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Preliminaries

» Understanding and modeling price volatility
» Pushing the research frontier
» Identifying periods of excessive price volatility

In empirical finance there is often an interest in stochastic models
for log returns

P:

Pi_1

Y: = log where t € {0,%1,---}.



Motivation

» {Yi}tcz be a stochastic process
> FYtIXt:XY Xt E Rd
» Normally, X}, = ( Yici oo Yeem W] ) for m € IN.

For a € (0,1),
> a-CVaR(x) is the a-quantile associated with Fy,x,—y,
» a-CES(x) is the E(Y:]Y: > a-CVaR(x)).

These are frequently used as synthetic measures of risk by
regulators, portfolio managers, etc.



How does Y; evolve through time?

We consider the following conditional location-scale model

Ye = m(Xe) + h3(Xe)ee, where t =1+, n.

» m,h:RY — R are suitably restricted real valued functions
> E(c¢|Xt =x) =0and V(e Xy =x) =1
» £; has a strictly increasing absolutely continuous distribution

F which belongs to the domain of attraction of an extremal
distribution [Leadbetter (1983), Resnick (1987)].



A result of Gnedenko (1943)

> Let {X;:}+>1 be a sequence of iid random variables with
distribution F and let m, = max {Xy,--- , X,}. Then,

P(mp < x) = P(X: < x, Vt) = F(x)"

Suppose there exists a, > 0, b, € R such that as n —

P (m” —bn x> = F(anx + bn)" — E(x)

dn
then E( ) is either
Pu(x) =e > " for x > 0 (Fréchet)
W, (x ) ~(=)" for x < 0 (reverse Weibull) and 1 for x > 0,
3 A(x) = e™¢ " for x € R (Gumbel).
» There are F's that are not in the domain of attraction of E

but they constitute rather pathological cases (Leadbetter et
al., 1983).



Some restrictions of the location scale model

1. AR(m), ARCH(p): Xe = (1 Yeiq - Yim)
h(X:) = ( 1 Ytz_l Ytzfp )a

2. CHARN Model of Diebolt and Guegan (1993), Hardle and
Tsybakov (1997), Hafner (1998).
X = ( Yi-1 )
m(Xt) = m( Yt—l)
h(Xt) = h( Yt_]_)

3. Nonaparametric autoregression of Fan and Yao (1998,
Biometrika)



CVaR and CES

For a € (0,1),
a— CVaR(x) = qy,x,=x(a) = m(x) + h?(x)q(a)
and
a—CES(x) = E(Y:|Y: > qv,x,—x(3)) = m(x)+h"?(x)E(eeler > q(a))
where g(a) is the a-quantile associated with F.

The sequence {&;} is not observed.

Motivation: McNeill and Frey (2000), Martins-Filho and Yao
(2006).



Estimation

Given a sample {(Y;, X7 )}7_; and estimators Ai(x) and h(x) it is
possible to obtain a sequence of standardized nonparametric
residuals

Y= m(Xy)

ét = WX{E()Q»O} for t = 1, ceeun,

These can be used to construct

~

Gyix=x(a) = M(x) + h/2(x)g(a)



Pickands’ result

» We are interested in the case where a is in the vicinity of 1.

» The restriction that a is in a neighborhood of 1 is useful in
estimation. The result is due to Pickands (1975).

F(x) € D(E) if, and only if,
Iim§—>uoo5up0<u<uoo—§ |FE(U) - G(U; 07 U(f)a k)| = 07
where

> Fe(u) = 7F(u1t£,g(§§(g),

» G is a generalized Pareto distribution (GPD), i.e.,

. [ 1-QQ—k(y—p)/o)* ifk#0,0>0
G(y,,u,U,k)—{ 1_exp(_)2yfﬂ)/g) ifk=0,0>0

with y <y <ooif k<0, u<y<upu+o/kifk>0



A restriction on F

» Index of regular variation: If for x > 0, /ithmT_FiF(tﬁ = x®

we say that 1 — F is regularly varying at co with index a.If
a = 0 we say that 1 — F is slowly varying at oc.

> F € 0u(x) & lime o TRE) = x7 & x2(1 = F(x)) is
slowly varying at co.

> If F e D(V,) its endpoint us is finite.

» If F € D(A) and its endpoint ux is not finite, 1 — F is rapidly
varying, a situation we will (must?) avoid.

» If F belongs to the domain of attraction of a Fréchet
distribution (®,) with parameter o, then k = —1 and
o(§) =&/

» An estimator for g(a) can be obtained from the estimation of
the parameters k and o ().



