

ZEF-Discussion Papers on Development Policy No. 262

Ferdinand Adu-Baffour, Thomas Daum, and Regina Birner

Can Big Companies' Initiatives to Promote Mechanization Benefit Small Farms in Africa? A Case Study from Zambia

Bonn, June 2018

The **CENTER FOR DEVELOPMENT RESEARCH (ZEF)** was established in 1995 as an international, interdisciplinary research institute at the University of Bonn. Research and teaching at ZEF address political, economic and ecological development problems. ZEF closely cooperates with national and international partners in research and development organizations. For information, see: www.zef.de.

ZEF – **Discussion Papers on Development Policy** are intended to stimulate discussion among researchers, practitioners and policy makers on current and emerging development issues. Each paper has been exposed to an internal discussion within the Center for Development Research (ZEF) and an external review. The papers mostly reflect work in progress. The Editorial Committee of the ZEF – DISCUSSION PAPERS ON DEVELOPMENT POLICY includes Joachim von Braun (Chair), Christian Borgemeister, and Eva Youkhana. Chiara Kofol is the Managing Editor of the series.

Ferdinand Adu-Baffour, Thomas Daum and Regina Birner, Can Big Companies' Initiatives to Promote Mechanization Benefit Small Farms in Africa? A Case Study from Zambia, ZEF – Discussion Papers on Development Policy No. 262, Center for Development Research, Bonn, June 2018, pp. 27.

ISSN: 1436-9931

Published by:

Zentrum für Entwicklungsforschung (ZEF) Center for Development Research Genscherallee 3 D – 53113 Bonn Germany Phone: +49-228-73-1861 Fax: +49-228-73-1869 E-Mail: zef@uni-bonn.de www.zef.de

The authors:

Ferdinand Adu-Baffour Hans-Ruthenberg-Institute of Agricultural Science in the Tropics, University of Hohenheim. Contact: <u>fadubaffour@yahoo.com</u>
Thomas Daum, Hans-Ruthenberg-Institute of Agricultural Science in the Tropics, University of Hohenheim, Contact: <u>thomas.daum@uni-hohenheim.de</u> (corresponding author)
Regina Birner, Hans-Ruthenberg-Institute of Agricultural Science in the Tropics, University of Hohenheim, Contact: <u>regina.birner@uni-hohenheim.de</u>

Acknowledgements

The authors would like to express their gratitude to all persons who took part in the interviews and focus group discussions. Special thanks are due to the Indaba Agricultural Policy Research Institute and Suchita Upreti for their support during the field research. We also thank Tim Loos, Heike Baumüller, Zaneta Kubik and Oliver Kirui for their valuable comments. The financial support of Deere & Company for the fieldwork is gratefully acknowledged. We are also grateful for financial support provided by the "Program of Accompanying Research for Agricultural Innovation" (PARI), which is funded by the German Federal Ministry of Economic Cooperation and Development (BMZ).

Abstract

After many years of neglect, there is a renewed interest in agricultural mechanization in Africa. Since government initiatives to promote mechanization, e.g., by importing and subsidizing tractors, are confronted with major governance challenges, private-sector initiatives offer a promising alternative. This paper analyzes an initiative of the agricultural machinery manufacturer John Deere and its dealership partner AFGRI to promote smallholder mechanization in Zambia through a contractor model. The analysis focuses on the impact of this initiative on smallholder farmers who receive tractor services and on the demand for hired labor. The analysis is based on a survey of 250 smallholders and focus group discussions using Participatory Impact Diagrams. The results of a Propensity Score Matching (PSM) analysis indicate that farmers who access tractor services for land preparation can almost double their income by cultivating a much larger share of the land that they own. The analysis also suggests that the increased income is used for children's education and for purchasing more food, but does not result in increased food diversity. The findings indicate that the demand for hired labor increases due to the expansion of the cultivated area and due to a shift from family labor, including that of children, to hired labor. Questions that require further investigation are identified, including policies and strategies to increase the incentives of tractor owners to provide services to smallholders, to use mechanization more effectively to increase land productivity, and to avoid new forms of dependency of agricultural laborers that may result

Keywords: Agricultural mechanization policy; agricultural intensification; private business; Zambia; employment effects

JEL Codes: J0, O3, Q10, Q12, Q15, Q16

Table of Contents

1. Introduction1
2. Background information
3. Methods 6
3.1 Sampling strategy and data collection6
3.2 Analysis7
4. Results9
4.1 Descriptive results
4.2 Results of the Propensity Score Matching (PSM) analysis11
4.3 Matching quality and sensitivity analysis14
4.4 Results of the focus group discussions14
5. Discussion
6. Policy Implications22
References

1. Introduction

During the last decade, agriculture has emerged as a top priority on Africa's development agenda. Governments, the private sector, civil society and development partners have joined efforts to promote a sustainable productivity revolution in Africa's agriculture. Examples include the Comprehensive Africa Agriculture Program (CAADP), the Alliance for a Green Revolution (AGRA) and GrowAfrica. Even though there is some new scope for large-scale farming, especially in the land abundant countries on the continent (Deininger & Byerlee, 2012), smallholder farming systems will have to play the key role for agricultural development in Africa (Birner & Resnick, 2010; World Bank, 2007; Davis et al., 2017). Almost 70% of the farms in Sub-Saharan Africa operate less than two hectares (Deininger & Byerlee, 2011: 28) and they typically do not realize more than 25% of their potential yields (Deininger & Byerlee, 2011: xxxviii). Substantial efforts have been made to close this yield gap, but in recent years, there has been an increasing recognition that it also important to increase the labor productivity in African agriculture in order to reduce poverty (Diao et al., 2018). In most countries of Africa, population density is relatively low, and the theory of induced innovation would predict that mechanization should play an important role in the early phases of agricultural development (cf. Hayami & Ruttan, 1985). Yet African farming systems remain the least mechanized of all continents (Pingali, 2007: 2784; Sheahan and Barrett, 2017).

There were substantial efforts to promote mechanization in Africa's agriculture in the 1960s and 1970s, but these efforts were state-led and they largely failed (Pingali, 2007: 2787). This negative experience led to a subsequent neglect of agricultural mechanization in development efforts, except for some efforts to introduce animal traction. Likewise, research on the mechanization of smallholder farming systems in Africa became a rather neglected field in the 1990s and 2000s (Diao et al., 2012). Research conducted in the 1990s had shown that machinery has an important role to play in improving farmers' crop management practices, especially by allowing for better tillage, weed control and moisture management (Anderson & Dillon, 1992: 78; Byerlee & Husain, 1993). The institutional dimension of mechanization had always remained a neglected field of research, in spite of overwhelming historical evidence that institutions such as rental markets and cooperative exchange have played a key role in the history of the countries that are now industrialized. As shown by Olmstead & Rhode (1995) for the case of the USA, such institutions were essential to facilitate the access of smallholder farmers to mechanization.

Following the food price crisis of 2008, there has been a renewed emphasis on agricultural development as a top priority in Africa's development agenda. This new interest in agriculture has also revived the interest in agricultural mechanization (FAO & UNIDO, 2008; Kienzle, Ashburner, & Sims, 2013; Mrema, Baker, & Kahan, 2008). Governments in several African countries subsidize the provision of tractor services, often by importing tractors that are then provided at subsidized prices to private sector operators who are expected to provide tractor services to smallholder farmers. A study of such a subsidy scheme in Ghana found that it was

not a viable business model for private tractor service providers, in spite of substantial subsidies provided by the government to private operators (Houssou et al., 2013). There is evidence that the often neglected governance challenges of mechanization contribute to the failure of such government-sponsored programs (Daum and Birner, 2017).

