Nonparametric estimation of conditional Value-at-Risk and Expected Shortfall based on Extreme Value Theory

Carlos Martins-Filho, Feng Yao and Maximo Torero

University of Colorado and IFPRI, West Virginia University and IFPRI, IFPRI
University of Bonn - ZEF
Paper is at:
http://spot.colorado.edu/~martinsc/Research.html

Preliminaries

- Understanding and modeling price volatility
- Pushing the research frontier
- Identifying periods of excessive price volatility

In empirical finance there is often an interest in stochastic models for log returns

$$
Y_{t}=\log \frac{P_{t}}{P_{t-1}} \text { where } t \in\{0, \pm 1, \cdots\}
$$

Motivation

- $\left\{Y_{t}\right\}_{t \in \mathbb{Z}}$ be a stochastic process
- $F_{Y_{t} \mid \mathbf{x}_{t}=\mathbf{x}}, \mathbf{X}_{t} \in \mathbb{R}^{d}$.
- Normally, $\mathbf{X}_{t}^{\prime}=\left(\begin{array}{llll}Y_{t-1} & \cdots & Y_{t-m} & W_{t}^{\prime}\end{array}\right)$ for $m \in \mathbb{N}$.

For $a \in(0,1)$,

- a-CVaR($\mathbf{x})$ is the a-quantile associated with $F_{Y_{t} \mid \mathbf{X}_{t}=\mathbf{x}}$,
- $\operatorname{a-CES}(\mathbf{x})$ is the $E\left(Y_{t} \mid Y_{t}>a-\operatorname{CVaR}(\mathbf{x})\right)$.

These are frequently used as synthetic measures of risk by regulators, portfolio managers, etc.

How does Y_{t} evolve through time?

We consider the following conditional location-scale model

$$
Y_{t}=m\left(\mathbf{X}_{t}\right)+h^{1 / 2}\left(\mathbf{X}_{t}\right) \varepsilon_{t}, \text { where } t=1, \cdots, n
$$

- $m, h: \mathbb{R}^{d} \rightarrow \mathbb{R}$ are suitably restricted real valued functions
- $E\left(\varepsilon_{t} \mid \mathbf{X}_{t}=\mathbf{x}\right)=0$ and $V\left(\varepsilon_{t} \mid \mathbf{X}_{t}=\mathbf{x}\right)=1$
- ε_{t} has a strictly increasing absolutely continuous distribution F which belongs to the domain of attraction of an extremal distribution [Leadbetter (1983), Resnick (1987)].

A result of Gnedenko (1943)

- Let $\left\{X_{t}\right\}_{t \geq 1}$ be a sequence of iid random variables with distribution F and let $m_{n}=\max \left\{X_{1}, \cdots, X_{n}\right\}$. Then,

$$
P\left(m_{n} \leq x\right)=P\left(X_{t} \leq x, \forall t\right)=F(x)^{n}
$$

Suppose there exists $a_{n}>0, b_{n} \in \mathbb{R}$ such that as $n \rightarrow \infty$

$$
P\left(\frac{m_{n}-b_{n}}{a_{n}} \leq x\right)=F\left(a_{n} x+b_{n}\right)^{n} \rightarrow E(x)
$$

then $E(x)$ is either

1. $\Phi_{\alpha}(x)=e^{-x^{-\alpha}}$ for $x \geq 0$ (Fréchet)
2. $\Psi_{\alpha}(x)=e^{-(-x)^{\alpha}}$ for $x<0$ (reverse Weibull) and 1 for $x \geq 0$,
3. $\Lambda(x)=e^{-e^{-x}}$ for $x \in \mathbb{R}$ (Gumbel).

- There are F's that are not in the domain of attraction of E but they constitute rather pathological cases (Leadbetter et al., 1983).

Some restrictions of the location scale model

1. $\operatorname{AR}(\mathrm{m}), \operatorname{ARCH}(\mathrm{p}): \mathbf{X}_{t}=\left(\begin{array}{llll}1 & Y_{t-1} & \cdots & Y_{t-m}\end{array}\right)$
$m\left(\mathbf{X}_{t}\right)=\mathbf{X}_{t}^{\prime} \mathbf{b}$
$h\left(\mathbf{X}_{t}\right)=\left(\begin{array}{llll}1 & Y_{t-1}^{2} & \cdots & Y_{t-p}^{2}\end{array}\right) \mathbf{a}$
2. CHARN Model of Diebolt and Guègan (1993), Härdle and Tsybakov (1997), Hafner (1998).
$\mathbf{X}_{t}=\left(Y_{t-1}\right)$
$m\left(\mathbf{X}_{t}\right)=m\left(Y_{t-1}\right)$
$h\left(\mathbf{X}_{t}\right)=h\left(Y_{t-1}\right)$
3. Nonaparametric autoregression of Fan and Yao (1998, Biometrika)

