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Preliminaries

I Understanding and modeling price volatility

I Pushing the research frontier

I Identifying periods of excessive price volatility

In empirical finance there is often an interest in stochastic models
for log returns

Y
t

= log
P

t

P
t�1

where t 2 {0,±1, · · · }.



Motivation

I {Y
t

}
t2Z be a stochastic process

I F
Y

t

|X
t

=x

, X

t

2 Rd .
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0
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=
�

Y
t�1

· · · Y
t�m

W 0
t

�
for m 2 N.

For a 2 (0, 1),

I a-CVaR(x) is the a-quantile associated with F
Y

t

|X
t

=x

,

I a-CES(x) is the E (Y
t

|Y
t

> a-CVaR(x)).

These are frequently used as synthetic measures of risk by
regulators, portfolio managers, etc.



How does Yt evolve through time?

We consider the following conditional location-scale model

Y
t

= m(X
t

) + h1/2(X
t

)"
t

, where t = 1, · · · , n.

I m, h : Rd ! R are suitably restricted real valued functions

I E ("
t

|X
t

= x) = 0 and V ("
t

|X
t

= x) = 1

I "
t

has a strictly increasing absolutely continuous distribution
F which belongs to the domain of attraction of an extremal
distribution [Leadbetter (1983), Resnick (1987)].



A result of Gnedenko (1943)

I Let {X
t

}
t�1

be a sequence of iid random variables with
distribution F and let m

n

= max {X
1

, · · · ,X
n

}. Then,

P(m
n

 x) = P(X
t

 x , 8t) = F (x)n

Suppose there exists a
n

> 0, b
n

2 R such that as n !1

P
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n

� b
n

a
n

 x

◆
= F (a

n

x + b
n

)n ! E (x)

then E (x) is either

1. �↵(x) = e�x

�↵

for x � 0 (Fréchet)
2.  ↵(x) = e�(�x)

↵

for x < 0 (reverse Weibull) and 1 for x � 0,

3. ⇤(x) = e�e

�x

for x 2 R (Gumbel).

I There are F ’s that are not in the domain of attraction of E
but they constitute rather pathological cases (Leadbetter et
al., 1983).



Some restrictions of the location scale model

1. AR(m), ARCH(p): X

t

=
�

1 Y
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· · · Y
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�

m(X
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0
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b
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t

) =
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· · · Y 2

t�p

�
a

2. CHARN Model of Diebolt and Guègan (1993), Härdle and
Tsybakov (1997), Hafner (1998).
X
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t�1

)

h(X
t

) = h(Y
t�1

)

3. Nonaparametric autoregression of Fan and Yao (1998,
Biometrika)



CVaR and CES

For a 2 (0, 1),

a� CVaR(x) = q
Y

t

|X
t

=x

(a) = m(x) + h1/2(x)q(a)

and

a�CES(x) = E (Y
t

|Y
t

> q
Y

t

|X
t

=x

(a)) = m(x)+h1/2(x)E ("
t

|"
t

> q(a))

where q(a) is the a-quantile associated with F .

The sequence {"
t

} is not observed.

Motivation: McNeill and Frey (2000), Martins-Filho and Yao
(2006).



Estimation

Given a sample {(Y
t

,XT

t

)}n

t=1

and estimators m̂(x) and ĥ(x) it is
possible to obtain a sequence of standardized nonparametric
residuals

"̂
t

=
Y

t

� m̂(X
t

)

ĥ1/2(X
t

)
�{ˆh(X

t

)>0} for t = 1, · · · , n,

These can be used to construct

q̂
Y |X

i

=x

(a) = m̂(x) + ĥ1/2(x)q̂(a)

Ê (Y
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> q
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(a)) = m̂(x) + ĥ1/2(x)Ê ("
t

|"
t

> q(a))



Pickands’ result

I We are interested in the case where a is in the vicinity of 1.

I The restriction that a is in a neighborhood of 1 is useful in
estimation. The result is due to Pickands (1975).