Against this background, the question arises as to whether private sector models that do not rely on government support are economically more promising and suitable to benefit smallholder farmers. Based on field observations in Ghana and a review of the international experience, Diao et al. (2014) hypothesized that private sector models have more potential than those that involve state interventions. Many services and inputs for smallholders, such as agricultural extension, require public sector involvement due to market failures (Feder, Birner, & Anderson, 2011). In contrast, considering that agricultural machinery is a pure private good in which innovations are embodied, machinery services offers specific opportunities for the private sector. However, since tractors are indivisible (unlike other inputs such as seeds and fertilizer), business models such as hire markets are required for smallholders to benefit from mechanization. In recent years, major international agricultural machinery companies, such as John Deere and AGCO, have recognized the new business opportunities in smallholder agriculture in Africa, and they have started to invest in developing their own business models to access this market. There is limited evidence in the literature on the opportunities and limitations of such purely private-sector driven options. Expectedly, civil society organizations are highly skeptical of such initiatives. One reason is a general skepticism that multi-national agribusiness companies may take advantage of smallholder farmers (see, e.g., Martínez-Torres and Rosset, 2010). Another reason is the fear that mechanization may lead to rural unemployment. Such concerns are not new. As Juma shows in his book on "Innovation and Its Enemies" (Juma, 2016), farm mechanization has been one of the most controversial of all agricultural innovations – not only in contemporary times, but also historically.

Research-based evidence would, thus, be important to better understand the potentials and challenges that private-sector led mechanization offers for smallholder farmers in Africa. Yet, there is a lack of evidence on this topic. In a recent review of micro-economic data on agricultural inputs in six African countries, Sheahan and Barrett (2017: 17) found that rental arrangements for the hiring of machinery might be more common than previously assumed, but there is limited evidence on the topic, so that these authors conclude: "Overall, ownership of agricultural machinery remains rare among African farmers but much remains to be learned about rental and sharing arrangements that might enhance access for those who do not own equipment".

The goal of this paper is to contribute to filling this knowledge gap by presenting a case study of a private-sector led smallholder mechanization initiative in Zambia. We analyze an initiative where the company John Deere, the largest manufacturer of agricultural machinery worldwide, worked with its dealership AFGRI, a business enterprise based in South Africa, to develop business models that allow smallholder farmers to access tractor services. The approach is to support "emerging farmers", that is medium-size farmers who own between approximately 10 and 200 hectares and can afford to purchase a tractor. The main form of support is facilitating the financing of the tractor, either through a loan provided by AFGRI or by facilitating the linkage with a private bank, using the tractor as collateral. The medium-size farmers who participate in this initiative are encouraged to use the tractor not only on their own land, but also to provide tractor services to smallholder farmers on a contract basis. John Deere's dealer AFGRI provides after-sales services such as maintenance services, spare part supply and repairs. AFGRI also has the capacity to provide other value chain services, such as supplying input and marketing farmers' produce. This initiative of John Deere and AFGRI involved a partnership with two non-governmental organizations, MUSIKA - an NGO focused on linking smallholders with business enterprises, and the Conservation Farming Unit (CFU) an NGO focused on promoting conservation agriculture. At the current stage, the smallholder farmers typically use tractor services to mechanize the most labor-intensive activity in crop production, which is ploughing. Alternatively, if farmers practice conservation agriculture, they use tractor services for ripping. The tractors are often also used for a labor-intensive postharvest activity: maize shelling. Other steps in crop production, such as weeding, pest control and harvesting continue to rely on hand labor or animal traction.

The overall objective of this study was to assess the economic and social impact of providing tractor services on smallholder farmers and to calculate the effect on total labor requirements, taking into account that farmers may expand crop production when they access tractor services. Since a randomized control trial approach was not feasible, we used Propensity Score Matching (PSM) to assess the effects of accessing tractor services on smallholder farms. In view of the criticism of private-sector led mechanization initiatives mentioned above, our main goal was to establish whether smallholder farmers can benefit from such services and whether the model will potentially increase rural unemployment.

2. Background information

With an average population density of 22 inhabitants per km2, Zambia is one of the most sparsely populated countries in Sub-Saharan Africa.ⁱ Agriculture supports the livelihoods of 60 to 70% of the population (Tembo & Sitko, 2013: 2). On the average, Zambian farmers own 3.2 hectares (ha) of land (Tembo & Sitko, 2013: 20), but due to labor and other constraints, they usually do not cultivate all their land. 75% of rural farm households cultivate on the average 2.5 hectares of land. Poor households cultivate only 2.2 ha, whereas non-poor households cultivate almost 4.0 ha (Tembo & Sitko, 2013: 35). Overall, agriculture is dominated by smallholder farmers as 95% of the farms cultivate less than 5 ha (Sitko & Jayne, 2014: 194). However, during the past decade, there has been a rapid increase in the number of medium-scale farmers who cultivate between 5 and 20 ha of land. They are referred to in Zambia as "emergent farms." A recent study found that "between 2001 and 2011 the population of emergent farmer households in Zambia grew by 62.2%, vastly outstripping the 33.5% growth rate of the total smallholder population." (Sitko & Jayne, 2014: 194).

So far, access to agricultural machinery such as tractors and processing machines is very low in Zambia. According to a nationally representative survey conducted by IAPRI in 2015, only 1.8% of all households used mechanical power in their farm operations (Table 1). On the average, 36.5% use animal traction. The underutilization of the country's agricultural potential results in widespread poverty among the rural population. 78% of the rural households live below the poverty rate of 1.25 USD per day, and for female-headed households, the rate is almost 85% (IAPRI, 2015: 114-115). According to IFPRI's Global Hunger Index, Zambia ranks 115 out of 119 and the level of hunger is classified as "alarming" (IFPRI, 2017: 13).

As in other African countries, there has been an increasing interest in agricultural mechanization in Zambia in recent years. In 2011, the Ministry of Agriculture and Livestock started a Tractor Mechanization Fund in collaboration with the FAO and the Zambian National Farmers Union (ZFNU).ⁱⁱ The country hosts AgriTech Expo Zambia, a major trade fair for agricultural machinery. AGCO launched a farm and learning center near Lusaka in 2012.ⁱⁱⁱ In 2015, the German Federal Ministry of Food and Agriculture supported the establishment of the Zambian-German Agricultural Knowledge and Training Center, where field trials, demonstrations and trainings are offered in collaboration with twelve private sector partners from Europe.^{iv}

John Deere and AFGRI have engaged in the provision of tractor services to smallholder farmers since 2010. As mentioned above, their main approach is to support mid-size farmers in purchasing a tractor and equipment by facilitating the financing of the tractor, either through

ⁱSee <u>http://data.worldbank.org/indicator/EN.POP.DNST</u>

[&]quot;See <u>http://www.znfu.org.zm/tractor_mechanization</u>

^{III} See <u>http://investors.agcocorp.com/phoenix.zhtml?c=108419&p=irol-newsArticle&ID=1702132</u>

^{iv} See <u>http://www.aktczambia.com</u>

a loan provided by AFGRI or through facilitating an arrangement with a private bank. The NGO MUSIKA has supported this arrangement by providing business services to the tractor owners, and the NGO CFU has facilitated the formation of groups of smallholder farmers who wanted to access tractor services. In the following, the activities of John Deere (JD), AFGRI, MUSIKA and CFU are referred to as the "JD Initiative".

