The impacts of piped water on water quality, sanitation, hygiene and health in rural households of north-western Bangladesh - a quasi-experimental analysis

Mohammad Monirul Hasan
Center for Development Research (ZEF), University of Bonn
mhasan@uni-bonn.de

Nicolas Gerber
Center for Development Research (ZEF), University of Bonn
ngerber@uni-bonn.de

2nd International Health Congress
Kings College London
June 20-22, 2016
Problem Statement

• **91% of the world’s population** do have access to improved drinking water sources (United Nations, 2015). But does improved source provide quality water??

• **Water quality** at the point of source (POS) and at the point of use (POU) differs because of improper handling with uncleaned container during transportation. Piped water can bridge the gap (Wolf et al., 2014).

• Piped water network allows for more **leisure time and higher productivity** (Devoto et al., 2012).

• To maintain and develop **human capital,** Investment in water management system in the household is required along with proper sanitation and hygiene because the health outcomes depend it (Kremer, Leino, Miguel, and Zwane, 2011)
Study Area

- Ground water in the north-western Bangladesh is scarce because of the higher rate of depletion.

- Barindra Multipurpose Development Authority (BMDA), a govt. organization, started initiatives to support irrigation as well as supplying drinking water by establishing deep tube-well in this area.

- Many households in this area have access to piped water in their premises which is claimed as potable water by BMDA.

source: Shamsudduha, Taylor, Ahmed, and Zahid (2011)
Research question

To what extent the piped water from the public intervention affect water-sanitation-hygiene and health outcomes of marginalized rural households in north-western Bangladesh.
Contribution of this paper

• The impact of piped water on health has been documented in several studies under different conditions (Devoto et al., 2012; Gamper-Rabindran, Khan, and Timmins, 2010; Jalan and Ravallion, 2003; Klasen, Lechtenfeld, Meier, and Rieckmann, 2012).

• This paper studied the health impact of using piped water in a marginalized rural setting and investigated the microbiological quality of water and kitchen utensils, which is a unique aspect of this study.
Conceptual Framework

Source: (Tsegai et al., 2013)
Theory of Change: The impact pathways

Assumptions

Public investment for piped water infrastructure by govt. agencies such as BMDA in water scarce area where alternative sources of water are scant.

- Household has money to invest
- Household has knowledge of improved water quality

Household has knowledge of food hygiene

Household is rational and maximizes health and productivity

Figure 10: Theory of Change- impact pathways. Source: Authors’ calibration
Methods and Data

• Two districts of North-western Bangladesh: Rajshahi and Naogaon

• Sampling procedure: *cluster sampling*

• Two big cluster: BMDA area (389 mouza) and Non-BMDA area (359 mouza)

• 16 villages are taken randomly from BMDA areas and 16 villages are taken from non-BMDA areas.

• A total of 512 households are covered: 256 (BMDA), 256 (non-BMDA)

• Cross section data of 512 households collected in October, 2014.
Identification and estimation technique

• We considered the actual receipt of piped water rather than BMDA’s intention to supply piped water to households.

• According to this definition, 186 households were considered BMDA-treated and 326 households were not considered BMDA-treated.

