

Green development and oil palm in Indonesia: Observations from East Kalimantan

Krystof Obidzinski and Pablo Pacheco

Contents

- 1. Context
 - Oil palm in Indonesia
 - Deforestation and CO₂ emissions
 - Green development concept(s)
 - Policy "mix" in Indonesia
- 2. East Kalimantan province
 - Oil palm in East Kalimantan
 - Scenarios for oil palm development
 - Trade-offs
- 3. Conclusions

Oil palm in Indonesia

Planted area and CPO production

Factors shaping the current trend of oil palm development

- Economic oil palm contributes to generate state revenues, employment, and profits are comparatively higher
- Institutional tenure regulations facilitate allocation of permits in forested lands, very weak law enforcement
- Political oil palm permits seen as a source of economic rent, institutional disconnect among different levels of government, influence of private sector

Green development concept(s)

- Largely a hypothetical win-win for economic growth and mitigation/reduction of environmental externalities
- Assumes green technologies can sustain profits and economic development while environmentally neutral
- Driven largely by the private sector, as the main actor leading adoption of improved practices and technologies
- The role of government still key in providing an enabling environment and incentives to favor the transition
- Debates on "hybrid" governance schemes involving public and private regulations and arrangements
- The challenge: translating green development into practice in a way that result in socio-environmental benefits

Green development policy "mix"

- Intended Nationally Determined Contribution (INDC) – 26% CO₂ reduction by 2020
- Indonesia Climate Change Trust Fund
- Plans for GHG emissions reduction
 - RAN-GRK (national)
 - RAD-GRK (province)
 - SRAK (district)
- NAMAs Financing Support Program
- Moratorium [since 2011]
- Sustainable palm oil standards (ISPO)+
- Palm oil Certification (RSPO)
- Zero-deforestation commitments

Moratorium – an example of green development policy

Oil Palm Concessions

Lands under the Moratorium

Peat land

Questions

- What is the gap between green development policies and oil palm expansion and how to narrow it?
- What is the optimum scenario for oil palm development compatible with green development policies?

East Kalimantan province

Looking at oil palm concessions

Scenarios for oil palm compliant with green development

Scenario 1 (BAU)	No conservation, all concessions lands planted with oil palm		
Scenario 2 (HCV)	Adoption of High Conservation Value (HCV) as prescribed by RSPO standards, saving 10-15% of the forest cover in current oil palm concessions		
Scenario 3 (0 deforestation)	Adoption of High Carbon Stock (HCS) by which oil palm is only developed on areas equivalent to a level of 35 tons CO _{2eq} or less		

Trade-offs

	Below Ground Carbon			Above Ground Carbon			Total	
_	Saved	Emitted	Gained	Saved	Emitted	Gained	carbon stock	
Scenario 1	1,438,015,365	152,307,183	0	0	240,198,636	221,033,821	1,659,049,187	
Scenario 2	1,474,335,902	115,966,646	0	87,107,274	153,091,362	240,243,665	1,801,686,842	
Scenario 3	1,590,322,549	0	0	222,237,721	17,960,915	80,896,163	1,893,456,434	

Scenarios		Oil palm planted area (ha)	lanted area (tons)		Employment (No. people)	No. of HH	
Scenario 1	BAU	3,140,815	11,306,933	7.5	1,256,326	314,081	
Scenario 2	HCV (15%)	2,669,693	9,610,893	6.4	1,067,877	266,969	
Scenario 3	0-deforestation (50% less land than BAU)	1,570,407	5,653,467	3.7	628,163	157,041	

Scenario 1 (BAU)

- Unlikely
- High public scrutiny (civil society and consumer pressure)
- Highest economic value
- Highest employment potential (poverty alleviation potential)
- No exclusion threat to independent smallholders
- Highest GHG emissions (nearly 200M t of CO_{2eq})

Scenario 2 (HCV)

- Possible
- Loss of 15% of land from BAU
- That is till 2.6 M ha of land for oil palm
- High economic value
- High employment (poverty alleviation and livelihood improvement potential)
- No exclusion threat to independent smallholders
- Saved carbon emissions (about 80M t of CO_{2eq})

Scenario 3 (0-deforestation)

- Possible, but difficult
- Loss of 50% of land from BAU
- 1.6 M ha of land max upper limit
- 1 M ha of land already used
- Lower contribution to economic value
- Requires high inputs to maintain; intensification & mechanization to grow further
- Lower employment (but still important for poverty alleviation and rural livelihood improvement)
- Likely exclusion threat to smallholders
- Potential costs to meet 0-def. standard requirements
- GHG emissions additionally

Conclusions

- Oil palm a major driver of deforestation and GHG emissions
- Major gaps with green development objectives
- Scenarios do not provide a clear-cut winner
- Scenario 2 (HCV) and Scenario 3 (0-def.) move oil palm closer to green development ideals
- But both have strengths and weaknesses
- Scenario 2 significant reduction of GHG and development potential for oil palm
- Scenario 3 GHG additionally but oil palm development constrained
- What is practical and desired up to government, private sector, civil society, and consumers to decide

Produced as part of

RESEARCH PROGRAM ON Forests, Trees and Agroforestry

Center for International Forestry Research (CIFOR)

CIFOR advances human well-being, environmental conservation and equity by conducting research to help shape policies and practices that affect forests in developing countries. CIFOR is a member of the CGIAR Consortium. Our headquarters are in Bogor, Indonesia, with offices in Asia, Africa and South America.