3. Methods

According to current standards of program evaluation, a randomized control trial would be the preferred approach to assess the impact of the JD Initiative on smallholders. Since the Initiative was not implemented in such way, a survey was conducted and the Propensity Score Matching (PSM) approach was used to assess the impact of participation in the Initiative on the income and the use of the income by smallholder farmers (cf. Khandker, Koolwal, & Samad, 2010; Caliendo & Kopeinig, 2008). To better understand social dynamics within households and communities, the team also used qualitative methods. Specifically, focus group discussions were conducted, in which Participatory Impact Diagrams were constructed (see Kariuki & Njuki, 2013). Participatory Impact Diagrams are a technique that relies on visualizing the perceived impacts of the participants using a large sheet of paper. Positive as well as negative impact chains are indicated on the paper in the form of tree structure (similar to a mind map), which then serves as a basis for further discussion. The team held 13 such focus group discussions with men and 12 with women. The discussions focused on the impact of mechanization at the community level. Therefore, the impact of households who do not use mechanization services was captured as well. Such households may be affected indirectly, especially though changes in the demand for agricultural labor.

Consequently, the research design for the study was based on the following combination of methods: (1) semi-structured interviews with representatives of the organizations involved in the JD Initiative; (2) in-depth interviews with a sample of farmers who had purchased a tractor; (3) a survey among a sample of farm households that receive and did not receive tractor services; and (4) focus group interviews in selected communities, where smallholders had used tractor services provided under the Initiative.

3.1 Sampling strategy and data collection

The following sampling strategy was applied: The tractor owners were randomly sampled from the six (out of the eight) Zambian provinces, where the JD Initiative was implemented. A total of 21 tractor owners were interviewed, the number per province was proportional to the total number of farmers who had participated in the Initiative. The interviews with the selected tractor owners revealed that 12 out of the 21 selected tractor owners provided services to smallholders. The smallholders for the household survey were selected as follows: In each location, eight farmers were selected who received services from a tractor owner who had participated in the JD Initiative. They are referred to as "participants" here. For the control group, five farmers who do not receive services were randomly selected from the same locations. The five households from the control group could use mechanization services offer by other service area of the emerging farmers, they are potentially affected by the mechanization scheme in an indirect way (spill-over). To assess this effect, three additional control group households from a close-by community were selected, as well. In total, 121 households that use tractor services under the Initiative

("participants") and 129 households that do not use tractor services were included in the household survey. The survey was conducted by the research team in face-to-face interviews with the farmers using hand-held computer devices.

3.2 Analysis

To assess the impact of the mechanization scheme on farm household income and food consumption, a Propensity Score Matching (PSM) approach was used (cf. Khandker, Koolwal, & Samad, 2010; Caliendo & Kopeinig, 2008). The main impact measure of interest, the average treatment effect on the treated (*ATT*_J), is estimated according to:

$$ATT_{J} = E[y_{1j}|JDMech_{j} = 1] - E[y_{oj}|JDMech_{j} = 1]$$
(1)

where y_{1j} is the value of the outcome of farm household *j* after benefiting from the John Deere (hereafter *JD*) tractor service provider and y_{oj} is the outcome of the same farm household *j* if the household did not benefit from the JD Initiative.

The underlying estimation problem of equation 1 can be represented as a treatment-effects model of the form:

$y_{jt} = \alpha_j + \tau_t + \boldsymbol{\beta}' \boldsymbol{x_{jt}} + \delta JDMech_j + \varepsilon_{jt}$	(2)
$JDMech_j^* = \boldsymbol{\gamma}' \boldsymbol{w}_j + u_j$	
JDMech _j = {1, if JDMech _j > 0 and 0 if otherwise}	(3)
$Prob(JDMech_j = 1) = F(\gamma'w_j)$	(4)
$Prob(JDMech_j = 0) = 1 - F(\gamma'w_j)$	(5)

where $JDMech_j^*$ is a latent unobserved variable whose counterpart, $JDMech_j$, is observed in dichotomous form only; $JDMech_j = 1$ represents a user (i.e. a farmer who decides to hire services) of JD tractor service provider (that is, treatment) and $JDMech_j = 0$ represents non-user of the facility (that is control); x_j is the vector variable determining the outcome of the JD Initiative, w_j is the vector variable determining the probability of being a user of the JD mechanization facility which includes the list of explanatory variables given in Table 1 below; α_j and τ_t respectively captures the individual and time-specific effects; $\boldsymbol{6}$ and $\boldsymbol{\gamma}$ are the vectors of parameters measuring the relationships between the dependent and independent variables; ε and u are the random components of the respective equations. The functional form (F) may take the form of a normal, logistic or probability function.

A two-stage weighted estimation approach was used. In stage one, equation 3 is estimated using a probit model to obtain the propensity scores, which are then used as weights in a second stage estimation of equation 2, based on matched treatment and control observations identified in stage one. Of the 4 matching algorithms commonly proposed in literature (see Caliendo & Kopeinig (2008), for a detailed overview), the variant of radius matching (Dehejia & Wahba, 2002) was applied for the second stage estimation. This method has an advantage of using only as many units as are available within a caliper (c), allowing for more matching options, hence improving matching quality (Caliendo & Kopeinig, 2008). Rosenbaum & Rubin

(1985) recommends caliper (c) used to be one-fourth the share of the standard deviation (s.d) of the probability model of the propensity score (c = 0.25*s.d).

The matching procedure must be able to balance the distribution of the relevant variables in both control and treatment groups. Rosenbaum & Rubin (1985) suggest calculating the standardized bias (SB) before and after matching. A bias reduction below 3% or 5% after matching is considered acceptable (Caliendo & Kopeinig, 2008).

In calculating the treatment effects and their standard errors, the bootstrapping method (with 500 replications) was employed, as used in most of the literature. The ATT of participating in the JD Initiative is defined by the use of a John Deere tractor at least for land preparation. The *ATTs* of the program were obtained by estimating the models using data from the sample described above, which included 121 tractor service users and 129 households who do not use these services. The data refer to the 2014 – 2015 cropping season. The outcome variables and the explanatory variables used for the assessment are shown in Table 1.

Variable Name	Variable Description
Outcome variables	
Net on-farm income	Farm gross margin
Yield	Per hectare seasonal crop output
Land ownership increment	Increase in land size owned
Farm input used (fertilizer, herbicides, seeds)	Changes in the quantities of farm inputs used
Household expenditure (Food, non-food household needs, education, health, recreation)	Average amount of money (in ZMW) spent on daily needs over stipulated periods
Food Intake (Food diversity, Food consumption frequency)	Quantity, quality and frequency of food consumed by respondent household. The frequency weighted diversity score is calculated using the frequency of consumption of different food groups consumed by the household the day before the survey (see WFP, 2008)
Explanatory variables	
Farming experience	Number of years of farming
Off-farm business participation	Farmer's involvement in off-farm businesses: 1 = Yes, 0 = No
Size of household	Total count of household members above age 5 years of age
Gender of household head	Gender of the household: 1 = male, 0 = female
Education level of household head	Years of schooling
Land cultivated	Cultivated land per capita – total cultivated land divided by total members of household
Access to extension service	Farmer's has access to private, public or third sector extension service: 1 = Yes, 0 = No
Access to credit facilities	Farmer's access to credit/loan facility: 1 = Yes, 0 = No
Market access	Amount of travel time (in minutes) required to access nearest village market
Group membership	Farmer's membership in a social or political group such as a farmer cooperative: 1= Yes, 0 =No
Household asset index	Total count of household assets, e.g., solar panels, bicycles owned by farmer
Livestock ownership	Total number of cattle owned by farmer before mechanization scheme. Weighted using Tropical Livestock Unit conversion factors (see Jahnke, 1983)
Farmer willingness to invest	Percentage of an amount of money that a farmer is willing to invest in any venture of choice considering potential losses and gains

Table 1: Outcome and explanatory variables used for impact assessment

4. Results

The first subsection of this section presents descriptive statistics, comparing the treatment and the control group. Since this comparison does not control for a possible sample selection bias, the findings of sub-section 4.1 should be seen as background information for the PSM analysis, which is presented in sub-section 4.2. Section 4.3 presents a matching quality and sensitivity analysis and Section 4.4 deals with the results of the focus group discussions.