F (x) 2 D(E ) if, and only if,

lim⇠!u1sup
0<u<u1�⇠ |F⇠(u)� G (u; 0, �(⇠), k)| = 0,

where

I F⇠(u) = F (u+⇠)�F (⇠)
1�F (⇠) ,

I G is a generalized Pareto distribution (GPD), i.e.,

G (y ;µ,�, k) =

⇢
1� (1� k(y � µ)/�)1/k if k 6= 0, � > 0
1� exp(�(y � µ)/�) if k = 0, � > 0

with µ  y < 1 if k  0, µ  y  µ + �/k if k > 0



A restriction on F

I Index of regular variation: If for x > 0, lim
t!1

1�F (tx)

1�F (t)

= x↵

we say that 1� F is regularly varying at 1 with index ↵.If
↵ = 0 we say that 1� F is slowly varying at 1.

I F 2 �↵(x) , lim
t!1

1�F (tx)

1�F (t)

= x�↵ , x↵(1� F (x)) is
slowly varying at 1.

I If F 2 D( ↵) its endpoint u1 is finite.

I If F 2 D(⇤) and its endpoint u1 is not finite, 1� F is rapidly
varying, a situation we will (must?) avoid.

I If F belongs to the domain of attraction of a Fréchet
distribution (�↵) with parameter ↵, then k = � 1

↵ and
�(⇠) = ⇠/↵.

I An estimator for q(a) can be obtained from the estimation of
the parameters k and �(⇠).



Estimation procedure

First stage: a) We consider the local linear (LL) estimator
m̂(x) ⌘ �̂

0

where
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> 0 is a bandwidth.
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t
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(·) is a multivariate kernel function and h
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> 0 is a bandwidth.



Estimation procedure

Second stage:

I We use {"̂
t

}n

t=1

to estimate F as

F̃ (u) =
1

nh
3n

nX

t=1

Z
u

�1
K

3

✓
"̂
t

� y

h
3n

◆
dy (1)

where K
3

(·) is a univariate kernel and h
3n

> 0 is a bandwidth.

I Let q̃(a) be the solution for F̃ (q̃(a)) = a. Letting
0 < a

n

< a < 1 be such that a
n

! 1 as n !1 we use N
s

residuals that exceed q̃(a
n

) to form

{Z̃
i

}N
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(n�N

s

+i)

� q̃(a
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)}N

s

i=1

where {"̂
(t)

}n

t=1

denotes the order statistics associated with
{"̂

t

}n

t=1

.



Estimation procedure

I {Z̃
i

}N

s

i=1

is used to obtain maximum likelihood estimators for �

and k based on g(z ;�, k) = 1

�

�
1� kz

�

�
1/k�1

. That is,
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N
s

N
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n

)

, k̃) = 0 (2)
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N
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i
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n

)

, k̃) = 0. (3)

I Based on Pickands approximation

F
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)

(y) =
F (y + q̃(a
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Estimation procedure

I For a 2 (a
n

, 1), q(a) = q̃(a
n

) + y
q̃(a

n

),a where by construction
F (q̃(a

n

) + y
q̃(a

n

),a) = a.
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.

I If F is estimated by F̃ , and noting that
1� F̃ (q̃(a

n

)) = 1� a
n

, we have

y
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Estimation procedure

I If "
t

� q(a) were distributed exactly as g(z ;�, k), then
integration by parts gives

E ("
t

|"
t

> q(a)) = q(a) +
�

1 + k

I If F 2 D(�↵) and restrictions are placed on how fast
x↵(1� F (x)) is slowly varying, it is easy to show that

E ("
t

|"
t

> q(a)) =
q(a)

1 + k
+ o(1)

This motivates the estimator

bE ("
t

|"
t

> q(a)) =
q̂(a)

1 + k̃
.



Assumptions

There are a number of regularity conditions.

I Assumption 1 deals with the properties of the three kernels
used in estimation. The order s for K

1

and K
2

are needed to
establish that the biases for m̂ and ĥ are, respectively, of order
O(hs

in

) for i = 1, 2 in Lemmas 2 and 3. The order m
1

for K
3

is
necessary in the proof of Lemma 4.

I Assumption 3 restricts m and h to be su�ciently smooth.

I Assumption A5 is necessary in Lemma 4 and is directly related
to the verification of existence of bounds required to use
Lemma A.2 in Gao (2007).



Assumptions

I Assumption 2 is important:
1) {(X

t

"
t

)T}
t=1,2,··· is a strictly stationary ↵-mixing process

with ↵(l)  C l�B for some B > 2;
2) The joint density of X

t

and "
t

is given by
f
X"(x, ") = f

X

(x)f (");
3) f

X

(x) and all of its partial derivatives of order < s are
di↵erentiable and uniformly bounded on Rd ;
4) 0 < inf

x2G
f
X

(x) and sup
x2G

f
X

(x)  C .

