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Summary

Plasmodium parasites are known to manipulate the

behavior of their vectors so as to enhance transmission
[1–4]. From an evolutionary standpoint, behavior manipula-

tion by the parasite should expose the vector to limited
risk of early mortality while ensuring sufficient energy sup-

ply for both it and the vector [5, 6]. However, it is unknown
whether this vector manipulation also affects vector-plant

interaction and sugar uptake. Here, we show that the
attraction of Anopheles gambiae s.s. to plant odors

increased by 30% and 24% after infection with the oocyst
and sporozoite stages of Plasmodium falciparum, respec-

tively, while probing activity increased by 77% and 80%,
respectively, when the vectors were infected with the two

stages of the parasite. Our data also reveal an increased
sugar uptake at the oocyst stage that decreased at the

sporozoite stage of infection compared to uninfected
An. gambiae, with depletion of lipid reserves at the sporo-

zoite stage. These results point to a possible physiological
adjustment by An. gambiae to P. falciparum infection or

behavior manipulation of An. gambiae by P. falciparum
to enhance transmission. We conclude that the nectar-

seeking behavior of P. falciparum-infected An. gambiae
appears to be modified in a manner governed by the

vector’s fight for survival and the parasite’s need to
advance its transmission.
Results

Experimental Infection
Three- to five-day-old mosquitoes were fed on either nonga-
metocytic blood (uninfected group) or P. falciparum gameto-
cyte-positive blood (infected group) using membrane
feeders. Three experimental infections were achieved with
an average infection rate of 53.73% (geometric mean oocyst
density 6 SEM = 8.17 6 1.97, n = 360). No oocyst
was detected in the midgut of the uninfected group of
An. gambiae.
*Correspondence: btorto@icipe.org
P. falciparum Infection IncreasesAn. gambiaeAttraction to

Nectar Sources
Olfactory cues play an important role in the location of nectar
sources by An. gambiae [7]. We studied the olfactory re-
sponses of uninfected andP. falciparum-infectedAn. gambiae
to three nectar sources, Parthenium hysterophorus (Astera-
ceae), Ricinus communis (Euphorbiacea), and Bidens pilosa
(Asteraceae). A general linear model taking into account the
infection rate and density was used to analyze the data. Our
results revealed that parasite infection altered nectar-seeking
behavior of An. gambiae. In the dual-choice olfactory re-
sponses, there was an overall preference for odors from the
three nectar sources by both uninfected and Plasmodium-
infected An. gambiae. Infection with P. falciparum increased
nectar source attraction by 30% (0.42–0.86 confidence interval
[CI], p < 0.01) at the oocyst stage and 24% (0.48–0.99 CI,
p < 0.01) at the sporozoite stage compared to uninfected
An. gambiae of corresponding ages. In terms of odor prefer-
ence, significant differences were also detected among the
three nectar sources at the oocyst (F(2, 56) = 17.94, p < 0.001)
and sporozoite (F(2, 56) = 6.35, p < 0.05) stages of parasite
development (Figure 1).

P. falciparum Infection Increases An. gambiae Probing on

Nectar Sources
Nectar feeding is preceded by landing and probing activity on
floral and extrafloral parts of the plant. We conducted a no-
choice probing assay to study the effect of P. falciparum
infection on probing activity ofAn. gambiae on the three nectar
sources. Similarly, a general linear model taking into account
the infection rate and density was used to analyze the data.
Overall, infection with both the oocyst and sporozoite stages
of P. falciparum increased probing activity of An. gambiae
by 77% (0.38–5.87 CI, p < 0.001) and 80% (0.44–6.87 CI, p <
0.001), respectively, on the three nectar sources. Significant
differences in probing activity was also detected between
the three nectar sources (F(2, 80) = 55.78, p < 0.01), with
P. hysterophorus having the highest number of An. gambiae
probing (probing ratio [PR] = 1.66, 1.2023702–2.349070 CI,
p < 0.01), followed by R. communis (PR = 1.27, 0.8815493–
1.793855 CI), while B. pilosa was the least attractive (PR = 1).
However, there was no significant interaction between nectar
source and infection status (Figure 2).

P. falciparum Infection Alters An. gambiae Sugar Uptake
and Energy Reserves

As evidence of actual plant probing, we analyzed both unin-
fected and Plasmodium-infected An. gambiae for total sugar
content using hot anthrone test after probing assays. Overall,
infection with the oocyst stage of P. falciparum significantly
increased the amount of sugar uptake by An. gambiae from
the different nectar sources (F(1, 24) = 14.69, p < 0.001), with
An. gambiae obtaining the highest sugar amount from
P. hysterophorus when infected (p < 0.05) (Figure 3). On the
contrary, sugar uptake was significantly compromised at
the sporozoite stage (F(1, 24) = 14.75, p < 0.001). The uptake of
sugar in uninfected An. gambiae was higher from each of the
three nectar sources than that of their sporozoite-infected
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Figure 1. Olfactometer Responses of Different Stages of Plasmodium-

Infected Anopheles gambiae to Intact Plant Odors

(A) Oocyst stage and (B) sporozoite stage are shown. Uninfected,

comprising blood-fed An. gambiae of corresponding ages to oocyst- and

sporozoite-stage infected mosquitoes were used as controls. Eight

replicates of each experiment comprising ten mosquito per mosquito

group/plant were conducted. Error bars indicate the SEM; bars capped

with asterisks indicate significant difference between test and control for

each plant species at *p < 0.05.

