

Global biomass flows driven by the bioeconomy and their land footprint and biodiversity impacts

Martin Bruckner, ICABR Conference, 18.06.2015 Günther Fischer (IIASA), Mark Huijbregts (RU), Henrique Pereira (idiv), Karlheinz Erb (SEC)

Hybrid Biomass Accounting Model LANDFLOW + EXIOBASE

LANDFLOW

Global biomass flow accounting model

Based on FAO Commodity Balances

[1				
Supply		Utilization					
Domestic production		Food		Proces	cessed product		
			1 '				
		Feed		Supply		Utilization	
Imports		Food	TCF	Domestic		Food	
		processing	 	production		Feed	
		Seed				Food	
		Waste	1	Imports		processing	
Stock changes		Othorusos				Waste	
		Otheruses		Stock		Other uses	
		Exports		changes		Exports	

Primary product

• EXIOBASE 3

Multi-regional input-output (MRIO) model

Processing `other uses' only

Land and biodiversity footprint

Land footprint:

direct model output based on national yields from FAOSTAT

Biodiversity footprint:

Aggregate **extinction risk potential** (ERP) for 148 carnivorous mammals calculated for 16 land use sectors and 46 regions.

The ERP assessment is based on **Population Viability Analysis**, which assesses the extinction risk of a species based on a limited number of wildlife demographic parameters, such as diet group and body size.

Results – Land use

Global land use for the production of crop-based nonfood biomass, per crop

in 1000 ha

Note: In 2010 the required land amounts to 10% of globally available cropland.

EQUIS

Results – Land use

Global land use for the production of crop-based nonfood biomass, per region

in 1000 ha

Results – Land use

From production to consumption, in 1000 ha in 1995 and 2010 (lighter/darker bars)

Note: 20% of the EU's cropland necessary to satisfy consumption!

Results – Biodiversity

EOUIS

ACCREDITED

Extinction risk potential (ERP) due to **EU consumption** of crop-based non-food biomass, in %

Results – Biodiversity

ERP in **Indonesia** due to **EU consumption** of crop-based nonfood biomass in 2010

Results – Biodiversity

biomass in 2010

WIRTSCHAFTS UNIVERSITÄT WIEN VIENNA UNIVERSITY OF ECONOMICS AND BUSINESS

Next steps

Commodities:

Include animal and forestry products into the analysis

Regions: Higher regional detail for

RoAfrica & RoAsia

Indicators:

- Loss of bird species related with the production of nonfood biomass
- Deforestation footprint

Scenario analysis: Potential impacts of future bioeconomy scenarios

EQUIS

Questions welcome!

Martin Bruckner

Vienna University of Economics and Business Institute for Ecological Economics <u>martin.bruckner@wu.ac.at</u>

Multi-regional input-output table

			Country 1			Country 2			Final demand (<i>y</i>)	
		Agriculture (<i>z_{i1}</i>)	Industry (<i>z_{i2}</i>)	Services (<i>z_{i3}</i>)	Agriculture (<i>z_{i1}</i>)	Industry (<i>z_{i2}</i>)	Services (<i>z_{i3}</i>)	C1	C2	output (X)
Country 1	Agriculture (z_{1j})									Σ
	Industry (<i>z_{2j}</i>)									Σ
	Services (<i>z_{3j}</i>)									Σ
Country 2	Agriculture (<i>z_{1j}</i>)									Σ
	Industry (<i>z_{2j}</i>)									Σ
	Services (<i>z₃₎</i>)									Σ

Domestic economy

International trade

