

The Empirical Econometrics and Quantitative Economics Letters ISSN 2286 – 7147 © EEQEL all rights reserved Volume 1, Number 4 (December 2012), pp. 169 – 179.

Effect of income distribution on poverty reduction after the Millennium

Jeeranan Techanan and Komsan Suriya

Faculty of Economics, Chiang Mai University E-mail: suriyakomsan@gmail.com

ABSTRACT

This study aims to investigate the effect of income distribution on poverty reduction and the effect of income distribution on growth elasticity of poverty reduction. It uses panel data of 70 countries during 2001-2010 provided by the World Bank. It applies panel data analysis both fixed effect and random effect models. It selects a better model by Hausman test. The findings reveal that, in general, better income distribution cannot reduce poverty in the world after the Millennium. Only in Southeast Asia that income distribution is significantly effective for the poverty alleviation. Moreover, better income distribution does not significantly affect the speed of poverty reduction which is measured by the growth elasticity of poverty reduction. The results of the study suggest that it is still hopeful for governments only in Southeast Asia that poverty can be reduced by better income distribution. Therefore, they should launch the policy that promotes the equality of income distribution especially job creations and income generation in rural communities of the countries to create the ultimate impacts on poverty reduction.

Keywords: Income distribution, poverty reduction, growth elasticity of poverty reduction, panel data analysis, millennium

JEL Classification: O15, I32, O11

1. Introduction

This paper adds evidence on the effects of income distribution on poverty reduction and growth elasticity of poverty reduction. It uses the data of 70 countries after the Millennium. It might be the first paper that analyses the data in this period.

The rationale of the poverty reduction due to the better income distribution arises from two concepts.

First, in two societies with the same mean income, the one with better income distribution has less poor people (Figure 1).

Second, in a society with better income distribution, an effort to reduce poverty is less (Figure 2).

Last, countries with better income distribution will reduce the poverty faster (Figure 3).

Figure 1. A society with better income distribution has less poor people.

Figure 3. Countries with better income distribution will reduce the poverty faster

2. Data, methodology and results

The study uses panel data of 70 countries during 2001-2010 provided by the World Bank. It applies panel data analysis both fixed effect and random effect models. It selects a better model by Hausman test.

Model 1: Effects of income distribution on poverty growth

poverty growth = $f(Gini, Per capita GDP, D_1Gini, D_2Gini, D_3Gini, D_4Gini)$

where Poverty growth = Growth of Head Count Index Gini = Gini coefficient Per capita GDP = GDP divided by population D_1 = Dummy variable for other Asian countries D_2 = Dummy variable for South American countries D_3 = Dummy variable for African countries D_4 = Dummy variable for Southeast Asian countries

Expected signs of the coefficients are as follows:

- 1. Gini coefficient is expected to be positive to the poverty growth, i.e. the better income distribution the less poverty.
- 2. Per capita GDP is expected to be negative to the poverty growth, i.e. the richer country the less poverty.
- 3. D₁Gini, D₂Gini, D₃Gini, D₄Gini are expected to be positive to the poverty growth.
- Model 2: Effects of income distribution on growth elasticity of poverty reduction

 $elasticity = f(Gini, Per capita GDP, D_1Gini, D_2Gini, D_3Gini, D_4Gini)$

where elasticity = Growth elasticity of poverty reduction

$$\varepsilon = -\frac{\% \Delta Poverty}{\% \Delta Growth} = -\frac{\partial Poverty}{\partial Growth} \cdot \frac{Growth}{Poverty}$$

Poverty = Head count index Growth = Percentage change of GDP Gini = Gini coefficient Per capita GDP = GDP divided by population D_1 = Dummy variable for other Asian countries D_2 = Dummy variable for South American countries D_3 = Dummy variable for African countries D_4 = Dummy variable for Southeast Asian countries Expected signs of the coefficients are as follows:

- 1. Gini coefficient is expected to be negative to the growth elasticity of poverty reduction, i.e. the better income distribution the faster speed of poverty reduction.
- 2. Per capita GDP is expected to be positive, i.e. the richer country the faster speed of poverty reduction.
- 3. D_1Gini , D_2Gini , D_3Gini , D_4Gini are expected to be negative to the growth elasticity of poverty reduction

3. Results

The results separate into three sets. First, the study displays the regression on the effect of income distribution on poverty growth for the whole world using fixed effect model and random effect model with their Hausman test. Second, it shows the regression on the effect of income distribution on poverty growth for each region using both models and the Hausman test. Last, it illustrates the effect of income distribution on growth elasticity of poverty reduction at regional level.