Estimation technique

• Mean difference

• Propensity Score Matching
<table>
<thead>
<tr>
<th>Variable</th>
<th>Total (N=512)</th>
<th>Treatment (N=186)</th>
<th>Control (N=326)</th>
<th>P-value (treatment=control)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Household Characteristics</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Age of household head (years)</td>
<td>35.26</td>
<td>35.24</td>
<td>35.27</td>
<td>0.98</td>
</tr>
<tr>
<td>Completed years of schooling of household head</td>
<td>4.64</td>
<td>5.73</td>
<td>4.01</td>
<td>0.00</td>
</tr>
<tr>
<td>Maximum completed schooling in the household</td>
<td>7.77</td>
<td>8.49</td>
<td>7.36</td>
<td>0.00</td>
</tr>
<tr>
<td>Household size</td>
<td>4.72</td>
<td>4.92</td>
<td>4.61</td>
<td>0.05</td>
</tr>
<tr>
<td>Household head currently married (dummy)</td>
<td>98%</td>
<td>98%</td>
<td>98%</td>
<td>0.81</td>
</tr>
<tr>
<td>Household occupation: wage earning (dummy)</td>
<td>52%</td>
<td>42%</td>
<td>57%</td>
<td>0.00</td>
</tr>
<tr>
<td>Household occupation: agriculture (dummy)</td>
<td>57%</td>
<td>59%</td>
<td>56%</td>
<td>0.47</td>
</tr>
<tr>
<td>Household occupation: non-agriculture (dummy)</td>
<td>48%</td>
<td>58%</td>
<td>42%</td>
<td>0.00</td>
</tr>
<tr>
<td>Total land (in acre)</td>
<td>0.69</td>
<td>0.96</td>
<td>0.54</td>
<td>0.01</td>
</tr>
<tr>
<td>Number of Livestock</td>
<td>15.30</td>
<td>19.31</td>
<td>13.02</td>
<td>0.13</td>
</tr>
<tr>
<td>Number of cows</td>
<td>1.21</td>
<td>1.24</td>
<td>1.20</td>
<td>0.78</td>
</tr>
<tr>
<td>Number of goat</td>
<td>0.92</td>
<td>0.92</td>
<td>0.91</td>
<td>0.93</td>
</tr>
<tr>
<td>Number of poultry</td>
<td>9.09</td>
<td>9.67</td>
<td>8.75</td>
<td>0.41</td>
</tr>
<tr>
<td>Food expenditure (BDT)</td>
<td>59692.67</td>
<td>65786.71</td>
<td>56215.71</td>
<td>0.00</td>
</tr>
<tr>
<td>Non-food expenditure (BDT)</td>
<td>39915.68</td>
<td>49469.15</td>
<td>34464.92</td>
<td>0.00</td>
</tr>
<tr>
<td>Household savings (BDT)</td>
<td>36729.38</td>
<td>43737.03</td>
<td>32731.15</td>
<td>0.17</td>
</tr>
<tr>
<td>Irrigating households (dummy)</td>
<td>63%</td>
<td>61%</td>
<td>63%</td>
<td>0.62</td>
</tr>
<tr>
<td>Sanitation</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Access to improved sanitation (dummy)</td>
<td>68%</td>
<td>75%</td>
<td>63%</td>
<td>0.01</td>
</tr>
<tr>
<td>Annual cost for maintaining a toilet (BDT)</td>
<td>258.20</td>
<td>334.25</td>
<td>214.82</td>
<td>0.32</td>
</tr>
<tr>
<td>Variable</td>
<td>Total (N=512)</td>
<td>Treatment (N=186)</td>
<td>Control (N=326)</td>
<td>P-value (treatment = control)</td>
</tr>
<tr>
<td>---</td>
<td>---------------</td>
<td>-------------------</td>
<td>-----------------</td>
<td>-------------------------------</td>
</tr>
<tr>
<td>Water</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Access to improved drinking water (dummy)</td>
<td>96%</td>
<td>99%</td>
<td>94%</td>
<td>0.00</td>
</tr>
<tr>
<td>Annual cost for water (BDT)</td>
<td>231.61</td>
<td>631.61</td>
<td>3.39</td>
<td>0.00</td>
</tr>
<tr>
<td>Time spend to collect drinking water in a day (minute)</td>
<td>12.77</td>
<td>8.09</td>
<td>15.46</td>
<td>0.00</td>
</tr>
<tr>
<td>Draw water with a mug from jar (dummy)</td>
<td>35%</td>
<td>37%</td>
<td>34%</td>
<td>0.44</td>
</tr>
<tr>
<td>Size of the water container (liter)</td>
<td>17.78</td>
<td>23.47</td>
<td>14.54</td>
<td>0.00</td>
</tr>
<tr>
<td>100ml drinking water E. coli count (cfu)</td>
<td>44.52</td>
<td>50.79</td>
<td>40.93</td>
<td>0.43</td>
</tr>
<tr>
<td>E. coli count in the food utensils (cfu)</td>
<td>36.47</td>
<td>25.48</td>
<td>42.77</td>
<td>0.22</td>
</tr>
<tr>
<td>Presence of E. coli in the 100 ml water (dummy)</td>
<td>78%</td>
<td>75%</td>
<td>80%</td>
<td>0.16</td>
</tr>
<tr>
<td>Presence of E. coli in food preparing utensils (dummy)</td>
<td>60%</td>
<td>55%</td>
<td>63%</td>
<td>0.06</td>
</tr>
<tr>
<td>Disease</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Child diarrhea in last month (percentage) (dummy)</td>
<td>13%</td>
<td>11%</td>
<td>14%</td>
<td>0.24</td>
</tr>
<tr>
<td>Annual disease cost for adult (BDT)</td>
<td>4251.14</td>
<td>4702.53</td>
<td>3993.59</td>
<td>0.46</td>
</tr>
<tr>
<td>Monthly disease cost for children (BDT)</td>
<td>540.5</td>
<td>577.98</td>
<td>519.13</td>
<td>0.63</td>
</tr>
<tr>
<td>Hygiene</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hand wash with soap after coming from toilet (dummy)</td>
<td>68%</td>
<td>76%</td>
<td>64%</td>
<td>0.01</td>
</tr>
<tr>
<td>Hand wash with soap before feeding child (dummy)</td>
<td>3%</td>
<td>5%</td>
<td>2%</td>
<td>0.05</td>
</tr>
<tr>
<td>Clean water container with soap (dummy)</td>
<td>26%</td>
<td>32%</td>
<td>22%</td>
<td>0.02</td>
</tr>
<tr>
<td>Total soap consumed per month (number, 1 soap =100gr.)</td>
<td>2.31</td>
<td>2.67</td>
<td>2.11</td>
<td>0.00</td>
</tr>
<tr>
<td>Per capita soap consumption per month (number)</td>
<td>0.51</td>
<td>0.56</td>
<td>0.48</td>
<td>0.00</td>
</tr>
</tbody>
</table>