Figure 2. Probing Responses of Different Stages of Plasmodium-Infected

Anopheles gambiae on Different Plant Species

(A) Oocyst stage and (B) sporozoite stage are shown. Uninfected,

comprising blood-fed An. gambiae of corresponding ages to oocyst- and

sporozoite-stage infected mosquitoes were used as controls. Eight

replicates of each experiment comprising ten mosquito per mosquito

group/plant were conducted. Error bars indicate the SEM; bars capped

with asterisks indicate significant difference between test and control for

each plant species at *p < 0.05, **p < 0.01, and ***p < 0.001.
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counterparts, with a significant difference in the amount of
sugar uptake detected among those probing on R. communis
(p < 0.01).

In addition, we tested for the effect of P. falciparum infection
on glycogen and lipid reserves after 7 days (oocyst stage)
and 12 days (sporozoite) postinfection. Our results show that
infection with both the oocyst and sporozoite stages of the
parasite did not significantly affect the glycogen reserves,
but the sporozoite stage severely depleted lipid reserves
(uninfected = 0.61, infected = 0.39, p < 0.001) (Figure 4).

Discussion

Our results clearly indicate that infection with P. falciparum
alters the behavior of An. gambiae toward the three nectar
sources. Both dual-choice olfactometer and probing assays
showed a marked increase in plant attraction and acceptance
at the oocyst and sporozoite stages of parasite development,
suggesting either physiological adjustment in An. gambiae
due to the infection resulting in change in behavior or behavior
manipulation of the vector by the parasite. Behavior manipu-
lation by malaria parasites on their host vectors has been
reported for various Plasmodium species in vertebrate host-
vector interactions, in which sporozoite-stage Plasmodium-
infected mosquitoes were found to be highly attracted to
their vertebrate host [1, 4, 8, 9]. Also, Plasmodium-infected
vertebrate hosts have been reported to be more attractive to
uninfected mosquitoes than uninfected hosts [3, 10]. Although
nectar feeding is known to play a critical role in the survival of
malaria vectors [11, 12], this is the first study to demonstrate
possible physiological adjustment of P. falciparum-infected
An. gambiae and/or behavior manipulation by P. falciparum
of the vector toward nectar sources. Increased vertebrate
host attraction of malaria vectors confers evolutionary advan-
tage to the parasite as it increases host-vector contact and
thus enhances chances of transmission [1, 6, 13]. On the other
hand, increased vertebrate host attraction during nontrans-
missible stages of the parasite would be disadvantageous to
the parasite since vertebrates are physically aggressive, hence
the high risk of untimely vector mortality [5, 14]. This suggests
that in the evolutionary arms race, the selective pressure on
An. gambiae appears to favor their plant nectar feeding during
the noninfective stages of the parasite development, thus
reducing feeding-associated vector mortality.
Our results further point to increased sugar uptake by

infected An. gambiae at the oocyst stage of the parasite,
whereas at the sporozoite stage the sugar uptake was
compromised. These results corroborate previous findings
[15, 16], but they also underpin the important mechanisms
involved in the possible vector manipulation by the parasite.
While the increased sugar uptake at the oocyst stage of
the parasite can be explained by either the adjustment by
An. gambiae to compensate for the energy deficit created by
parasite infection or parasite manipulation to increase sugar



Figure 3. Mean Amount of Total Sugar Content in Oocyst- and Sporozoite-

Stage Plasmodium-Infected Anopheles gambiae

(A) Oocyst stage and (B) sporozoite stage are shown. The total sugar con-

tent was measured on day 7 (during oocyst stage of parasite development)

and day 12 (sporozoite stage) postinfection for each group of mosquitoes

probing on each plant species. Uninfected, comprising blood-fed

An. gambiae of corresponding ages to oocyst- and sporozoite-stage in-

fectedmosquitoes that probed on the three plant specieswere used as con-

trols. Error bars indicate the SEM. The total number of each group of An.

gambiae per plant species (n) = 40. Bars capped with asterisks are signifi-

cantly different from the corresponding controls at *p < 0.05 and **p < 0.01.