4.1 Descriptive results

Table 2 presents information about the socioeconomic characteristics of the of the surveyed smallholder farmers. The table indicates that smallholders who receive tractor services have similar characteristics as those who do not receive services. The differences shown in the table were not statistically significant. The findings indicate that participation in the JD Initiative was not biased towards the larger ones among the smallholder farms. However, the data suggest that the schemes are implemented in areas where smallholder farmers tend to have somewhat larger holdings and higher education levels than on the national average (cf. IAPRI, 2015).

Variable ¹	Participants (N=121)	Control group (N=129)	Total (N=250)
Age of household head (years)	50.0	47.0	48.4
Farming experience (years)	20.1	21.0	20.6
Off-farm business participation (yes/no)	46%	40%	43%
Number of household members	7.4	7.4	7.4
Female household heads (%)	22%	18%	20%
Education of household head (years of schooling)	8.3	7.2	7.7
Total land owned (ha)	10.8	9.2	10.0
Access to extension service (percent)	74%	65%	70%
Access to credit facilities (yes/no)	13%	15%	14%
Access to markets (minutes of walking time)	30.9	30.5	30.7
Indicator of farmers' willingness to invest	79%	81%	80%

Table 2: Socioeconomic characteristics of surveyed smallholder farmers

¹See Table 1 for an explanation of the variables.

Table 3 shows that the farmers who receive mechanization services cultivate almost the entire arable land that they own, whereas the farmers in the control group cultivate only 60%. Moreover, the participants are able to start land preparation much earlier than the control group. The amount of fertilizer that the participants use is almost 40% higher than that of the control group. The share of farmers who sapply herbicides is 63% among the participants as compared to 24% in the control group. The data also show that the participants achieve maize yields that are 24% higher than those of the control group. This is likely to be the combined result of better soil preparation, timelier planting, higher fertilizer use and better weed control.

	Participants (n=121)	Control group (N=129)	Difference ¹	Statistical significance ²
Arable land owned (ha)	7.1	6.1	16%	no
Arable land cultivated (ha)	6.5	3.7	76%	yes
Percent of owned land cultivated	92%	60%	53%	-
Beginning of land preparation	30. Sept	6. Nov	-	-
Use of fertilizer for maize (kg / ha)	260	190	37%	yes
Percent of farmers using herbicides	63%	24%	162%	-
Use of herbicides for maize (litres / ha)	2.3	2.4	-4%	no
Maize yields (MT/ha)	3.1	2.5	24%	yes

Table 3: Differences in agricultural practices and outcomes

¹ Difference is calculated as the difference between the values for participants and control group divided by the value of the control group

²Yes indicates that difference in mean values is statistically significant at the 5% level.

As shown in Table 4, farmers who use mechanization services had a significantly higher total farm income than the control group, whereas the difference in income per hectare was not significant. This finding suggests that the main income effect from accessing tractor services may be due to the increase in cultivated land area, which is made possible by mechanizing soil preparation. The finding from recall questions posed to the treatment group (not reported in the table) suggest that they were indeed able to increase the cultivated land area. Farm households that use tractor services spend, on the average, slightly less on health expenditure, but the difference was not statistically significant. However, service users had significantly higher expenditures on education and food. Based on the survey data, a food diversity score was calculated, which is an indicator of nutritional quality. More diverse diets provide more micro-nutrients, which is important to combat "hidden hunger." The findings indicate that households that access mechanization services do not consume a significantly more diverse diet than the control group. This finding suggests that the additional income that the participants earn is mostly spent on food staple crops. Nutrition education may be required to encourage households to invest their additional income in increased diet diversity.

Farm income total 16,999 7,323 132% yes Farm income per hectare 2,839 2,045 39% no Farm income per household member 2,528 2,045 24% yes Health expenditure per year 270 340 -21% no Education expenditure per term 1,730 842 105% yes Food expenditure per month 561 299 88% yes Food diversity score 6.4 5.8 10% no	Income and expenditures in ZMW	Participants (N=121)	Control group (N=129)	Difference ¹	Statistical significance ²
Farm income per household member 2,528 2,045 24% yes Health expenditure per year 270 340 -21% no Education expenditure per term 1,730 842 105% yes Food expenditure per month 561 299 88% yes	Farm income total	16,999	7,323	132%	yes
Health expenditure per year 270 340 -21% no Education expenditure per term 1,730 842 105% yes Food expenditure per month 561 299 88% yes	Farm income per hectare	2,839	2,045	39%	no
Education expenditure per term 1,730 842 105% yes Food expenditure per month 561 299 88% yes	Farm income per household member	2,528	2,045	24%	yes
Food expenditure per month56129988%yes	Health expenditure per year	270	340	-21%	no
	Education expenditure per term	1,730	842	105%	yes
Food diversity score 6.4 5.8 10% no	Food expenditure per month	561	299	88%	yes
	Food diversity score	6.4	5.8	10%	no

Table 2: Differences in farm income, expenditure and nutrition

¹ Difference is calculated as the difference between the values for participants and control group divided by the value of the control group

²Yes indicates that difference is statistically significant at the 5% level.

Note: 1 USD equals approx. 10 Zambian Kwacha (ZMW)

Table 3 reports differences regarding labor hours between households that access tractor services and those that do not. As indicated above, the differences do not show causal effects, but they give important clues. Interpreting the figures, one needs to keep in mind that the participating households cultivate on the average 76% more land (see **Fehler! Verweisquelle konnte nicht gefunden werden.**) than the non-participating households. As indicated above, the only two activities for which tractor services are used are land preparation and processing (i.e. maize shelling). Expectedly, the participating households use significantly less labor for land preparation and significantly more labor for harvesting. The table suggests that access to tractor services reduces the labor burden for family labor, including the labor burden of children and women, while it increases the opportunities for hired labor during the harvesting season as a consequence of the expansion in cultivated area.

	Total hou		Hir lab hou	or	Fam labor ł		Ferr farr labor	nily	Child family hou	labor	Ma family hou	labor
Land preparation	-374	***	-22		-348	***	-93	***	-24	***	-231	***
Planting	106	*	131	**	-28		-50	**	4		19	
Fertilizer application	10		44	***	-37		-29	**	-6		-2	
Weeding	-313	***	86	**	-418	***	-207	***	-28	**	-183	***
Pests/disease control	-16		2		-18		-1		0		-17	*
Harvesting	423	**	488	**	-49		-36		-2		-11	
Processing	-218		-117		-88	**	-51		-7		-29	

Table 3: Differences in labor hours for cultivating and processing all crops

Note: Mean difference is the difference between mean values of participant group members and non-participant groups

*Statistical significance at the 10% level, **Statistical significance at the 5% level, *** Statistical significance at the 1% level

4.2 Results of the Propensity Score Matching (PSM) analysis

The first step in the PSM analysis is the construction of a probit regression model, which identifies the factors that are significantly associated with the decision of a farm household to access tractor services. The results displayed in Table 4, which indicates that better educated farmers and farmers who are members in social, religious and political groups are more likely to access tractor services. Farmers who owned more livestock (an indicator of wealth) before the start of the mechanization scheme were more likely to use tractor services, but the magnitude of this effect was negligible.