CVaR and CES

For $a \in(0,1)$,

$$
a-\operatorname{CVaR}(\mathbf{x})=q_{Y_{t} \mid \mathbf{x}_{t}=\mathbf{x}}(a)=m(\mathbf{x})+h^{1 / 2}(\mathbf{x}) q(a)
$$

and
$a-\operatorname{CES}(\mathbf{x})=E\left(Y_{t} \mid Y_{t}>q_{Y_{t} \mid \mathbf{x}_{t}=\mathbf{x}}(a)\right)=m(\mathbf{x})+h^{1 / 2}(\mathbf{x}) E\left(\varepsilon_{t} \mid \varepsilon_{t}>q(a)\right)$
where $q(a)$ is the a-quantile associated with F.
The sequence $\left\{\varepsilon_{t}\right\}$ is not observed.
Motivation: McNeill and Frey (2000), Martins-Filho and Yao (2006).

Estimation

Given a sample $\left\{\left(Y_{t}, \mathbf{X}_{t}^{T}\right)\right\}_{t=1}^{n}$ and estimators $\hat{m}(\mathbf{x})$ and $\hat{h}(\mathbf{x})$ it is possible to obtain a sequence of standardized nonparametric residuals

$$
\hat{\varepsilon}_{t}=\frac{Y_{t}-\hat{m}\left(\mathbf{X}_{t}\right)}{\hat{h}^{1 / 2}\left(\mathbf{X}_{t}\right)} \chi_{\left\{\hat{h}\left(\mathbf{X}_{t}\right)>0\right\}} \text { for } t=1, \cdots, n
$$

These can be used to construct

$$
\begin{gathered}
\hat{q}_{Y \mid X_{i}=x}(a)=\hat{m}(\mathbf{x})+\hat{h}^{1 / 2}(\mathbf{x}) \hat{q}(a) \\
\hat{E}\left(Y_{t} \mid Y_{t}>q_{Y_{t} \mid \mathbf{x}_{t}=\mathbf{x}}(a)\right)=\hat{m}(\mathbf{x})+\hat{h}^{1 / 2}(\mathbf{x}) \hat{E}\left(\varepsilon_{t} \mid \varepsilon_{t}>q(a)\right)
\end{gathered}
$$

Pickands' result

- We are interested in the case where a is in the vicinity of 1.
- The restriction that a is in a neighborhood of 1 is useful in estimation. The result is due to Pickands (1975).
$F(x) \in D(E)$ if, and only if,

$$
\lim _{\xi \rightarrow u_{\infty}} \sup _{0<u<u_{\infty}-\xi}\left|F_{\xi}(u)-G(u ; 0, \sigma(\xi), k)\right|=0,
$$

where

- $F_{\xi}(u)=\frac{F(u+\xi)-F(\xi)}{1-F(\xi)}$,
- G is a generalized Pareto distribution (GPD), i.e.,

$$
\begin{aligned}
& G(y ; \mu, \sigma, k)=\left\{\begin{array}{cl}
1-(1-k(y-\mu) / \sigma)^{1 / k} & \text { if } k \neq 0, \sigma>0 \\
1-\exp (-(y-\mu) / \sigma) & \text { if } k=0, \sigma>0
\end{array}\right. \\
& \text { with } \mu \leq y<\infty \text { if } k \leq 0, \mu \leq y \leq \mu+\sigma / k \text { if } k>0
\end{aligned}
$$

A restriction on F

- Index of regular variation: If for $x>0, \lim _{t \rightarrow \infty} \frac{1-F(t x)}{1-F(t)}=x^{\alpha}$ we say that $1-F$ is regularly varying at ∞ with index α.If $\alpha=0$ we say that $1-F$ is slowly varying at ∞.
- $F \in \Phi_{\alpha}(x) \Leftrightarrow \lim _{t \rightarrow \infty} \frac{1-F(t x)}{1-F(t)}=x^{-\alpha} \Leftrightarrow x^{\alpha}(1-F(x))$ is slowly varying at ∞.
- If $F \in D\left(\Psi_{\alpha}\right)$ its endpoint u_{∞} is finite.
- If $F \in D(\Lambda)$ and its endpoint u_{∞} is not finite, $1-F$ is rapidly varying, a situation we will (must?) avoid.
- If F belongs to the domain of attraction of a Fréchet distribution $\left(\Phi_{\alpha}\right)$ with parameter α, then $k=-\frac{1}{\alpha}$ and $\sigma(\xi)=\xi / \alpha$.
- An estimator for $q(a)$ can be obtained from the estimation of the parameters k and $\sigma(\xi)$.

