of LD patterns and the driving factors at both 

regional and local levels.  

 The generated spatial data can contribute to the policy and decision‐making 

process on land rehabilitation and sustainable agricultural land use. 

 The proposed methodological approach based on the RS tools combined with 

GIS and statistical analyses allows multi‐scale targeting of irrigated cropland 

degradation. 

 The developed approach can contribute to spatio‐temporal analyses of 

cropland productivity decline and spatial decision‐support on land 

rehabilitation via afforestation in other Central Asian countries and in similar 

agro‐ecosystems worldwide. 

 Vegetation productivity decline and vegetation cover decline are used as proxy 

for LD. In agricultural areas, additional information should be employed for 

interpretation of the observed vegetation decline to avoid misinterpretations. 

 To enable development of site‐specific recommendations for land 

rehabilitation and/or conservation measures, on‐site validations of RS and land 

suitability results should be carried out. 

 In order to obtain accurate and reliable results, the tools applied in this study 

should be used according to the confirmed procedures.  

 Data availability and quality are crucial factors for successful applications of 

spatio‐temporal analyses of LD and for determining land suitability for 

alternative land uses. 

 The generated spatial information should be further integrated with socio‐

economic and biophysical data in a spatially explicit way for inclusive LD 

assessment and sustainable land management planning in the studied irrigated 

agro‐ecosystems. 
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8 APPENDICES 
 

Appendix 8.1: E. angustifolia in one of the abandoned sites in Gurlen district of 
Khorezm region of Uzbekistan in 2011 

  
 

Appendix 8.2: Guided field visits by the irrigation and cadastral engineers to the 
abandoned field parcels in the southern Karakalpakstan in 2010 

 

On the photo from left to right: Baxtiyor 
Bobaev (irrigation engineer), Olena 
Dubovyk (ZEF), Dr. Sattar 
Hudaybergenov (cadastral engineer), 
Ilhom Madaminov (driver) 

On the photo from left to right: Dr. 
Sattar Hudaybergenov (cadastral 
engineer) and Oybek Qalandarov 
(research assistant) 
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Appendix 8.3: Negative vegetation trend in Khorezm region and southern 
Karakalpakstan based on Mann‐Kendall trend analysis of 250‐m MODIS 
and 300‐m MERIS NDVI time series for 2003‐2011 (Dubovyk et al. 2012c) 
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Appendix 8.4: Linear regression trend analysis of irrigation water use between 1998 
and 2008 for Khorezm region of Uzbekistan  

 
 

Table 8.1: Results of linear regression trend analysis of irrigation water use 
between 1998 and 2008 for Khorezm region of Uzbekistan 

 

Coefficient Standard error t P>|t| [95% Conf. Interval] 

Applied irrigation water use ‐6,33 26,43 ‐0,24 0,81 ‐58,55 45,90 

Constant 13241,82 52945,99 0,25 0,80 ‐91363,25 117846,90 

 
Appendix 8.5: Types of fuzzy set membership functions for criterion map 

standardization used in this study (Eastman 2012). 
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