Using a probit model, the balancing scores for each pairwise comparison of service users with their matching counterfactuals were estimated. The model was used to predict the probability of opting for using tractor services. The model's predictive power can generally be judged to be high and the variables show the expected signs.

Explanatory Variables	Average marginal effect (dF/dx)	Standard Error
Off-farm business (yes/no)	0.061	0.0678
Gender of family head (male/female)	0.116	0.0828
Years of schooling	0.022 **	0.0097
Access to credit	-0.075	0.0952
Access to extension services	0.094	0.0757
Network group membership (yes_no)	0.198 **	0.0936
Access to market	0.001	0.0013
Livestock owned before participation in scheme	0.004 *	0.0026
Farmer's investment behavior	0.033	0.1305
LR chi2(12)	19.54	
Prob > chi2	0.029	
Pseudo R-square	0.056	

Table 4: Factors influencing participation in mechanization schemes

¹ See Table 1 for an explanation of these variables

Note: *Statistical significance at the 10% level, ** at the 5% level

Fehler! Verweisquelle konnte nicht gefunden werden. below displays the distribution of the propensity scores and the overlap between the groups. For this pairwise comparison, the figure also shows the cases that were dropped from the analysis in order to avoid bad matches. 3 out of the 121 treated assignments had to be excluded from the analysis.

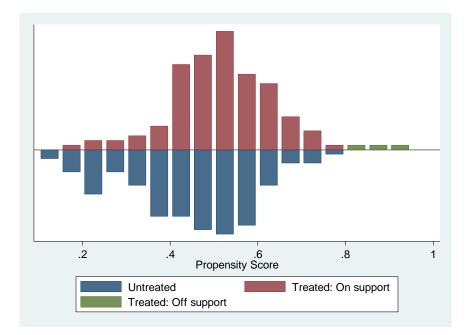


Figure 1: Estimated propensity score distribution and common support area by pairwise comparison

For the matched sample, the bootstrapping method was applied with 500 repetitions to estimate the standard errors and hence check for distinct variations. Table 5 reports the estimates of the *ATT*. It indicates that using tractor services has a significant positive effect on the on-farm income of the entire household and on the on-farm income per household

member. This effect is not only significant, but also large. The difference in household income of approx. 10,000 ZMK per year indicates that the use of tractor services allowed smallholder farmers to more than double their income.

The *ATT* for yield was also significant, which confirms a causal effect of using tractor services on yield. The magnitude of the effect (approx. 0.4 Mt/ha) was also substantial, which supports the findings above on yield effects. However, higher yields did not result in a higher income per hectare, because the treatment effect was not significant for the parameter "on-farm income per hectare". The reason could be that the yield increase was not sufficient to cover the increased costs per hectare arising from using more inputs. This finding confirms the results reported above, which suggest that the main causal impact of accessing mechanization services is allowing smallholders to cultivate a larger share of the land that they own.

The PSM analysis also shows that the increased expenditure in education and food found in the descriptive statistics can be attributed the use of tractor services. The households did not significantly change their expenditure on alcohol or tobacco, which indicates that the farmers used their additional income for the benefit of their families. The findings also indicate the increased income from accessing tractor services allows farm families to skip fewer meals. However, the findings also show that they do not diversify their diets.

Outcome Variable	effect of th	Average Treatment effect of the Treated (ATT)		
Net on-farm income (ZMW)	10,000	***	3,460	
On-farm income per hectare (ZMW)	685		493	
On-farm income per household (ZMW)	1500	***	557	
Yield (Mt/ha)	0.41	*	0.25	
Yearly Expenditure on food (ZMW)	225	* * *	69	
Expenditure on education per term (ZMW)	850	**	305	
Expenditure on basic household non-food household needs (ZMW)	770	***	251	
Health expenses (ZMW)	-48		119	
Expenditure on recreation (alcohol, tobacco, etc.) (ZMW)	-40		25	
Skipping meals	-0.16	**	0.06	
Food Diversity Count	-0.08		0.7	
Before and after JD mechanization difference in fertilizer used (MT)	0.3	***	0.1	

Table 5: Causal effects of using mechanization services

Note: *Statistical significance at the 10% level, ** at the 5% level, *** at the 1% level

As indicated above, the survey included recall data from respondents on selected outcome variables, which include changes in input use, yield and livestock that occurred after accessing mechanization services. For these variables, a double difference *ATT* technique was used to estimate the differences in mean outcomes for these variables. The only significant effect was identified for the use of fertilizer. The *ATT* analysis also confirmed that the farmers who use mechanization services did not purchase additional land; they rather expanded cultivation on the land they already owned.

4.3 Matching quality and sensitivity analysis

As indicated in Section 3, the quality of matching was assessed by calculating the standardized bias (SB) before and after matching. The results (Table) show that a very good matching quality was attained. The standardized bias was reduced from 14.5% before matching to 1.1% after matching, which corresponds to a bias reduction of 92.4%. The residual mean bias of 3.9% is within the range of 3-5%, which is suggested in Caliendo & Kopeinig (2008) as an acceptable threshold for remaining bias after matching. The low remaining SB and the high reduction rate of mean SB indicates a good balancing power and hence, good matching results.

	SB (%)	SB (%)	% SB reduction	Residual Bias	Cases lost to critical selection	Critical levels of gamma
Participants/Control Group	14.5	1.10	92.4	3.9	3	1.1-1.15

Table 8: Indicators of matching quality and sensitivity analysis

Note: Calculation using pstest (Leuven & Sianesi, 2003) and rbounds (Gangl, 2004) Source: own data

We can, however, not rule out the problem that unobservable factors could influence these findings (hidden bias). We are confident that this influence is limited since the choice of variables was based on economic theory and an extensive literature review. Moreover, the results are supported by the qualitative findings, as shown below.

4.4 Results of the focus group discussions

We used qualitative methods to triangulate the findings from the quantative study and to analyze aspects that cannot be addressed with a purely quantative study design. As indicted in Section 3, we organized focus group discussions where participants were asked to construct Participatory Impact Diagrams. Table 9 displays the main positive impacts that were identified. Since the researchers did not prompt the respondents to discuss any specific theme, the number of groups who identified a specific impact can be seen as an indicator for the relevance of the respective impact in the areas where the schemes were implemented. As can be derived from Table 9, the communities strongly associate the use of tractors with increased yields. They consider more timely land preparation and the retention of soil moisture due to ripping as major benefits that contribute to increased yields. The cultivation of more land was identified as another positive impact of mechanization.