Estimation procedure

First stage: a) We consider the local linear (LL) estimator
m(x) = Bo where

(Fo. ) = argmin ) (Ye— o~ (XT —x")8) Ky <x;71— X> |

Ki(-) is a multivariate kernel function and hy, > 0 is a bandwidth.
b) We obtain {U; = Y; — m(X;)}"_, and define h(x) = 7 where
(1. n) = argmin S0 (02— — (XT — <)) Ko (%),
Ka(:) is a n?Llnlltivariate kernel function and hy, > 0 is a bandwidth.




Estimation procedure

Second stage:
> We use {£;}7_; to estimate F as

> (e

where K3(-) is a univariate kernel and h3, > 0 is a bandwidth.

> Let §(a) be the solution for F(§(a)) = a. Letting
0 < a, < a< 1 besuch that a, — 1 as n — oo we use Ns
residuals that exceed g(a,) to form

{Z} =1 — {g(n Ns+1i) (an)}

where {£;)}{_; denotes the order statistics associated with

{éeig-

Flu) = —

nh3,,



Estimation procedure

> {Z}f\ﬁl is used to obtain maximum likelihood estimators for o

and k based on g(z;o, k) =1 (1 - %)l/k_l. That is,
0 1 & 5 -
50 T D 108 8(Zi 5y(ar), K) = 0 2)
)
1
01 & 5 .-
S D o8 8(Ziia(a,), k) =0 (3)




Estimation procedure

> For a € (as, 1), q(a) = G(an) + ¥¢(a,),» Where by construction
( (an) +Yq (an), a) =a.

Then,
1-a N (1_ k}/a(a,,),a>l/k
1— F(a(an)) Tg(an)
> If F is estimated by F, and noting that
1—F(g(an)) =1 — an, we have

k
-, Ta(an) 1-a
Ya(an.a ™ 7y <1_ <1—an> )

» Thus,




Estimation procedure

> If e+ — q(a) were distributed exactly as g(z; o, k), then
integration by parts gives

o
1+ k

E(etler > q(a)) = q(a) +

» If F € D(®,) and restrictions are placed on how fast
x*(1 — F(x)) is slowly varying, it is easy to show that

a
E(erlee > (o)) = 7220 +o(1)
This motivates the estimator
g(a)

E(eeler > q(a) =



Assumptions

There are a number of regularity conditions.

» Assumption 1 deals with the properties of the three kernels
used in estimation. The order s for K1 and K> are needed to
establish that the biases for i and h are, respectively, of order
O(h:)) for i = 1,2 in Lemmas 2 and 3. The order m; for K3 is
necessary in the proof of Lemma 4.

» Assumption 3 restricts m and h to be sufficiently smooth.

» Assumption Ab is necessary in Lemma 4 and is directly related
to the verification of existence of bounds required to use
Lemma A.2 in Gao (2007).



Assumptions

» Assumption 2 is important:
1) {(X¢ €¢) T }t=12,... is a strictly stationary a-mixing process
with a(/) < C 178 for some B > 2;
2) The joint density of X; and ¢; is given by
fe(x,2) = K(x)F();
3) fx(x) and all of its partial derivatives of order < s are
differentiable and uniformly bounded on RY;
4) 0 < inffx(x) and supfx(x) < C.

xeg x€g

A2 1) implies that for some § > 2 and a > 1 — 2,
Zj’iljaa(j)l_% < 00, a fact that is needed in our proofs. We
note that a-mixing is the weakest of the mixing concepts
Doukhan (1994) and its use here is only possible due to
Lemma A.2 in Gao (2007), which plays a critical role in the
proof of Lemma 4.



Lemmata

Lemma 2: Assume that the kernel Ki used to define m satisfies
assumption Al and assumptions A2 and A3 are holding. Assume
also that the bandwidth h;, used to define m satisfies equations

2
nl_E_zehg — 00

and

d
B+1.5)(§+0)—§+0.75+%h;1-75d—§(d+3)( 0.25+0.5(B—d) _,

n{ log n)

Then, if E(|e¢|?) < o0, E(h*?(X;)?) < oo for some a > 2 and
condition c) in Lemma 1 is holding

igglﬁv(X) = m(x)| = Op (L1n) , (4)

log n 1/2
where Ll,,:( g ) s

d
nh{_



Lemmata

Lemma 3: Assume that the kernel K> used to define h satisfies
assumption Al and assumptions A2 and A3 are holding. Assume
also that the bandwidth hs, used to define h satisfies equations