Nutritional status by treatment group (unmatched data)

Child anthropometrics by treatment and control households

<table>
<thead>
<tr>
<th></th>
<th>Mean (N=569)</th>
<th>Treatment (N=207)</th>
<th>Control (N=362)</th>
<th>P-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Height-for-age z-score</td>
<td>-1.57</td>
<td>-1.59</td>
<td>-1.56</td>
<td>0.85</td>
</tr>
<tr>
<td>Weight-for-age z-score</td>
<td>-1.50</td>
<td>-1.40</td>
<td>-1.56</td>
<td>0.10</td>
</tr>
<tr>
<td>Weight-for-height z-score</td>
<td>-0.88</td>
<td>-0.72</td>
<td>-0.97</td>
<td>0.01</td>
</tr>
<tr>
<td>Stunted</td>
<td>36%</td>
<td>34%</td>
<td>37%</td>
<td>0.48</td>
</tr>
<tr>
<td>Severely stunted</td>
<td>10%</td>
<td>10%</td>
<td>10%</td>
<td>0.89</td>
</tr>
<tr>
<td>Underweight</td>
<td>32%</td>
<td>27%</td>
<td>36%</td>
<td>0.03</td>
</tr>
<tr>
<td>Severely underweight</td>
<td>7%</td>
<td>7%</td>
<td>7%</td>
<td>0.76</td>
</tr>
<tr>
<td>Wasted</td>
<td>13%</td>
<td>11%</td>
<td>14%</td>
<td>0.40</td>
</tr>
<tr>
<td>Severely wasted</td>
<td>2%</td>
<td>2%</td>
<td>2%</td>
<td>0.87</td>
</tr>
</tbody>
</table>

Source: Baseline survey, 2014.
Table 3: Impact of access to BMDA piped water on different outcome variables based on Propensity Score Matching