Set 1

 TABLE 1. Regression on the effect of income distribution on poverty growth for the whole world using fixed effect model

Dependent variable: poverty growth							
Independent variable	Coefficient	Standard error	t-stats	P> t	95% confid	ent interval	
Gini	.1022634	.1357313	0.75	0.452	1643433	.3688701	
Per capita GDP	0002744	.0001674	-1.64	0.102	0006032	.0000545	
Constant	-8.489536	5.65321	-1.50	0.134	-19.59371	2.614637	
sigma_u	6.6946215						
sigma_e	7.2999823						
rho	.45682406						
Nun	nbers of obser	vation		630			
R-squared					0.0280		
F(2,558)					1.56		
	0.0019						

Source: Estimation using Stata10

TABLE	2. Regression	n on the eff	fect of incom	e distribution	on poverty
g	rowth for the	whole wo	rld using ran	dom effect me	odel

Dependent variable: poverty growth								
Independent variable	Coefficient	Standard error	t-stats	P> t	95% confid	ent interval		
Gini	.19662	.0743357	2.65	0.008	.0509246	.3423154		
Per capita GDP	0001993	.0001317	-1.51	0.130	0004575	.0000589		
Constant	-12.6501	3.198846	-3.95	0.000	-18.91972	-6.380476		
sigma_u	6.1680995							
sigma_e	7.2999823							
rho	.41654755							
Numbers of observation					630			
R-squared					0.0454			
Wald chi2(2)					8.85			
Prob > chi2					0.0120			

Source: Estimation using Stata10

TABLE 3. Results of the Hausman test for the first set of regressions

Variables	Coefficient from	Coefficient from	Difference	Standard
	fixed effect model	random effect model		deviation
Gini	.1022634	.19662	0943566	.1135658
Per capita GDP	0002744	0001993	0000751	.0001033
_				
Chi2(2)	1.31		Prob>chi2	0.5196

Source: Estimation using Stata10

Ho : Random effect model is more appropriate than fixed effect model

 \mathbf{H}_1 : Fixed effect model is more appropriate than random effect

Set 2

TABLE 4. Regression on the effect of income distribution on povertygrowth for each region using fixed effect model

Dependent variable: poverty growth							
Independent variable	Coefficient	Standard error	t-stats	P> t	95% confident interval		
Per capita GDP	0002309	.0001705	-1.35	0.176	0005659 .0001041		
Gini other Asian countries	.0789175	.8588774	0.09	0.927	-1.60813 1.765965		
Gini South American countries	.1307318	.0824397	1.59	0.113	0312001 .2926638		
Gini African countries	1260751	.2477473	-0.51	0.611	6127121 .3605619		
Gini Southest Asian countries	1.048348	.4080568	2.57	0.010	.2468234 1.849872		
Constant	-15.08007	8.096784	-1.86	0.063	-30.98416 .824014		
sigma_u	16.553614						
sigma_e	7.2617803						
rho	.83861499						
Numbers of observation					630		
R-squared					0.0143		
F(5,555)					2.41		
P		0.0357					

Source: Estimation using Stata10

TABLE 5. Regression on the effect of income distribution on povertygrowth for each region using random effect model

Dependent variable: poverty growth							
Independent variable	Coefficient	Standard	t-	P> t	95% confident interval		
		error	stats				
Per capita GDP	0001148	.0001368	-0.84	0.401	000383 .0001533		
Gini other Asian countries	.1045744	.0660529	1.58	0.113	0248869 .2340358		
Gini South American countries	.0320508	.0107426	2.98	0.003	.0109956 .0531059		

Dependent variable: poverty growth							
Independent variable	Coefficient	Standard error	t- stats	P> t	95% confident interval		
Gini African countries	.0962369	.0530064	1.82	0.069	0076537 .2001276		
Gini Southest Asian countries	.1203029	.0760797	1.58	0.114	0288105 .2694163		
Constant	-8.590319	1.7554	-4.89	0.000	-12.03084 -5.149799		
sigma_u	6.2314176						
sigma_e	7.2617803						
rho	.42408106						
Numbers of observation				630			
R-squared				0.0541			
Wald chi2(5)				11.08			
Prob > chi2			0.0498				

Source: Estimation using Stata10

TABLE 6. Results of the Hausman test for the second set of regressions

Variables	Coefficient from fixed effect model	Coefficient from random effect model	Difference	Standard deviation
Per capita GDP	0002309	0001148	000116	.0001019
Gini other Asian countries	.0789175	.1045744	025657	.8563337
Gini South American countries	.1307318	.0320508	.0986811	.0817368
Gini African countries	1260751	.0962369	2223121	.2420104
Gini Southest Asian countries	1.048348	.1203029	.928045	.4009017
chi2(5)	9.74		Prob>chi2	0.0830

Source: Estimation using Stata10

Ho : Random effect model is more appropriate than fixed effect model

H₁: Fixed effect model is more appropriate than random effect

Set 3

TABLE 7. Regression on the effect of income distribution on growth elasticity of poverty reduction for each region using fixed effect model