2
nl_E_zehg — 00

and

d
B+1.5)(§+0)—§+0.75+%h;1-75d—§(d+3)( 0.25+0.5(B—d) _,

n{ log n)

Then, under the assumptions in Lemma 2, if E(|e? — 1]?) < oo and
E(h(X:)?) < oo for some a > 2,

i:g\%(x) — h(x)| = Op (L1n + L2n), (5)

log n 1/2 s log n 1/2 s
where Ly, = ( ) + b, and Loy = (mg ) + B,

d
nh{_



Lemmata

Corollary: Under the assumptions of Lemma 3,

sup |B/2(x) — h"/?(x)| = Op (L1n + L2n)
xeg

and
SUPIX{hx>0) — = Op (Lun + Lan)

log n 1/2 log n 1/2
where Ll,,:( 2 ) + hS, and LG:< g ) + B3,

d d
nh{_ nhg_

» FR1': Assume that for some o > 0 we have
iMoo 22y =




Lemmata

Lemma 4: Under assumptions A1-A5 and conditions FR1" and
FR2, if @« > 1 we have

N1/2 <W> = Op(1), where a, =1— Y.

1
provided that a) hyp, oc n”25td, hpp ox n” 2+d, h3, x n 2(25+d)+6
2s
N o n2+d % for some § > 0 with s > 2d and b) E(|e2 — 1]7) < oo

and E(h(x)?) < oo for some a > 2.



Theorem 1

Assume that FR1' with o > 1, FR2 and assumptlons A1-A5 are
holding. In addltlon assume that a) hyp ox n™ 2s+d hop x n— 2s+d
hz, o< n ~ a0 , N x n2s+d ~% for some § > 0 and s > 2d, b)
E(]e? — 1]°) < oo and E(h(x)?) < oo for some a > 2. Let
m,meR,0<dy — 0, SyNY2 — 00 as N — oo and denote
arbitrary o and k by 0 = on(1 + 710n) and k = kg + 720n. We
define the log-likelihood function

Ns

LTN(T]_,TQ Z/ogg Z,,UN(1+T1(5N) ko+726,\,)
i=1

where Z; = E(n—No+i) — 4(an), an =1~ % Then, as n — oo,
5%[7-,\/(7'1,72) has, with probability approaching 1, a local

maX|mum (71,72) on St = {(71,7'2) 7'1 —|—T2 < 1} at which



Comments on Theorem 1

> The vector (77, 75) implies a value G4(,,) and k which are
solutions for the likelihood equations

j=1

» There exists, with probNabiIity approaching 1, a local maximum
(6n = on(l+ t*0n), k = ko + T*0p) on
Sr={(0, k) : I(Z — 1, k — ko)|| < dn} that satisfy the first
order conditions

» Theorem 1 states that the solutions for the first order
conditions correspond to a local maximum of the likelihood
associated with the GPD in a shrinking neighborhood of the
arbitrary point (o, ko).



Comments on Theorem 1

The proof of Theorem 1 depends critically on:

>

sup|m(x)—m(x)| = Op (L1s) and sup|h(x)—h(x)| = Op (L2n),
xeg xeG

1/2 1/2
where L1, = (“%£2) " 4 bz, and Lo, = (£2) " 4 h3,

d d
nh{ nhg,

These orders are sufficient for

|ét - €t| = Op(Lln) + (Op(Lln) + OP(L2n))‘5t‘

uniformly in G.

Lemma 4 shows that §(a,) is asymptotically close to gn(an)

by satisfying % = Op(N_1/2)

It is here that the stochasticity of the threshold (§) is handled
and FR1', FR2 and o > 1 is used.



Asymptotic normality of 5’ = (&, k) - Theorem 2

Suppose FR1" with o > 1, FR2, A1-A5 hold and that
a—Ele/2¢(q(an)) — p € R. In addition, assume that conditions
a) and b) in Theorem 1 are holding. Then, the local maximum
(Ga(an)s /~<) of the GPD likelihood function, is such that for

ko =—2 and oy (;")
N Talen) 1\ 4 w -1 =1
N( (Z}N—ko )_)N(( %—W >’H e >
ot+kop
k2 —4ko+2 -1
where V2 = (2k0__11)2 2k3502(/f§-j21120—1

ko(ko—1)  K2(ko—1)2(2ko—1)



Comments on Theorem 1

> It is easy to show that H~1VL V1 — H71 is positive definite.
» Any additional bias resulting from the use of Z; is of second
order.

» The fact that Z- is not iid as Z; does not require the use of a
CLT for dependent processes as justified in Lemma 5.