Positive impacts identified	Percent of male groups identifying this impact (N=13)	Percent of female groups identifying this impact (N=12)	Quotes from the interviews that illustrate the perceptions of the community members
Agronomic			
Higher yield	92%	100%	"If you do early planting () you are likely to get a high yield"
Early planting und retention of soil moisture due to ripping	92%	75%	<i>"When you use a tractor, the moisture content is kept for longer, the germination of maize is good,"</i>
Improved land preparation	69%	42%	"When using a tractor, the depth is better than when using animals Even when the rain goes, the plants don't dry up"
Cultivation of more land	38%	83%	<i>"When we use a tractor, we can cultivate a bigger portion of land compared to using animals"</i>
Socio-economic			
Increased income	92%	100%	"When you have better yields, you provide for own consumption, you will be able to find money for the children's school fees and for other things you also have money to buy farming inputs"
Reduction of labor demand	54%	25%	"When using a tractor, just one person is needed, when using animals, lots of people are supposed to do the work"
Time saved during land preparation	38%	58%	"It is faster when you use a tractor,"
Improved human and animal health	38%	0%	"When you use a tractor, cattle have enough time for grazing but when you use them for farming, you might use them from 7 to 11 or 12- they won't have enough time for grazing and resting"

Table 9: Positive impacts

Table 9 also lists the positive socioeconomic affects that are seen to be the result of the agronomic effects identified above. The majority of both the male and the female focus discussion groups (FDGs) identified increased income as a positive impact of mechanization, which confirms the finding of the quantitative assessment. The Participatory Impact Diagrams suggest that the increased income is also used for purchasing improved seeds, fertilizers and herbicides, which strengthens the effect of mechanization on yields. The FDGs also pointed out that the increased income is used for education, as indicated by the quantitative assessment. According to the FDGs, the increased income is also used for buying household and farm assets as well as personal supplies.

The reduced work load during the time of land preparation was seen as a positive impact by half of the male FDGs and a quarter of the female FDGs. According to the Participatory Impact Diagrams, the main positive effect was that children, who previously had to work on the fields,

can now go to school. This is an indication that mechanization contributes to reduced child labor in agriculture. The time saving during the time of land preparation was also seen as a benefit, especially by female community members According to the Participatory Impact Diagrams, the saved time was mostly used for vegetable gardening, performing household chores, engage in off-farm work and attend social events. Five of the 13 male FDGs felt that mechanization improved their either their own health or the health of their animals. This impact was not identified in female FDGs. The reason might be that male household members have to bear the main drudgery of labor for land preparation, which is the activity that is mechanized. Crop husbandry and harvesting activities, which are mainly carried out by women, are not yet mechanized, as shown above.

The Participatory Impact Diagrams were also used to identify problems that the communities had identified with regard to mechanization. The results are displayed in Table 10. In general, the percentage of FDGs that identified problematic impacts was comparatively low. Only two agronomic problems were identified: late service provision and soil degradation. Four of the 13 male FDGs reported problems because the tractor services were provided too late. In these cases, delayed land preparation resulted in late planting, which in turn led to a sharp yield decrease and thus lower farm incomes. Soil degradation was mentioned in four of the 13 male FDGs and in one of the 12 female FDGs. This problem was associated with the use of the disc plough rather than the ripper.

Impacts	Percent of male groups identifying this impact (N=13)	Percent of female groups identifying this impact (N=12)	Quotes from the interviews that illustrate the perceptions of the community members
Agronomic			
Yield losses because services were delivered late	31%	17%	"At the time we need the tractors, they are not available, and so we are forced to plant late."
Soil degradation (in case of using the plough)	31%	8%	"Soil fertility is reduced after repeatedly turning the soil surface season after season."
Socio-economic			
Fewer jobs for agricultural laborers during the land preperation season	54%	8%	"Before starting hiring a tractor, you used to hire people to come and help you in the fields. Now you have tractors so you won't be hiring the people () so that person you used to hire will have a problem because there is no income for him."
Migration to other areas	8%	0%	"The leaders of the household migrate to towns and communities where the farm land has been expanded."
More work load for women	0%	17%	"Women are doing more work because there are more activities after using the tractor, more activities like weeding"

Table 10: Negative impacts

The main socioeconomic problem associated with mechanization identified by the community members were reduced job opportunities for agricultural laborers at the beginning of the farming season (Table 10). Farmers who use oxen to provide ploughing services were also seen as being disadvantaged. The community members reported that working opportunities for agricultural laborers in particular dropped during the months of land preparation. However, it was also acknowledged that agricultural laborers benefitted from a higher demand for labor during weeding, fertilizer application and harvesting times. These findings confirm the results of the quantitative analysis on labor use (Table 5). Two out of 12 female FDGs mentioned increasing workload for women from land expansion.

5. Discussion

As indicated above, this study aimed to assess the impact of the JD Initiative, as an example of a private-sector business model, on smallholder farmers. In view of the criticism of such initiatives by NGOs, special attention was paid to a range of potential effects, including income, nutrition, child labor and the potential displacement of labor. As a general disclaimer to the following discussion, one needs to take into account that the study was based on a PSM analysis of cross-sectional data and not on a randomized control trial, which has become the "gold standard" in impact evaluation. We still believe that the results are of interest, considering that empirical studies that deal with pure private-sector initiatives are scarce.

Income effects

One of the most important findings of this study is the evidence that, on the average, the smallholders who used tractor services were able to double their income because they were able to cultivate a much larger share of the land that they own. The focus group discussions largely confirmed this finding. According the results of this study, accessing mechanization services also increased labor productivity quite substantially. This is an expected benefit, but nevertheless important, considering the concerns about low labor productivity in African agriculture mentioned in the introduction.

The potential of the JD Initiative is particularly promising if one takes the number of smallholders into account that can potentially benefit from one single tractor. One of the tractor owners included in this study served more than 150 smallholders, indicating that, under the conditions in which the JD Initiative was implemented, facilitating access to one single tractor can potentially help to double the income of approx. 150 smallholder farmers. However, this potential was not fully utilized. Altogether, the 21 emerging farmers included into the sample served 693 smallholders, which corresponds to an average of 33 smallholders per tractor. This result indicates the need to conduct more research on the factors that can increase the incentives of tractor owners to provide services to smallholder farmers.

Social benefits for participating households

The study provides strong evidence that the smallholder farmers who accessed tractor services were able to use their increased income to achieve social benefits. Accessing mechanization services enabled them to spend more on the education of their children and on improving their food security. Their expenses for food were higher and they were less likely to skip meals, which is an important finding considering the high levels of undernutrition in Zambia reported in Section 2. It is also worth noting that, according to the survey findings, the participating households did not increase the consumption of alcohol or tobacco. The qualitative findings from the focus group discussions indicate that some smallholders were able to invest their income into off-farm businesses, such as trading livestock or running grocery stores.

Use of farm inputs and land productivity

The findings suggest that the participating farmers purchased more farm inputs, in particular, fertilizer. The use of tractor services was also found to be associated with an increased use of herbicides. Partly, this may be due to the fact that CFU promoted herbicide use in connection with the introduction of conservation farming. Another reason could be labor shortages during the weeding time that were due to the increase in the area under cultivation. It was beyond the scope of this study to assess to what extent herbicides were used appropriately and safely by the smallholders. This issue should be considered in the up-scaling of the JD Initiative.

The study provides evidence that the smallholders were able to increase their yields, possibly due to the combined effects of better and timelier land preparation and increased use of fertilizer and herbicides. According to the PSM analysis this effect was in the range of 0.5 Mt per ha, which corresponds to a yield increase of approximately 25%. However, the results indicate that the smallholders who use mechanization services were not able to achieve a higher income per hectare. This finding suggests that farmers may benefit from extension services to use their inputs more effectively. As an indication, farmers who use mechanization services apply almost double the amount of fertilizer as compared to the control group. Considering the high yield gaps that characterize African agriculture, doubling the fertilizer use should make it possible to achieve yield increases above the 25% that the farmers realized. This finding reflects a general concern about low yield response rates to fertilizer in Zambia and other African countries, which has been extensively discussed in the literature (see Chapoto, Chabala & Lungu, 2016, for Zambia and Jayne & Rashid, 2013, for a general review).