A2 1) implies that for some � > 2 and a > 1� 2

� ,
P1

j=1

ja↵(j)1�
2

� < 1, a fact that is needed in our proofs. We
note that ↵-mixing is the weakest of the mixing concepts
Doukhan (1994) and its use here is only possible due to
Lemma A.2 in Gao (2007), which plays a critical role in the
proof of Lemma 4.



Lemmata

Lemma 2: Assume that the kernel K
1

used to define m̂ satisfies
assumption A1 and assumptions A2 and A3 are holding. Assume
also that the bandwidth h

1n

used to define m̂ satisfies equations

n1� 2
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�2✓hd
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n(B+1.5)(
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+✓)�B
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�1.75d� d

2
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(log n)0.25+0.5(B�d) ! 0.

Then, if E (|"
t

|a) < 1, E (h1/2(X
t

)a) < 1 for some a > 2 and
condition c) in Lemma 1 is holding

sup
x2G

|m̂(x)�m(x)| = O
p

(L
1n

) , (4)

where L
1n

=
⇣

log n

nh

d

1n

⌘
1/2

+ hs

1n

.



Lemmata

Lemma 3: Assume that the kernel K
2

used to define ĥ satisfies
assumption A1 and assumptions A2 and A3 are holding. Assume
also that the bandwidth h

2n

used to define ĥ satisfies equations
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(log n)0.25+0.5(B�d) ! 0.

Then, under the assumptions in Lemma 2, if E (|"2
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� 1|a) < 1 and
E (h(X
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sup
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=
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=
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log n
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⌘
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.



Lemmata

Corollary: Under the assumptions of Lemma 3,

sup
x2G

|ĥ1/2(x)� h1/2(x)| = O
p

(L
1n

+ L
2n

)

and
sup
x2G

|�{ˆh(x)>0} � 1| = O
p

(L
1n

+ L
2n

) ,
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1n

=
⇣

log n

nh

d
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⌘
1/2
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and L
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=
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d
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⌘
1/2

+ hs

2n

.

I FR1’: Assume that for some ↵ > 0 we have
lim

x!1
xf (x)

1�F (x)
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Lemmata

Lemma 4: Under assumptions A1-A5 and conditions FR1’ and
FR2, if ↵ � 1 we have

N1/2

✓
q̃ (a
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)� q
n

(a
n
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q (a
n
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◆
= O
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2s
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�� for some � > 0 with s � 2d and b) E (|"2

t

� 1|a) < 1
and E (h(x)a) < 1 for some a > 2.



Theorem 1

Assume that FR1’ with ↵ > 1, FR2 and assumptions A1-A5 are

holding. In addition, assume that a) h
1n

/ n�
1

2s+d , h
2n

/ n�
1

2s+d ,

h
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s

2(2s+d)

+�, N / n
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�� for some � > 0 and s � 2d , b)
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� 1|a) < 1 and E (h(x)a) < 1 for some a > 2. Let
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2
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N
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N
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�
N
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0
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�
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define the log-likelihood function
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n

), a
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Comments on Theorem 1

I The vector (⌧⇤
1

, ⌧⇤
2

) implies a value �̃
q̃(a

n

)

and k̃ which are
solutions for the likelihood equations
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1

N
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sX

j=1

log g(Z̃
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; �̃
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)
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N
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log g(Z̃
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q̃(a
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)

, k̃) = 0.

I There exists, with probability approaching 1, a local maximum
(�̃

N

= �
N

(1 + t⇤�
N

), k̃ = k
0

+ ⌧⇤�
N

) on
S

R

= {(�, k) : k( �
�

N

� 1, k � k
0

)k < �
N

} that satisfy the first
order conditions

I Theorem 1 states that the solutions for the first order
conditions correspond to a local maximum of the likelihood
associated with the GPD in a shrinking neighborhood of the
arbitrary point (�

N

, k
0

).



Comments on Theorem 1

The proof of Theorem 1 depends critically on:

I

sup
x2G

|m̂(x)�m(x)| = O
p

(L
1n

) and sup
x2G

|ĥ(x)�h(x)| = O
p

(L
2n

) ,

where L
1n

=
⇣

log n

nh

d

1n

⌘
1/2

+ hs

1n

and L
2n

=
⇣

log n

nh

d

2n

⌘
1/2

+ hs
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.