Figure 4. Mean Amounts of Glycogen and Lipid Content in Oocyst- and

Sporozoite-Stage Plasmodium-Infected Anopheles gambiae

The total sugar content was measured on day 7 (during oocyst stage of

parasite development) and day 12 (sporozoite stage) for each group of

mosquitoes. Uninfected, comprising blood-fedAn. gambiae of correspond-

ing ages to oocyst- and sporozoite-stage infected mosquitoes were used

as controls. Error bars indicate the SEM. The total number of each

group of An. gambiae (n) = 120. The bar capped with an asterisk is signifi-

cantly different from the corresponding uninfected mosquito counterparts

at *p < 0.05.
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intake for its ownmetabolism and for improved vector survival
[15], the reduced sugar uptake at the sporozoite stage is not
in tandem with the observed increase in probing activity. The
invasion of the salivary glands of the vector by the sporozoite
stage of the parasite has been linked to reduced apyrase
activity with a resultant increase in probing time [8, 13, 17].
Sporozoite infection has also been associated with difficulties
in taking complete blood meals, with resultant persistent at-
tempts to initiate new blood uptake [2]. Further evidence
also points to altered levels of a number of proteins in the
head of An. gambiae after infection with the sporozoite stage
of Plasmodium berghei. These include the synapse-associ-
ated proteins, which could potentially affect the olfactory
system [18]. Whichever the case, this is expected to confer
transmission advantage to the parasite as many sporozoites
are transferred to new vertebrate hosts with every feeding
attempt. Therefore, we suggest that the observed increase in
plant probing activity accompanied by reduced sugar uptake
could possibly be an extrapolated effect of reduced apyrase
activity or an altered olfactory system or both, resulting in
impaired ability to imbibe on plant nectars and/or increased
plant attraction.

Given that most parasitic infections exert energetic costs to
their host vectors [19, 20], with a resultant loss of reproductive
potential and reduced lifespan [21–25], it is possible that the
malaria vector’s quest for increased probing is to meet its
own metabolic demands and that of the growing oocyst.
Studies on the effect of Plasmodium infection on vector
longevity are conflicting, with the majority showing that
vector survival is unaffected, but some showing reduced vec-
tor survival [24]. Selection for Plasmodium-vector interactions
that favor vector survival over reproduction has been sug-
gested [5, 26], but more studies are needed to fully understand
the effect of parasite infection on the energetic budget of
mosquito vectors [6]. Zhao et al. [27] recently demonstrated
increased survival of P. berghei-infected An. gambiae and
An. stephensi compared to uninfected mosquitoes when
they are subjected to starvation. They attributed this to
decreased carbohydrate catabolism accompanied by en-
hanced expression of insulin-like peptides that lead to higher
glycogen accumulation. Our study further demonstrates no
effect on glycogen reserves of An. gambiae after infection
with P. falciparum, though the infected vectors had slightly
higher glycogen reserves at the oocyst stage than did
their uninfected counterparts. These results further point to
possible vector manipulation by the parasite to ensure suffi-
cient energy supply, and hence sustained vector survival
that ensures completion of the sporogonic cycle, or physiolog-
ical adjustment by the vector to parasite infection. However,
further studies need to be carried out to fully understand the
effect of P. falciparum infection on the vector energetic
reserves.
The reduced lipid level, particularly at the sporozoite stage,

is noteworthy. Lipids have been implicated in Plasmodium-
mosquito interactions [28]. While our study serves to shed
more light into possible involvement of lipids in these Plasmo-
dium-vector interactions, more studies are needed to further
elucidate their role in the outcome of such interactions. It
is possible that lipid reserves are depleted by the parasites’
invasion of the midgut epithelial cells either through destruc-
tivemigratory activity or through formation of capsules around
the oocyst stages [29]. Alternatively, the observed depletion
of lipid reserves at the sporozoite stage of infection could be
explained by the fact that developing oocysts normally
sequester lipids for their structural development [28].
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Rivero and Ferguson [15] alluded to a possible protective
role played by high sugar intake, which increases the ability
of An. stephensi to synthesize nitric oxide, a defense molecule
in its immune response. The observed increase in sugar
uptake at the oocyst stage further strengthens this argument,
given that this is the most virulent stage of the parasite in
the mosquito vector [30, 31]. However, substantive studies
on the metabolic pathway involving sugar uptake in
P. falciparum-infected An. gambiae are needed to verify this
possibility. Overall, these studies highlight a possible coevolu-
tionary relationship between the malaria parasite and its
vector that results in minimal damage to both.
Conclusions

In conclusion, our findings highlight the influence of
P. falciparum on nectar-seeking behavior of An. gambiae,
which is similar to the previous results found for the para-
site-infected vectors seeking a vertebrate host for a blood
meal. In both cases, it appears that the nectar-seeking
behavior is governed by the physiological adjustment by the
vector to a P. falciparum invasion or the parasite’s need to
advance its transmission while minimizing vector mortality.
These results suggest evolutionary behavior modification
that is advantageous for both survival of the vector and
parasite transmission. This study exemplifies the need to
understand the mechanisms underlying vector-parasite
interactions in malaria systems, which is of paramount impor-
tance for disease control.
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