

Transmission of world food prices to African markets

Nicholas Minot (IFPRI)

Presented at the ZEF-IFPRI workshop on Food price volatility and food security on 31 Jan – 1 Feb 2013 at the Center for Development Research (ZEF), University of Bonn.

Outline

- Motivation
- Previous research
- Price trends in 2007-2008
- Statistical analysis of price trends
- Discussion of results

Motiviation

Motivation

- If world price shocks are transmitted, then impact of global food crisis of 2007-08 more worrisome
- If world price shocks are not transmitted, then Africa is (at least partially) insulated from food price shocks

Previous research

- Mundlak and Larson (1992)
 - International-local price transmission for 58 countries
 - Very high transmission, median elasticity 0.95
 - But statistical problem (non-stationarity)
- Quiroz and Soto (1996)
 - Similar data but 78 countries
 - Better statistical method (error correction model)
 - No long-run relationship (LRR) for 30 of 78 countries
 - No LRR for 7 of 16 African countries
- Conforti (2004)
 - Price transmission for 16 countries
 - Ethiopa: LRR for 4 of 7 commodities
 - Ghana: no LRR for maize and sorghum
 - Senegal: LRR for rice but not maize

Description of trends

🔮 Data

- 83 prices
- Maize, rice, wheat, beans, sorghum, and teff
- Cameroon, Ethiopia, Ghana, Kenya, Malawi, Mali, Mozambique, Senegal, South Africa, Tanzania, Uganda, and Zambia
- Source: FAO GIEWS

Method

- Calculate ratio of % increase in domestic price increase over the % increase in world price over June 2007 to June 2008
- Example: If domestic price of maize rises 40% and world maize price rises 80%, then ratio is 50%

Statistical analysis: Data & methods

Data sources

- International prices: FAO (http://www.fao.org/es/esc/prices/PricesServlet.jsp?lang=en)
- Domestic prices: FEWS-NET and others
- Monthly price data for nine sub-Saharan African countries
- 62 price series (commodity-market combinations)
- 5-10 years of monthly data, usually including 2008

Methods

- Convert domestic prices to real US\$ prices
- Test for stationarity using ADF test
- Test for cointegration (long-run relationship) using Johansen test
- If long-run relationship, use error correction model

Statistical analysis: Methods

Methods – Vector error correction model (VECM)

Statistical analysis: Methods

Illustration

 Cointegrated prices with rapid adjustment toward long-term relationship

 Cointegrated prices with slow adjustment toward long-term relationship

No cointegration relationship

Statistical analysis: Summary results

By	country:		Prices with	Total nbr.	Percen-
•	Percentage of price showing transmission from world to domestic markets		relationship	ofprices	tage
		Ethiopia	1	3	33%
		Ghana	1	7	14%
		Kenya	0	2	0%
\$	Higher transmission in Tanzania, Mozambique, &	Malawi	3	8	38%
		Mozambique	4	11	36%
		South Africa	0	4	0%
	Malawi	Tanzania	4	16	25%
0	Lower transmission in Ghana and Zambia	Uganda	0	2	0%
		Zambia	0	9	0%
٩	No higher in	Total	13	62	21%
	coastal countries				

Statistical analysis: Summary results

By commodity:

- Transmission highest for rice
- Lower for maize and sorghum

	Prices with	Total nbr.	Percen-
	relationship	ofprices	tage
Maize	4	40	10%
Rice	8	17	47%
Sorghum	1	4	25%
Wheat	0	1	0%
Total	13	62	21%

Reasons for lack of price transmission in maize

- Most African countries are self-sufficient in maize
- Domestic price falls between export parity and import parity
- Even efficient markets will not show price transmission in this situation
- Intervention in maize markets also reduces transmission
 - Kenya supports price, Tanzania bans exports, Malawi and Zambia have large state trading enterprises that intervene in maize markets
- Reasons for higher price transmission in rice
 - Almost all African countries rely on rice imports
 - Imports are usually more than half of domestic consumption

Conflicting results:

- Trends show sharp increases in food prices (including maize)
 - Price of maize, rice, and wheat increase more than 60% between June 2007 and June 2008
 - Percentage increase in maize and wheat price larger than percentage increase in world price
- ... but statistical analysis shows weak relationship between world and domestic prices (particularly in maize)
 - 47% of African rice markets statistically linked to world markets
 - 10% of African maize markets statistically linked to world markets

Conflicting results – Example of maize in Tanzania

Most likely explanation

- Increase in rice and wheat prices caused by higher world prices
- Increase in maize prices not due to higher world maize prices
- Rather price of maize and non-tradable commodities rose due to:
 - Substitution effects with rice & wheat
 - Oil price increase which raised cost of transport
 - Grain export bans by Ethiopia, Tanzania, Zambia, and Malawi, among others
 - Local events such as post-election violence in Kenya and rationing of foreign currency in Ethiopia

Price volatility - Data and methods

- Sources of price data
 - IMF for world price of maize, rice, and wheat
 - FEWS-NET for 67 food prices in 11 African countries: Chad, Kenya, Malawi, Mali, Mauritania, Mozambique, Niger, Rwanda, Tanzania,Uganda, and Zambia.
- Measuring volatility
 - Standard definition is the standard deviation in "returns" (percentage changes in price from one period to next)

Volatility = stdev(r) =
$$\left[\sum_{n=1}^{1} (r_t - \bar{r})^2\right]^{0.5}$$

where $r_t = \ln(p_t) - \ln(p_{t-1})$
 $\bar{r} = \sum_{n=1}^{1} r_t$

Volatility in international markets

- Volatility in world prices increased in 2007-2010 compared to previous three years (2003-06) and compared to previous 26 years (1980-2006)
- Increases are statistically significant at 1% level in all cases

Trends in price volatility in Africa

- Compared volatility of 67 food prices in 2003-06 and 2007-10
- Dark points represent statistically significant change (p<0.05)
- 7 prices had significant increase in volatility
- 17 prices had significant decrease in volatility
- Overall decrease in volatility
 - Small (0.123 → 0.113) but statistically significant (p<.01)

Trends in price volatility in Africa

Change in volatility by product

Trends in price volatility in Africa

Conclusions

- Food price volatility in international markets is lower than in African markets
- International food price volatility has increased since global food crisis of 2007-08
- For 67 African food prices tested, price volatility has not increased since 2007
- Possible explanations
 - Conventional wisdom is wrong?
 - Eleven countries are not representative
 - Measure of volatility does not accurately reflected intuitive idea

Thank you

Comments and suggestions welcome: <u>n.minot@cgiar.org</u>