Expansion of the cultivated area

The study provides strong evidence that the major mechanism behind the remarkable income increase among the smallholder farmers was the expansion of the land area that they cultivate. In the locations where the evaluation was conducted, smallholders typically own, according to the survey results, between 6 and 7 ha of land. There were no statistically significant differences in land size owned between the farmers who accessed tractor services and the control group. The findings indicate that due to labor constraints, farmers without access to tractor services are not able to cultivate the entire land that they own.

The finding that the income effect was mostly achieved by land expansion has important implications for the up-scaling of the JD Initiative. In general, land is not scarce in Zambia, as has been pointed out in Section 2. In view of the debate about large-scale land acquisitions and "land grabbing", it is important to note that access to mechanization services allows smallholders to make better use of Zambia's underutilized land resources so that this potential is not only left to large-scale investors.

However, one also needs to take into account that not all smallholders can easily expand the land that they cultivate. If they are not able or willing to resettle, they need land resources that are located sufficiently close to the villages in which they are residing. In a recent

nationally representative survey, more than 54% of the rural population said that there is no more additional land available to them, despite the existence of underutilized arable land in Zambia (Chisinga & Chopoto, 2015: 36). In the areas where the study was conducted, land availability did not yet seem to be a main constraint yet. The reason may well be that service provision was directed towards locations where land availability for smallholders is still relatively high. These insights suggest that going forward, the mechanization initiatives should not only focus on the expansion of land, but also on increasing the profitability of the land that is already cultivated. This is also important in view of growing concerns that the expansion of land cultivation in Savanna regions can have negative environmental and climate effects (Ceballos et al., 2010).

Use of intra-household and hired labor

Two types of concerns regarding labor use are associated with mechanization, one referring to the intra-household division of labor and one referring to hired labor. The first concern stems from the fact that, initially, only very labor-intensive farming activities, such as ploughing which are mostly carried out by men, are mechanized, whereas other activities, which are mostly carried out by women and children, such as weeding, are not mechanized. If households expand the area cultivated, this may well result in an increase of the burden of labor for women and children. The evidence provided by the study suggests that this was not the case (Table 3). To the contrary, households with access to tractor services used on the average significantly less household labor from men, women and children than households without access to tractor services. Two factors may account for this result. One factor may be the increased use of herbicides, which reduced the labor requirements for weeding. The other factor may be the use of hired labor for harvesting, as further discussed below. It appears that the increased income achieved by mechanization allowed farm households with access to mechanization services to hire more labor for the non-mechanized activities. However, the findings regarding the labor effects of mechanization have to be interpreted with care, since data on labor use in smallholder farm households are difficult to collect in interviews with recall questions. To address this challenge, Daum et al. (forthcoming) and Daum et al., (2017) have conducted a follow-up study on the effects of mechanization on labor use in households. For this study, a picture-based smartphone app was developed that allows household members to record the time they spend on their daily activities in real time.

The findings presented in Table 3 indicate that mechanization did not reduce the demand for hired labor. To the contrary, the results suggest that the demand for hired labor increased for two reasons. One reason is the expansion of the cultivated area, which increased the labor demand for all activities that are not mechanized. The second effect is a shift from family labor to the use of hired labor, which may be due to the income effect of mechanization. This finding indicates that mechanization increases the demand for hired labor under conditions where land expansion is possible. The historical experience analyzed by Binswanger (1986: 33) is well in line with this finding.

The findings from the focus group discussions suggest that the shift in the timing of the labor demand may, however, involve problems. Smallholder farmers who work as laborers used to purchase inputs for their own farm with the money they earned at the time of land preparation. If they work for farmers who use tractor services for land preparation, they have to borrow money from those farmers to purchase their inputs and pay it back in form of labor provided for crop husbandry and harvesting. This shift has introduced a new type of dependency of agricultural laborers, a finding that calls for further investigation.

6. Policy Implications

Overall, the findings indicate that private-sector driven initiatives to promote smallholder mechanization in Africa have a considerable potential to increase farm incomes. In line with the literature - and contrary to concerns of the critics of such initiatives, smallholder mechanization increases rather than reduces the demand for hired labor in situations where an expansion of the cultivated area is feasible. This expansion in labor demand will come to an end once land expansion is not feasible any longer. Moreover, the demand for additional labor will be reduced once crop husbandry and harvesting activities also become mechanized. Therefore, a stronger focus on using mechanization to increase land productivity rather than promoting land expansion will be required. As pointed out above, limiting the expansion of land cultivation is also necessary to ensure environmental sustainability. Therefore, it is recommended to assist smallholders in increase the yield response to fertilizer use. Providing agricultural extension services to a large number of smallholder farmers can hardly be considered the task of agricultural machinery manufacturers or dealers. Other actors, such as government extension services, need to play a role to reach this goal.

To be able to scale up contractor models of smallholder mechanization, such as the JD Initiative, it is essential to better understand the economics of tractor service provision. This was not the main focus of this paper. Still, our findings show that investing in a tractor and providing tractor services can be profitable for a mid-size farmer without using of government subsidies. However, upscaling the JD Initiative requires investment in building the capacity of mid-size farmers to manage a tractor. Partnerships with development organizations will be important to achieve this capacity development. Moreover, partner organizations can facilitate the linkages between emerging farmers and smallholders, which is important to increase the service provision by emerging farmers. Some of the tractor owners interviewed for this study pointed out that the transaction costs of providing services to smallholders are a major reason for limited service provision. Tractor owners who provided services to smallholders benefitted from the support of the NGO CFU, which played an important role in organizing smallholders in groups and linking them to tractor owners. ICT tools that follow the "Uber" model may help to reduce the transaction costs of providing and accessing tractor service. Hello Tractor is an example of a private company that is already pioneering this approach^v.

Going forward, it will also be important to pay attention to avoiding potential negative environmental effects of mechanization. In the case considered here, problems of increased soil erosion have been limited because the ripper rather than the disc plough was promoted due to the involvement of CFU. In situations where farmers select the implements without the advice by CFU, they may, however, prefer the plow to the ripper. Extension services to

^v https://www.hellotractor.com/

smallholder farmers, as mentioned above, could play an important role in ensuring appropriate soil fertility management on mechanized smallholder farms.

Overall, the experience of John Deere and AFGRI in Zambia provides important lessons that are relevant for other African countries. The findings indicate that private-sector driven initiatives have a considerable potential to promote smallholder mechanization. Governments do not need to subsidize tractors – they can promote mechanization more effectively by providing complementary services: providing training and agricultural extension to build the capacity of small and medium-size farmers and ensuring the environmental sustainability of mechanization.

References

- Anderson, J. R., & Dillon, J. L. (1992). Risk Analysis in Dryland Farming Systems. Farm Systems Management Series 2, Food and Agriculture Organization of the United Nations (FAO). Rome.
- Binswanger, H. (1986). Agricultural Mechanization: A Comparative Historical Perspective. World Bank Research Observer, 1(1), 27–56.
- Birner, R., & Resnick, D. (2010). The Political Economy of Policies for Smallholder Agriculture. World Development, 38(10), 1442–1452.
- Byerlee, D., & Husain, T. (1993). Agricultural Research Strategies for Favoured and Marginal Areas. Experimental Agriculture, 29, 155–171.
- Caliendo, M., & Kopeinig, S. (2008). Some practical guidance for the implementation of propensity score matching. Journal of Economic Surveys, 22(1), 31–72.
- Ceballos, G., Davidson, A., List, R., Pacheco, J., Manzano-Fischer, P., Santos-Barrera, G., & Cruzado, J. (2010). Rapid Decline of a Grassland System and its Ecological and Conservation Implications. PLoS ONE, 5(1).
- Central Statistics Office. (2010). 2010 Census of Population and Housing, Population Summary Report, Lusaka.
- Chapoto, A., Chabala, L. M., & Lungu, O. N. (2016). A long history of low productivity In Zambia:Is it time to do away with blanket recommendations? Working Paper 110, IndabaAgricultural Research Institute (IAPRI), Lusaka.
- Chisinga, B., & Chopoto, A. (2015). Under-appreciated Facts about Zambia's Agriculture: In A.
 Chopoto & J. Sitko, Nicholas (Eds.), Agriculture in Zambia: Past, Present, and Future (pp. 32–46). Indaba Agricultural Policy Research Institute (IAPRI), Lusaka.
- Daum, T., Buchwald, H., Gerlicher, A., & Birner, R. (forthcoming). Times have changed. Using a Pictorial Smartphone App to Collect Time Use Data in Rural Zambia. Field Methods.
- Daum, T., Buchwald, H., Gerlicher, A., & Birner, R. (2017). The Potential of Apps to Study Smallholder Farming Systems and More. Rural 21 (4).
- Daum, T., & Birner, R. (2017). The neglected governance challenges of agricultural mechanisation in Africa–insights from Ghana. Food Security, 9(5), 959-979.