Dependent variable: Growth elasticity of poverty reduction							
Independent variable	Coefficient	Standard error	t-stats	P> t	95% confident interval		
Per capita GDP	.0001766	.0001349	1.31	0.191	0000884 .0004416		
Gini other Asian countries	.1470816	.6944853	0.21	0.832	-1.217081 1.511244		
Gini South American countries	0646096	.0651529	-0.99	0.322	192588 .0633688		
Gini African countries	.056429	.1957898	0.29	0.773	3281567 .4410147		
Gini Southest Asian countries	.1576081	.3224797	0.49	0.625	475832 .7910482		
Constant	1.109649	6.446919	0.17	0.863	-11.5539 13.7732		
sigma_u	8.1483925						
sigma_e	5.7388363						
rho	.66843791						
Numbers of observation					626		
R-squared					0.0007		
F(5,551)					0.76		
Prob > F					0.5820		

Source: Estimation using Stata10

TABLE 8. Regression on the effect of income distribution on growth elasticity of poverty reduction for each region using random effect model

Dependent: Growth elasticity of poverty reduction							
Independent variable	Coefficient	Standard error	t-stats	P> t	95% confident interval		
Per capita GDP	.0000924	.0000788	1.17	0.241	0000621 .0002468		
Gini other Asian countries	0074999	.0279879	-0.27	0.789	0623553 .0473555		
Gini South American countries	.0013654	.0045103	0.30	0.762	0074746 .0102053		
Gini African countries	.0183913	.022852	0.80	0.421	0263979 .0631804		

Dependent: Growth elasticity of poverty reduction							
Independent variable	Coefficient	Standard error	t-stats	P> t	95% confident interval		
Gini Southest Asian countries	0088559	.0322519	-0.27	0.784	0720685 .0543568		
Constant	2763463	.7925214	-0.35	0.727	-1.82966 1.276967		
sigma_u	2.0030724						
sigma_e	5.7388363						
rho	.10859742						
Numbers of observation					630		
R-squared				0.0059			
Wald chi2(5)				2.82			
Prob > chi2					0.7284		

Source: Estimation using Stata10

TABLE 9. Results of the Hausman test for the third set of regressions

Variables	Coefficient from fixed	Coefficient from random	Difference	Standard
variables			Difference	
	effect model	effect model		deviation
Per capita GDP	.0001766	.0000924	.0000842	.0001095
1				
Gini other Asian	.1470816	0074999	.1545816	.6939211
countries				
countries				
Gini South	- 0646096	0013654	- 065975	0649966
	.00+0090	.0015054	.005715	.0047700
American countries				
Gini African	.056429	.0183913	.0380378	.1944516
countries				
Gini Southest Asian	.1576081	0088559	.166464	.3208629
countries				
countries				
chi2(5)	2 55		Prob>chi2	0 7691
CIII2(3)	2.33		1100/0112	0.7091

Source: Estimation using Stata10

Ho: Random effect model is more appropriate than fixed effect model

H₁: Fixed effect model is more appropriate than random effect

4. Conclusions

In general, better income distribution cannot reduce poverty in the world after the Millennium. Only in Southeast Asia that income distribution is significantly effective for the poverty alleviation. Moreover, better income distribution does not significantly affect the speed of poverty reduction which is measured by the growth elasticity of poverty reduction.

REFERENCES

- Bourguignon F. 2002. The growth elasticity of poverty reduction: explaining heterogeneity across countries and time periods, In T. Eicher and S. Turnovsky, Growth and Inequality, Boston: MIT Press.
- Deininger K. and L. Squire (1998) New Ways of Looking at Old Issues: Inequality and Growth. Journal of Development Economics, 57 (2): 259-287.
- Forbes K. 2000. A Reassessment of the Relationship between Inequality and Growth. American Economic Review, 90: 869-887.
- Galor O. and J. Zeira (1993) Income distribution and macroeconomics, Review of Economic Studies, 60: 35-52.
- Heston, A., Summers, R. & Aten, B. (2002) Penn World Table Version 6.1, Center for International Comparisons at the University of Pennsylvania (CICUP), October. (online) http://pwt.econ.upenn.edu/php_site/pwt_index.php
- Klasen, S. 2006. Economic Growth and Poverty Reduction, Measurement issues in income and non-income dimensions. World Development 36(3): 420-445.
- Klasen, S. and M. Misselhorn (2008) Determinants of the growth semi-elasticity of poverty reduction, Ibero-America Institute Working Paper (forthcoming).
- Kraay A. 2004. When is growth pro-poor? Evidence from a panel of countries. Mimeo, Word Bank, Washington D.C. Journal of Development Economics, 80(1): 198-227.
- Meier G.M. and J.E. Rauch (2005) Leading Issues in Economic Development. 8th edition (Chapter 8: Income Distribution, pp. 433-488), Oxford: Oxford University Press.
- Ray D. 1998. Development Economics (Chapter 6: Economic Inequality, pp. 169-196 and Chapter 7: Inequality and Development, pp. 197-248), Princeton: Princeton University Press.