Estimation procedure

First stage: a) We consider the local linear (LL) estimator $\hat{m}(\mathbf{x}) \equiv \hat{\beta}_{0}$ where

$$
\left(\hat{\beta}_{0}, \hat{\beta}\right) \equiv \underset{\beta_{0}, \beta}{\operatorname{argmin}} \sum_{t=1}^{n}\left(Y_{t}-\beta_{0}-\left(\mathbf{X}_{t}^{T}-\mathbf{x}^{T}\right) \beta\right)^{2} K_{1}\left(\frac{\mathbf{X}_{t}-\mathbf{x}}{h_{1 n}}\right)
$$

$K_{1}(\cdot)$ is a multivariate kernel function and $h_{1 n}>0$ is a bandwidth.
b) We obtain $\left\{\hat{U}_{t} \equiv Y_{t}-\hat{m}\left(\mathbf{X}_{t}\right)\right\}_{t=1}^{n}$ and define $\hat{h}(\mathbf{x}) \equiv \hat{\eta}$ where
$\left(\hat{\eta}, \hat{\eta}_{1}\right) \equiv \underset{\eta, \eta_{1}}{\operatorname{argmin}} \sum_{t=1}^{n}\left(\hat{U}_{t}^{2}-\eta-\left(\mathbf{X}_{t}^{T}-\mathbf{x}^{T}\right) \eta_{1}\right)^{2} K_{2}\left(\frac{\mathbf{x}_{t}-\mathbf{x}}{h_{2 n}}\right)$,
$K_{2}(\cdot)$ is a multivariate kernel function and $h_{2 n}>0$ is a bandwidth.

Estimation procedure

Second stage:

- We use $\left\{\hat{\varepsilon}_{t}\right\}_{t=1}^{n}$ to estimate F as

$$
\begin{equation*}
\tilde{F}(u)=\frac{1}{n h_{3 n}} \sum_{t=1}^{n} \int_{-\infty}^{u} K_{3}\left(\frac{\hat{\varepsilon}_{t}-y}{h_{3 n}}\right) d y \tag{1}
\end{equation*}
$$

where $K_{3}(\cdot)$ is a univariate kernel and $h_{3 n}>0$ is a bandwidth.

- Let $\tilde{q}(a)$ be the solution for $\tilde{F}(\tilde{q}(a))=a$. Letting
$0<a_{n}<a<1$ be such that $a_{n} \rightarrow 1$ as $n \rightarrow \infty$ we use N_{s} residuals that exceed $\tilde{q}\left(a_{n}\right)$ to form

$$
\left\{\tilde{Z}_{i}\right\}_{i=1}^{N_{s}}=\left\{\hat{\varepsilon}_{\left(n-N_{s}+i\right)}-\tilde{q}\left(a_{n}\right)\right\}_{i=1}^{N_{s}}
$$

where $\left\{\hat{\varepsilon}_{(t)}\right\}_{t=1}^{n}$ denotes the order statistics associated with $\left\{\hat{\varepsilon}_{t}\right\}_{t=1}^{n}$.

Estimation procedure

- $\left\{\tilde{Z}_{i}\right\}_{i=1}^{N_{s}}$ is used to obtain maximum likelihood estimators for σ and k based on $g(z ; \sigma, k)=\frac{1}{\sigma}\left(1-\frac{k z}{\sigma}\right)^{1 / k-1}$. That is,

$$
\begin{align*}
& \frac{\partial}{\partial \sigma} \frac{1}{N_{s}} \sum_{i=1}^{N_{s}} \log g\left(\tilde{Z}_{i} ; \tilde{\sigma}_{\tilde{q}\left(a_{n}\right)}, \tilde{k}\right)=0 \tag{2}\\
& \frac{\partial}{\partial k} \frac{1}{N_{s}} \sum_{i=1}^{N_{s}} \log g\left(\tilde{Z}_{i} ; \tilde{\sigma}_{\tilde{q}\left(a_{n}\right)}, \tilde{k}\right)=0 \tag{3}
\end{align*}
$$

- Based on Pickands approximation

$$
F_{\tilde{q}\left(a_{n}\right)}(y)=\frac{F\left(y+\tilde{q}\left(a_{n}\right)\right)-F\left(\tilde{q}\left(a_{n}\right)\right)}{1-F\left(\tilde{q}\left(a_{n}\right)\right)} \approx 1-\left(1-\frac{k y}{\sigma_{\tilde{q}\left(a_{n}\right)}}\right)^{1 / k}
$$

Estimation procedure

- For $a \in\left(a_{n}, 1\right), q(a)=\tilde{q}\left(a_{n}\right)+y_{\tilde{q}\left(a_{n}\right), a}$ where by construction $F\left(\tilde{q}\left(a_{n}\right)+y_{\tilde{q}\left(a_{n}\right), a}\right)=a$.
Then,

$$
\frac{1-a}{1-F\left(\tilde{q}\left(a_{n}\right)\right)} \approx\left(1-\frac{k y_{\tilde{q}\left(a_{n}\right), a}}{\sigma_{\tilde{q}\left(a_{n}\right)}}\right)^{1 / k}
$$