- Davis, B., Di Giuseppe, S., & Zezza, A. (2017). Are African households (not) leaving agriculture? Patterns of households' income sources in rural Sub-Saharan Africa. Food Policy, 67, 153– 174.
- Dehejia, R. H., & Wahba, S. (2002). Propensity Score-Matching Methods for Nonexperimental Causal Studies. Review of Economics and Statistics, 84(1), 151–161.
- Deininger, K., & Byerlee, D. (2011). Rising Global Interest in Farmland Can it Yield Sustainable and Equitable Benefits? Management. World Bank, Washington, D.C.
- Deininger, K., & Byerlee, D. (2012). The Rise of Large Farms in Land Abundant Countries: Do They Have a Future? World Development, 40(4), 701–714.
- Diao, X., Cossar, F., Houssou, N., & Kolavalli, S. (2014). Mechanization in Ghana: Emerging demand, and the search for alternative supply models. Food Policy, 48, 168–181.
- Diao, X., Cossar, F., Houssou, N., Kolavalli, S., Jimah, K., & Aboagye, P. (2012). Mechanization in Ghana: Searching for Sustainable Service Supply Models. IFPRI Discussion Paper 01237, International Food Policy Research Institute, Washington, D.C.
- Diao, X., McMillan, M. S., & Mwangwe, S. (2018). Agricultural Labour Productivity and Industrialisation: Lessons for Africa. Journal of African Economies, 27(1). 28-65.
- FAO & UNIDO. (2008). Agricultural Mechanization in Africa. Time for Action. United Nations Industrial Development Organization (UNIDO) and Food and Agriculture Organization (FAO), Vienna.
- Feder, G., Birner, R., & Anderson, J. R. (2011). The Private Sector's Role in Agricultural Extension Systems: Potential and Limitations. Journal of Agribusiness in Developing and Emerging Economies, 1(1), 31–54.
- Haggblade, S., Hanamer, J., & Hazell, P. (1991). Modeling Agricultural Growth Multipliers. American Journal of Agricultural Economics, 73(2), 361–374.
- Hayami, Y., & Ruttan, V. (1985). Agricultural Development: An International Perspective. Johns Hopkins University Press, Baltimore, MD.
- Hazell, P., Poulton, C., Wiggins, S., & Dorward, A. (2010). The Future of Small Farms: Trajectories and Policy Priorities. World Development, 28(10), 1349–1361.
- Houssou, N., Diao, X., Cossar, F., Kolavalli, S., Jimah, K., & Aboagye, P. O. (2013). Agricultural Mechanization in Ghana: Is Specialized Agricultural Mechanization Service Provision a Viable Business Model? American Journal of Agricultural Economics, 95(5), 1237–1244. https://doi.org/10.1093/ajae/aat026

- IAPRI. (2015). Rural Agricultural Livelihoods Survey: 2015 Survey Report. Indaba Agricultural Policy Research Institute (IAPRI), Lusaka.
- IFPRI. (2017). 2017 Global Hunger Index: The inequalities of hunger. Washington, D.C.: International Food Policy and Research Institute (IFPRI).
- Jahnke, H. E. (1983). Livestock Production Systems and Livestock Development in Tropical Africa. American Journal of Agricultural Economics (Vol. 65).
- Jayne, T. S., & Rashid, S. (2013). Input Subsidy Programs in Sub-Saharan Africa: A Synthesis of Recent Evidence. Agricultural Economics, 44(6), 547–562.
- Juma, C. (2016). Innovation and Its Enemies: Why People Resist New Technologies. New York: Oxford University Press
- Kariuki, J., & Njuki, J. (2013). Using Participatory Impact Diagrams to Evaluate a Community Development Project in Kenya. Development in Practice, 23(1), 90–106.
- Khandker, S. R., Koolwal, G. B., & Samad, H. A. (2010). Handbook on Impact Evaluation: Quantitative Methods and Practices. World (Vol. 41). World Bank, Washington, DC.
- Kienzle, J., Ashburner, J. E., & Sims, B. G. (Eds.). (2013). Mechanization for Rural Development: A Review of Patterns and Progress from around the World (Vol. 20). Food and Agricultural Organization (FAO), Rome.
- Martínez-Torres, M. E., & Rosset, P. M. (2010). La vía campesina: The birth and evolution of a transnational social movement. Journal of Peasant Studies, 37(1), 149–175. https://doi.org/10.1080/03066150903498804
- Mrema, C. G., Baker, D., & Kahan, D. (2008). Agricultural Mechanization in Sub-Saharan Africa: Time for a New Look. Food and Agricultural Organization (FAO), Rome.
- Olmstead, A. L., & Rhode, P. W. (1995). Beyond the Threshold : An Analysis of the Characteristics and Behavior of Early Reaper Adopters. Journal of Economic History, 55(1), 27–57.
- Pingali, P. (2007). Agricultural Mechanization: Adoption Patterns and Economic Impact. In R.
 Evenson & P. Pingali (Eds.), Handbook of Agricultural Economics, Volume 3 (pp. 2779–2805). North-Holland.
- Rosenbaum, P., & Rubin, D. (1985). Constructing a Control Group Using Multivariate Matched Sampling Methods That Incorportate the Propnsity Score. American Statistical Association, 30. No. 1.

- Sheahan, M., & Barrett, C. B. (2017). Ten striking facts about agricultural input use in Sub-Saharan Africa. Food Policy, 67, 12–25. https://doi.org/10.1016/j.foodpol.2016.09.010
- Sitko, N. J., & Jayne, T. S. (2014). Structural transformation or elite land capture? The growth of "emergent" farmers in Zambia. Food Policy, 48, 194–202.
- Tembo, S., & Sitko, N. (2013). Technical Compendium: Descriptive Agricultural Statistics and Analysis for Zambia. Lusaka: Working Paper 76, Indaba Agricultural Research Institute (IAPRI).
- WFP. (2008). Food consumption analysis: Calculation and use of the food consumption score in food security analysis. Retrieved from www.wfp.org/odan/senac
- White, H. (2009). Theory-based Impact Evaluation: Principles and Practice. Working Paper 3, International Initiative for Impact Evaluation, New Delhi.
- World Bank, & IFPRI. (2010). Gender and Governance in Rural Services Insights from India, Ghana and Ethiopia. World Bank and International Food Policy Research Institute (IFPRI), Washington, DC.
- World Bank, W. B. (2007). World Development Report 2008: Agriculture for Development. World Bank, Washington, DC.