I These orders are su�cient for

|"̂
t

� "
t

| = O
p

(L
1n

) + (O
p

(L
1n

) + O
p

(L
2n

))|"
t

|

uniformly in G.

I Lemma 4 shows that q̃(a
n

) is asymptotically close to q
n

(a
n

)

by satisfying q̃(a

n

)�q

n

(a

n

)

q

n

(a

n

)

= O
p

(N�1/2)

It is here that the stochasticity of the threshold (q̃) is handled
and FR1’, FR2 and ↵ > 1 is used.



Asymptotic normality of �̃0 = (�̃N , k̃) - Theorem 2

Suppose FR1’ with ↵ > 1, FR2, A1-A5 hold and that
C

↵�⇢N1/2�(q(a
n

)) ! µ 2 R. In addition, assume that conditions
a) and b) in Theorem 1 are holding. Then, the local maximum
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)

, k̃) of the GPD likelihood function, is such that for
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Comments on Theorem 1

I It is easy to show that H�1V
2

V�1 � H�1 is positive definite.

I Any additional bias resulting from the use of Z̃
i

is of second
order.

I The fact that Z̃
i

is not iid as Z
i

does not require the use of a
CLT for dependent processes as justified in Lemma 5.



Asymptotic normality of q̂(a) - Theorem 3

Suppose FR1’ with ↵ > 1, FR2, A1-A5 and C
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Asymptotic normality of Ê ("t |"t > q(a)) - Theorem 4
Suppose FR1’ with ↵ > 1, FR2, A1-A5 and C
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Consistency

Given Lemmas 2, 3, Theorems 3 and 4 we have that for all
a 2 (0, 1),

q̂
Y

t

|X
t

=x

(a) = m̂(x) + ĥ1/2(x)q̂(a)
p! m(x) + h1/2(x)q(a) = a-

CVaR(x)
and
Ê (Y
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> q
Y

t

|X
t

=x

(a)) = m̂(x) + ĥ1/2(x)Ê ("
t
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> q(a))
p!

m(x) + h1/2(x)E ("
t
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t

> q(a)) = a-CES(x).



Comments

I Estimation of q
Y |X=x

(a) when a is in the vicinity of 0 has
been considered by Chernozhukov (2005) when
q
Y |X=x

(a) = x�(a), �(a) 2 <d .

I He provides a complete asymptotic characterization of the
quantile regression estimator of �(a).

I Here q
Y |X=x

(a) is nonparametric, it is in this sense more
general than the one considered by Chernozhukov. a
approaches 1 at a speed that is slower then the sample size
(n(1� a) / N !1 in Theorem 2).

I Furthermore, similar to Smith (1987) and Hall (1982), our
proofs require the specification of the speed at which the tail
1� F (x) behaves asymptotically as a power function.
Theorem 1 specifies this speed to be proportional to

p
N.



Table 7 Backtest results for a�conditional Value-at-Risk (q) and expected

shortfall(E) on m� n = 500 observations, expected violations = (m� n)(1� a).
q: Number of violations and p-value (in brackets).

E: p-value for exceedance residuals to have zero mean.

q E
a = 0.95 a = 0.99 a = 0.995 a = 0.95 a = 0.99 a = 0.995

Expected violations

25 5 2.5
Maize 18 (.151) 5(1) 2(.751) 0 .161 .735
Rice 29(.412) 4(.653) 2(.751) 0 .081 .248

Soybean 21(.412) 3(.369) 2(.751) 0 .302 .244
Wheatcbot 30(.305) 6(.653) 2(.751) .001 .339 .273
Wheatkcbt 25(1) 5(1) 2(.751) 0 .082 .239

Figure 1: Plot of conditional value-at-risk (q) and expected shortfall (E) estimates evaluated at sample mean
across di↵erent a, with n = 1000, h1(Yt�1) = 1 + 0.01Y 2

t�1 + 0.5sin(Y
t�1), ✓ = 0 and student-t distributed

"
t

with v = 3. 1 : true q, 2 : q̂, 3 : q̇, 4 : true E, 5 : Ê, and 6 : Ė.
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