- If F is estimated by \tilde{F}, and noting that $1-\tilde{F}\left(\tilde{q}\left(a_{n}\right)\right)=1-a_{n}$, we have

$$
y_{\tilde{q}\left(a_{n}\right), a} \approx \frac{\sigma_{\tilde{q}\left(a_{n}\right)}}{k}\left(1-\left(\frac{1-a}{1-a_{n}}\right)^{k}\right) .
$$

- Thus,

$$
\hat{q}(a)=\tilde{q}\left(a_{n}\right)+\frac{\tilde{\sigma}_{\tilde{q}\left(a_{n}\right)}}{\tilde{k}}\left(1-\left(\frac{1-a}{1-a_{n}}\right)^{\tilde{k}}\right) .
$$

Estimation procedure

- If $\varepsilon_{t}-q(a)$ were distributed exactly as $g(z ; \sigma, k)$, then integration by parts gives

$$
E\left(\varepsilon_{t} \mid \varepsilon_{t}>q(a)\right)=q(a)+\frac{\sigma}{1+k}
$$

- If $F \in D\left(\Phi_{\alpha}\right)$ and restrictions are placed on how fast $x^{\alpha}(1-F(x))$ is slowly varying, it is easy to show that

$$
E\left(\varepsilon_{t} \mid \varepsilon_{t}>q(a)\right)=\frac{q(a)}{1+k}+o(1)
$$

This motivates the estimator

$$
\widehat{E}\left(\varepsilon_{t} \mid \varepsilon_{t}>q(a)\right)=\frac{\hat{q}(a)}{1+\tilde{k}} .
$$

Assumptions

There are a number of regularity conditions.

- Assumption 1 deals with the properties of the three kernels used in estimation. The order s for K_{1} and K_{2} are needed to establish that the biases for \hat{m} and \hat{h} are, respectively, of order $O\left(h_{i n}^{s}\right)$ for $i=1,2$ in Lemmas 2 and 3. The order m_{1} for K_{3} is necessary in the proof of Lemma 4.
- Assumption 3 restricts m and h to be sufficiently smooth.
- Assumption A5 is necessary in Lemma 4 and is directly related to the verification of existence of bounds required to use Lemma A. 2 in Gao (2007).

Assumptions

- Assumption 2 is important:

1) $\left\{\left(\mathbf{X}_{t} \varepsilon_{t}\right)^{T}\right\}_{t=1,2, \ldots}$ is a strictly stationary α-mixing process
with $\alpha(I) \leq C I^{-B}$ for some $B>2$;
2) The joint density of \boldsymbol{X}_{t} and ε_{t} is given by
$f_{\mathbf{X} \varepsilon}(\mathbf{x}, \varepsilon)=f_{\mathbf{X}}(\mathbf{x}) f(\varepsilon)$;
3) $f_{X}(x)$ and all of its partial derivatives of order $<s$ are differentiable and uniformly bounded on \mathbb{R}^{d};
4) $0<\inf _{\mathbf{x} \in \mathcal{G}} f_{\mathbf{X}}(\mathbf{x})$ and $\sup _{\mathbf{x} \in \mathcal{G}} f_{\mathbf{X}}(\mathbf{x}) \leq C$.

A2 1) implies that for some $\delta>2$ and $a>1-\frac{2}{\delta}$,
$\sum_{j=1}^{\infty} j^{a} \alpha(j)^{1-\frac{2}{\delta}}<\infty$, a fact that is needed in our proofs. We note that α-mixing is the weakest of the mixing concepts Doukhan (1994) and its use here is only possible due to Lemma A. 2 in Gao (2007), which plays a critical role in the proof of Lemma 4.

Lemmata

Lemma 2: Assume that the kernel K_{1} used to define \hat{m} satisfies assumption A 1 and assumptions A 2 and A 3 are holding. Assume also that the bandwidth $h_{1 n}$ used to define \hat{m} satisfies equations

$$
n^{1-\frac{2}{a}-2 \theta} h_{n}^{d} \rightarrow \infty
$$

and

$$
n^{(B+1.5)\left(\frac{1}{a}+\theta\right)-\frac{B}{2}+0.75+\frac{d}{2}} h_{n}^{-1.75 d-\frac{d}{2}(d+B)}(\log n)^{0.25+0.5(B-d)} \rightarrow 0
$$

Then, if $E\left(\left|\varepsilon_{t}\right|^{a}\right)<\infty, E\left(h^{1 / 2}\left(\mathbf{X}_{t}\right)^{a}\right)<\infty$ for some $a>2$ and condition c) in Lemma 1 is holding

$$
\begin{equation*}
\sup _{\mathbf{x} \in \mathcal{G}}|\hat{m}(\mathbf{x})-m(\mathbf{x})|=O_{p}\left(L_{1 n}\right) \tag{4}
\end{equation*}
$$

where $L_{1 n}=\left(\frac{\log n}{n h_{1 n}^{d}}\right)^{1 / 2}+h_{1 n}^{s}$.