Asymptotic normality of g(a) - Theorem 3

Suppose FR1' with o > 1, FR2, A1-A5 and ;S N'2¢(q(an)) —
with kg = —é and oy = g(an)/ca. In addition, assume that
conditions a) and b) in Theorem 1 are holding. Then, if

n(1—a) < N, for some z, >0

n(1—a)<2’8—1>i
N<(—ko) <_(Z§—1)5(04— p) T 1n|£20\f< Z))’
k3 (chH VaH Yep 4 2¢] <i:i§>+1>>

where ¢ = ( —ky'(z71 — 1) ky2log(za) + kg 2(z71 —1) ),
by = E (L log g(Zi; on., ko)on) and bx = E (. log g(Zi; o, ko)).




Asymptotic normality of E(e.|e; > g(a )) Theorem 4
Suppose FR1 with @ > 1, FR2, A1-A5 and — Nl/zqﬁ(q(a )) —

with ko = —% and oy = g(ap)/a. In addltlon assume that
conditions a) and b) in Theorem 1 are holding. Then, if
n(1—a) o< N, for some z, > 0

n(1—a) (E(&'gg(j a(@) _ 1) 4,

1+ko

k

1 b
lim VN LYHH( 77 ).x
e dm Ao 1) () 5),
where ¢p, b,, by are as defined in Theorem 3,

T = k2 (chHflvszl

P _
p n—o0

ko

_ ko 1
2¢/] ( i_ ko > + 1> +2—n V3l + 07 Vi),

1+ ko (1 + ko)?

1



with

1

12k
_ 1

1
~ To-T2k-1)

V3 = (ko—1)(2ko—1)
0
0

_ 1—k 1
bl—mandbz_k?(

(ko—1)(2ko—1)
0

0

ko—1 _ 1 _
2ko—1 ko—1 ]

0
K
—ko



Consistency

Given Lemmas 2, 3, Theorems 3 and 4 we have that for all
ae(0,1),

Gyxemx(3) = M(x) + BY2(x)3(a) B m(x) + M/2(x)q(a) = &
CVaR(x)

and

E(YViYe > avuxe=x(3)) = M(x) + h/2(x)E(ecler > q(a)) &
m(x) 4+ h/2(x)E(e¢ler > q(a)) = a-CES(x)



Comments

> Estimation of qy|x—x(a) when a is in the vicinity of 0 has
been considered by Chernozhukov (2005) when
gy|x=x(a) = xB(a), B(a) € R

» He provides a complete asymptotic characterization of the
quantile regression estimator of (3(a).

> Here gy x—x(a) is nonparametric, it is in this sense more
general than the one considered by Chernozhukov. a
approaches 1 at a speed that is slower then the sample size
(n(1 —a) x N — oo in Theorem 2).

» Furthermore, similar to Smith (1987) and Hall (1982), our
proofs require the specification of the speed at which the tail
1 — F(x) behaves asymptotically as a power function.
Theorem 1 specifies this speed to be proportional to v/N.



TABLE 7 BACKTEST RESULTS FOR a—CONDITIONAL VALUE-AT-RISK (¢) AND EXPECTED
SHORTFALL(E) ON m —n = 500 OBSERVATIONS, EXPECTED VIOLATIONS = (m —n)(1 — a).
¢: NUMBER OF VIOLATIONS AND P-VALUE (IN BRACKETS).

E: P-VALUE FOR EXCEEDANCE RESIDUALS TO HAVE ZERO MEAN.

q E
a=095 a=099 a=099% a=095 a=0.99 a = 0.995

EXPECTED VIOLATIONS

25 5 2.5
Maize 8 (.151) 5(1) 2(.751) 0 .161 735
Rice ( 412)  4(.653) 2(.751) 0 .081 .248
Soybean 21(.412)  3(.369) 2(.751) 0 .302 244
Wheatcbot  30(.305)  6(.653) 2(.751) .001 .339 273
Wheatkebt 25(1) 5(1) 2(.751) 0 .082 239

g and E (on log scale)

0.955 0.960 0.965 0.970 0.975 0.980 0.985 0.990 0.995 1.000

a

Figure 1: Plot of conditional value-at-risk (¢) and expected shortfall (E) estimates evaluated at sample mean
across different a, with n = 1000, hy(Y;—1) =1+ 0. OlYt2 1+ 0.5sin(Y;—1), @ = 0 and student-t distributed

g withv=3.1:trueq,2:q4,3:q,4:true £, 5: E and 6 : E.
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