Lemmata

Lemma 3: Assume that the kernel K_{2} used to define \hat{h} satisfies assumption A1 and assumptions A2 and A3 are holding. Assume also that the bandwidth $h_{2 n}$ used to define \hat{h} satisfies equations

$$
n^{1-\frac{2}{a}-2 \theta} h_{n}^{d} \rightarrow \infty
$$

and

$$
n^{(B+1.5)\left(\frac{1}{a}+\theta\right)-\frac{B}{2}+0.75+\frac{d}{2}} h_{n}^{-1.75 d-\frac{d}{2}(d+B)}(\log n)^{0.25+0.5(B-d)} \rightarrow 0
$$

Then, under the assumptions in Lemma 2, if $E\left(\left|\varepsilon_{t}^{2}-1\right|^{a}\right)<\infty$ and $E\left(h\left(\mathbf{X}_{t}\right)^{a}\right)<\infty$ for some $a>2$,

$$
\begin{equation*}
\sup _{\mathbf{x} \in \mathcal{G}}|\hat{h}(\mathbf{x})-h(\mathbf{x})|=O_{p}\left(L_{1 n}+L_{2 n}\right), \tag{5}
\end{equation*}
$$

where $L_{1 n}=\left(\frac{\log n}{n n_{1 n}^{d}}\right)^{1 / 2}+h_{1 n}^{s}$ and $L_{2 n}=\left(\frac{\log n}{n h_{2 n}^{d}}\right)^{1 / 2}+h_{2 n}^{s}$.

Lemmata

Corollary: Under the assumptions of Lemma 3,

$$
\sup _{\mathbf{x} \in \mathcal{G}}\left|\hat{h}^{1 / 2}(\mathbf{x})-h^{1 / 2}(\mathbf{x})\right|=O_{p}\left(L_{1 n}+L_{2 n}\right)
$$

and

$$
\sup _{\mathbf{x} \in \mathcal{G}}\left|\chi_{\{\hat{h}(\mathbf{x})>0\}}-1\right|=O_{p}\left(L_{1 n}+L_{2 n}\right)
$$

where $L_{1 n}=\left(\frac{\log n}{n h_{1 n}^{d}}\right)^{1 / 2}+h_{1 n}^{s}$ and $L_{2 n}=\left(\frac{\log n}{n h_{2 n}^{d}}\right)^{1 / 2}+h_{2 n}^{s}$.

- FR1': Assume that for some $\alpha>0$ we have $\lim _{x \rightarrow \infty} \frac{x f(x)}{1-F(x)}=\alpha$.

Lemmata

Lemma 4: Under assumptions A1-A5 and conditions FR1' and FR2, if $\alpha \geq 1$ we have

$$
N^{1 / 2}\left(\frac{\tilde{q}\left(a_{n}\right)-q_{n}\left(a_{n}\right)}{q\left(a_{n}\right)}\right)=O_{p}(1), \text { where } a_{n}=1-\frac{N}{n} .
$$

provided that a) $h_{1 n} \propto n^{-\frac{1}{2 s+d}}, h_{2 n} \propto n^{-\frac{1}{2 s+d}}, h_{3 n} \propto n^{-\frac{s}{2(2 s+d)}+\delta}$, $N \propto n^{\frac{2 s}{2 s+d}-\delta}$ for some $\delta>0$ with $s \geq 2 d$ and b) $E\left(\left|\varepsilon_{t}^{2}-1\right|^{a}\right)<\infty$ and $E\left(h(\mathbf{x})^{a}\right)<\infty$ for some $a>2$.

Theorem 1

Assume that FR1' with $\alpha>1$, FR2 and assumptions A1-A5 are holding. In addition, assume that a) $h_{1 n} \propto n^{-\frac{1}{2 s+d}}, h_{2 n} \propto n^{-\frac{1}{2 s+d}}$, $h_{3 n} \propto n^{-\frac{s}{2(2 s+d)}+\delta}, N \propto n^{\frac{2 s}{2 s+d}-\delta}$ for some $\delta>0$ and $s \geq 2 d$, b) $E\left(\left|\varepsilon_{t}^{2}-1\right|^{a}\right)<\infty$ and $E\left(h(\mathbf{x})^{a}\right)<\infty$ for some $a>2$. Let $\tau_{1}, \tau_{2} \in \mathbb{R}, 0<\delta_{N} \rightarrow 0, \delta_{N} N^{1 / 2} \rightarrow \infty$ as $N \rightarrow \infty$ and denote arbitrary σ and k by $\sigma=\sigma_{N}\left(1+\tau_{1} \delta_{N}\right)$ and $k=k_{0}+\tau_{2} \delta_{N}$. We define the log-likelihood function

$$
\tilde{L}_{T N}\left(\tau_{1}, \tau_{2}\right)=\frac{1}{N} \sum_{i=1}^{N_{s}} \log g\left(\tilde{Z}_{i} ; \sigma_{N}\left(1+\tau_{1} \delta_{N}\right), k_{0}+\tau_{2} \delta_{N}\right)
$$

where $\tilde{Z}_{i}=\hat{\varepsilon}_{\left(n-N_{s}+i\right)}-\tilde{q}\left(a_{n}\right), a_{n}=1-\frac{N}{n}$. Then, as $n \rightarrow \infty$, $\frac{1}{\delta_{N}^{2}} \tilde{L}_{T N}\left(\tau_{1}, \tau_{2}\right)$ has, with probability approaching 1 , a local maximum $\left(\tau_{1}^{*}, \tau_{2}^{*}\right)$ on $S_{T}=\left\{\left(\tau_{1}, \tau_{2}\right): \tau_{1}^{2}+\tau_{2}^{2}<1\right\}$ at which $\frac{1}{\delta_{N}^{2}} \frac{\partial}{\partial \tau_{1}} \tilde{L}_{T N}\left(\tau_{1}^{*}, \tau_{2}^{*}\right)=0$ and $\frac{1}{\delta_{N}^{2}} \frac{\partial}{\partial \tau_{2}} \tilde{L}_{T N}\left(\tau_{1}^{*}, \tau_{2}^{*}\right)=0$.

Comments on Theorem 1

- The vector $\left(\tau_{1}^{*}, \tau_{2}^{*}\right)$ implies a value $\tilde{\sigma}_{\tilde{q}\left(a_{n}\right)}$ and \tilde{k} which are solutions for the likelihood equations

$$
\frac{\partial}{\partial \sigma} \frac{1}{N} \sum_{j=1}^{N_{s}} \log g\left(\tilde{Z}_{j} ; \tilde{\sigma}_{\tilde{q}\left(a_{n}\right)}, \tilde{k}\right)=0, \frac{\partial}{\partial k} \frac{1}{N} \sum_{j=1}^{N_{s}} \log g\left(\tilde{Z}_{j} ; \tilde{\sigma}_{\tilde{q}\left(a_{n}\right)}, \tilde{k}\right)=0
$$

- There exists, with probability approaching 1 , a local maximum $\left(\tilde{\sigma}_{N}=\sigma_{N}\left(1+t^{*} \delta_{N}\right), \tilde{k}=k_{0}+\tau^{*} \delta_{N}\right)$ on $S_{R}=\left\{(\sigma, k):\left\|\left(\frac{\sigma}{\sigma_{N}}-1, k-k_{0}\right)\right\|<\delta_{N}\right\}$ that satisfy the first order conditions
- Theorem 1 states that the solutions for the first order conditions correspond to a local maximum of the likelihood associated with the GPD in a shrinking neighborhood of the arbitrary point $\left(\sigma_{N}, k_{0}\right)$.

Comments on Theorem 1

The proof of Theorem 1 depends critically on:

$$
\sup |\hat{m}(\mathbf{x})-m(\mathbf{x})|=O_{p}\left(L_{1 n}\right) \text { and } \sup |\hat{h}(\mathbf{x})-h(\mathbf{x})|=O_{p}\left(L_{2 n}\right),
$$

$$
\mathbf{x} \in \mathcal{G}
$$

$$
\mathbf{x} \in \mathcal{G}
$$

where $L_{1 n}=\left(\frac{\log n}{n n_{1 n}^{d}}\right)^{1 / 2}+h_{1 n}^{s}$ and $L_{2 n}=\left(\frac{\log n}{n h_{2 n}^{d}}\right)^{1 / 2}+h_{2 n}^{s}$.

- These orders are sufficient for

$$
\left|\hat{\varepsilon}_{t}-\varepsilon_{t}\right|=O_{p}\left(L_{1 n}\right)+\left(O_{p}\left(L_{1 n}\right)+O_{p}\left(L_{2 n}\right)\right)\left|\varepsilon_{t}\right|
$$

uniformly in \mathcal{G}.

- Lemma 4 shows that $\tilde{q}\left(a_{n}\right)$ is asymptotically close to $q_{n}\left(a_{n}\right)$ by satisfying $\frac{\tilde{q}\left(a_{n}\right)-q_{n}\left(a_{n}\right)}{q_{n}\left(a_{n}\right)}=O_{p}\left(N^{-1 / 2}\right)$

It is here that the stochasticity of the threshold (\tilde{q}) is handled and FR1', FR2 and $\alpha>1$ is used.

Asymptotic normality of $\tilde{\gamma}^{\prime}=\left(\tilde{\sigma}_{N}, \tilde{k}\right)$ - Theorem 2

Suppose FR1' with $\alpha>1$, FR2, A1-A5 hold and that $\frac{C}{\alpha-\rho} N^{1 / 2} \phi\left(q\left(a_{n}\right)\right) \rightarrow \mu \in \mathbb{R}$. In addition, assume that conditions a) and b) in Theorem 1 are holding. Then, the local maximum $\left(\tilde{\sigma}_{\tilde{q}\left(a_{n}\right)}, \tilde{k}\right)$ of the GPD likelihood function, is such that for $k_{0}=-\frac{1}{\alpha}$ and $\sigma_{N}=\frac{q\left(a_{n}\right)}{\alpha}$

$$
\sqrt{N}\binom{\frac{\tilde{\sigma}_{\tilde{q}\left(a_{n}\right)}}{\sigma_{N}}-1}{\tilde{k}-k_{0}} \xrightarrow{d} N\left(\binom{\frac{\mu\left(1-k_{0}\right)\left(1+2 k_{0} \rho\right)}{1-k_{0}+k_{0} \rho}}{\frac{\mu\left(1-k_{0} k_{0}(1+\rho)\right.}{1-k_{0}+k_{0} \rho}}, H^{-1} V_{2} H^{-1}\right)
$$

where $V_{2}=\left(\begin{array}{cc}\frac{k_{0}^{2}-4 k_{0}+2}{\left(2 k_{0}-1\right)^{2}} & \frac{-1}{k_{0}\left(k_{0}-1\right)} \\ \frac{-1}{k_{0}\left(k_{0}-1\right)} & \frac{2 k_{0}^{3}-2 k_{0}^{2} 2 k_{0}-1}{k_{0}^{2}\left(k_{0}-1\right)^{2}\left(2 k_{0}-1\right)}\end{array}\right)$.

Comments on Theorem 1

- It is easy to show that $H^{-1} V_{2} V^{-1}-H^{-1}$ is positive definite.
- Any additional bias resulting from the use of \tilde{Z}_{i} is of second order.
- The fact that \tilde{Z}_{i} is not iid as Z_{i} does not require the use of a CLT for dependent processes as justified in Lemma 5.

Asymptotic normality of $\hat{q}(a)$ - Theorem 3

Suppose FR1' with $\alpha>1$, FR2, A1-A5 and $\frac{C}{\alpha-\rho} N^{1 / 2} \phi\left(q\left(a_{n}\right)\right) \rightarrow \mu$ with $k_{0}=-\frac{1}{\alpha}$ and $\sigma_{N}=q\left(a_{n}\right) / \alpha$. In addition, assume that conditions a) and b) in Theorem 1 are holding. Then, if $n(1-a) \propto N$, for some $z_{a}>0$

$$
\sqrt{n(1-a)}\left(\frac{\hat{q}(a)}{q(a)}-1\right) \xrightarrow{d}
$$

$$
\begin{gathered}
N\left(\left(-k_{0}\right)\left(-\frac{\left(z_{a}^{\rho}-1\right) \mu(\alpha-\rho)}{\rho}-c_{b}^{T} H^{-1} \lim _{n \rightarrow \infty} \sqrt{N}\binom{b_{\sigma}}{b_{k}}\right)\right. \\
\left.k_{0}^{2}\left(c_{b}^{T} H^{-1} V_{2} H^{-1} c_{b}+2 c_{b}^{T}\binom{2-k_{0}}{1-k_{0}}+1\right)\right)
\end{gathered}
$$

where $c_{b}^{T}=\left(-k_{0}^{-1}\left(z_{a}^{-1}-1\right) \quad k_{0}^{-2} \log \left(z_{a}\right)+k_{0}^{-2}\left(z_{a}^{-1}-1\right)\right)$, $b_{\sigma}=E\left(\frac{\partial}{\partial \sigma} \log g\left(Z_{i} ; \sigma_{N}, k_{0}\right) \sigma_{N}\right)$ and $b_{k}=E\left(\frac{\partial}{\partial k} \log g\left(Z_{i} ; \sigma_{N}, k_{0}\right)\right)$.

Asymptotic normality of $\hat{E}\left(\varepsilon_{t} \mid \varepsilon_{t}>q(a)\right)$ - Theorem 4

Suppose FR1' with $\alpha>1$, FR2, A1-A5 and $\frac{C}{\alpha-\rho} N^{1 / 2} \phi\left(q\left(a_{n}\right)\right) \rightarrow \mu$ with $k_{0}=-\frac{1}{\alpha}$ and $\sigma_{N}=q\left(a_{n}\right) / \alpha$. In addition, assume that conditions a) and b) in Theorem 1 are holding. Then, if $n(1-a) \propto N$, for some $z_{a}>0$

$$
\begin{gathered}
\sqrt{n(1-a)}\left(\frac{\hat{E}\left(\varepsilon_{t} \mid \varepsilon_{t}>q(a)\right)}{\frac{q(a)}{1+k_{0}}}-1\right) \xrightarrow{d} \\
N\left(k_{0} \frac{\left(z_{a}^{\rho}-1\right) \mu(\alpha-\rho)}{\rho}+k_{0} c_{b}^{T} H^{-1} \lim _{n \rightarrow \infty} \sqrt{N}\binom{b_{\sigma}}{b_{k}}\right. \\
\left.-\frac{1}{1+k_{0}} \lim _{n \rightarrow \infty} \sqrt{N}\left(\begin{array}{ll}
0 & 1
\end{array}\right) H^{-1}\binom{b_{\sigma}}{b_{k}}, \Sigma\right),
\end{gathered}
$$

where c_{b}, b_{σ}, b_{k} are as defined in Theorem 3,

$$
\begin{gathered}
\Sigma=k_{0}^{2}\left(c_{b}^{T} H^{-1} V_{2} H^{-1} c_{b}+\right. \\
\left.2 c_{b}^{T}\binom{2-k_{0}}{1-k_{0}}+1\right)+2 \frac{k_{0}}{1+k_{0}} \eta^{T} V_{3} \theta+\frac{1}{\left(1+k_{0}\right)^{2}} \theta^{T} V_{1} \theta
\end{gathered}
$$

with

$$
\begin{gathered}
\eta^{T}=\left(\begin{array}{cc}
-c_{b}^{T} H^{-1} & -c_{b}^{T} H^{-1}\binom{b_{\sigma}}{b_{k}} \\
\theta^{T}=\left(\begin{array}{cc}
\left(\begin{array}{ll}
0 & 1
\end{array}\right) H^{-1} & \left(\begin{array}{ll}
0 & 1
\end{array}\right) H^{-1}\binom{b_{1}}{b_{2}}
\end{array}\right) \\
V_{3}=\left(\begin{array}{cccc}
\frac{1}{1-2 k_{0}} & -\frac{1}{\left(k_{0}-1\right)\left(2 k_{0}-1\right)} & 0 & 0 \\
-\frac{2}{\left(k_{0}-1\right)\left(2 k_{0}-1\right)} & 0 & 0 \\
0 & 0 & k_{0}^{2} & -k_{0} \\
0 & 0 & -k_{0} & 1
\end{array}\right),
\end{array},\right.
\end{gathered}
$$

$$
b_{1}=\frac{1-k_{0}}{k_{0}\left(2 k_{0}-1\right)} \text { and } b_{2}=\frac{1}{k_{0}^{2}}\left(\frac{k_{0}-1}{2 k_{0}-1}-\frac{1}{k_{0}-1}\right) .
$$

Consistency

Given Lemmas 2, 3, Theorems 3 and 4 we have that for all $a \in(0,1)$,
$\hat{q}_{Y_{t} \mid \mathbf{X}_{t}=\mathbf{x}}(a)=\hat{m}(\mathbf{x})+\hat{h}^{1 / 2}(\mathbf{x}) \hat{q}(a) \xrightarrow{p} m(\mathbf{x})+h^{1 / 2}(\mathbf{x}) q(a)=a-$ CVaR(x)
and
$\hat{E}\left(Y_{t} \mid Y_{t}>q_{Y_{t} \mid \mathbf{X}_{t}=\mathbf{x}}(a)\right)=\hat{m}(\mathbf{x})+\hat{h}^{1 / 2}(\mathbf{x}) \hat{E}\left(\varepsilon_{t} \mid \varepsilon_{t}>q(a)\right) \xrightarrow{p}$ $m(\mathbf{x})+h^{1 / 2}(\mathbf{x}) E\left(\varepsilon_{t} \mid \varepsilon_{t}>q(a)\right)=a-\operatorname{CES}(\mathbf{x})$.

Comments

- Estimation of $q_{Y \mid X=x}(a)$ when a is in the vicinity of 0 has been considered by Chernozhukov (2005) when $q_{Y \mid X=x}(a)=x \beta(a), \beta(a) \in \Re^{d}$.
- He provides a complete asymptotic characterization of the quantile regression estimator of $\beta(a)$.
- Here $q_{Y \mid X=x}(a)$ is nonparametric, it is in this sense more general than the one considered by Chernozhukov. a approaches 1 at a speed that is slower then the sample size $(n(1-a) \propto N \rightarrow \infty$ in Theorem 2).
- Furthermore, similar to Smith (1987) and Hall (1982), our proofs require the specification of the speed at which the tail $1-F(x)$ behaves asymptotically as a power function. Theorem 1 specifies this speed to be proportional to \sqrt{N}.

Figure 1: Plot of conditional value-at-risk (q) and expected shortfall (E) estimates evaluated at sample mean across different a, with $n=1000, h_{1}\left(Y_{t-1}\right)=1+0.01 Y_{t-1}^{2}+0.5 \sin \left(Y_{t-1}\right), \theta=0$ and student-t distributed ε_{t} with $v=3.1:$ true $q, 2: \hat{q}, 3: \dot{q}, 4:$ true $E, 5: \hat{E}$, and $6: \dot{E}$.