<table>
<thead>
<tr>
<th>Outcome variables</th>
<th>Nearest-Neighbour Matching<sup>b</sup> (Treatment=186; Control=116)</th>
<th>Stratification Matching (Treatment =183; Control =328)</th>
<th>Kernel Matching<sup>b</sup> (Treatment =186; Control =325)</th>
<th>Regression based nearest-neighboring matching (N=512)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>ATT</td>
<td>SE</td>
<td>ATT</td>
<td>SE</td>
</tr>
<tr>
<td>Water-Sanitation facilities</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Access to improved sanitation</td>
<td>0.065</td>
<td>0.06</td>
<td>0.027</td>
<td>0.04</td>
</tr>
<tr>
<td>Access to improved drinking-water</td>
<td>0.027</td>
<td>0.03</td>
<td>0.05***</td>
<td>0.02</td>
</tr>
<tr>
<td>Time to collect drinking water (min/day)</td>
<td>-5.89***</td>
<td>2.02</td>
<td>-6.73***</td>
<td>1.56</td>
</tr>
<tr>
<td>100ml drinking water E.Coli count (cfu)</td>
<td>1.94</td>
<td>33.35</td>
<td>2.18</td>
<td>17.6</td>
</tr>
<tr>
<td>100ml drinking water Coliform count (cfu)</td>
<td>98.21</td>
<td>47.37</td>
<td>30.73</td>
<td>41.83</td>
</tr>
<tr>
<td>E.Coli count in the food utensils (cfu)</td>
<td>-43.55</td>
<td>22.09</td>
<td>-12.5</td>
<td>13.11</td>
</tr>
<tr>
<td>Coliform count in the food utensils (cfu)</td>
<td>-32.175</td>
<td>25.1</td>
<td>-17.44</td>
<td>17.97</td>
</tr>
<tr>
<td>Distance of drinking water source (meter)</td>
<td>-0.645**</td>
<td>0.16</td>
<td>-0.56***</td>
<td>0.12</td>
</tr>
<tr>
<td>Drinking water container capacity (liter)</td>
<td>7.82*</td>
<td>3.73</td>
<td>8.7**</td>
<td>3.91</td>
</tr>
<tr>
<td>Water cost (BDT)</td>
<td>630.6***</td>
<td>40.42</td>
<td>615.03***</td>
<td>41.71</td>
</tr>
<tr>
<td>Hygiene situation</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hand wash with soap after toilet (%)</td>
<td>0.097</td>
<td>0.06</td>
<td>0.049</td>
<td>0.04</td>
</tr>
<tr>
<td>Hand wash with soap before feeding child</td>
<td>0.038</td>
<td>0.03</td>
<td>0.035</td>
<td>0.02</td>
</tr>
<tr>
<td>Clean water container with soap</td>
<td>0.075</td>
<td>0.06</td>
<td>0.056</td>
<td>0.05</td>
</tr>
<tr>
<td>Total soap consumption per month</td>
<td>0.21</td>
<td>0.14</td>
<td>0.224</td>
<td>0.12</td>
</tr>
<tr>
<td>Health outcomes</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Child diarrhoea in last one month (age<59months)</td>
<td>-0.011</td>
<td>0.03</td>
<td>-0.006</td>
<td>0.03</td>
</tr>
<tr>
<td>Cost for illness for adults (Thousand BDT)</td>
<td>-0.109</td>
<td>1.35</td>
<td>-0.786</td>
<td>0.79</td>
</tr>
<tr>
<td>Cost for illness for children (Thousand BDT)</td>
<td>0.041</td>
<td>0.12</td>
<td>0.035</td>
<td>0.14</td>
</tr>
</tbody>
</table>

Source: Authors’ calculation. ^b represent Bootstrapping 50 times. Matching variables are: Household savings, per capita expenditure, number of livestock, number of cow, number of goat, number of poultry, total land, wage earning households, agricultural household, non-agricultural household, age of household head, household size, electricity, distance from road, distance from small market, distance from big market, distance from health center, distance from town. note: *** p<0.01, ** p<0.05, * p<0.1
Table 4: Impact of access to piped water on child growth based on Propensity Score Matching

<table>
<thead>
<tr>
<th>Child health outcome</th>
<th>Nearest-Neighbour Matching<sup>b</sup> (Treatment=207; Control=139)</th>
<th>Stratification Matching<sup>b</sup> (Treatment=207; Control=356)</th>
<th>Kernel Matching<sup>b</sup> (Treatment=207; Control=356)</th>
<th>Regression based nearest-neighboring matching (N=569)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>ATT</td>
<td>SE</td>
<td>ATT</td>
<td>SE</td>
</tr>
<tr>
<td>Height-for-age z-score</td>
<td>-0.010</td>
<td>0.164</td>
<td>-0.077</td>
<td>0.102</td>
</tr>
<tr>
<td>Weight-for-age z-score</td>
<td>0.138</td>
<td>0.117</td>
<td>0.083</td>
<td>0.103</td>
</tr>
<tr>
<td>Weight-for-height z-score</td>
<td>0.184</td>
<td>0.170</td>
<td>0.173</td>
<td>0.113</td>
</tr>
<tr>
<td>Stunted (dummy)</td>
<td>0.006</td>
<td>0.068</td>
<td>0.015</td>
<td>0.039</td>
</tr>
<tr>
<td>Severely Stunted (dummy)</td>
<td>0.010</td>
<td>0.034</td>
<td>0.013</td>
<td>0.025</td>
</tr>
<tr>
<td>Underweight (dummy)</td>
<td>-0.053</td>
<td>0.050</td>
<td>-0.065</td>
<td>0.050</td>
</tr>
<tr>
<td>Severely underweight (dummy)</td>
<td>0.010</td>
<td>0.030</td>
<td>0.003</td>
<td>0.029</td>
</tr>
<tr>
<td>Wasted (dummy)</td>
<td>-0.012</td>
<td>0.037</td>
<td>-0.018</td>
<td>0.030</td>
</tr>
<tr>
<td>Severely wasted (dummy)</td>
<td>0.014</td>
<td>0.014</td>
<td>0.007</td>
<td>0.010</td>
</tr>
</tbody>
</table>

Source: Authors’ calculation. ^b represent Bootstrapping 50 times. Matching variables are: Household savings, per capita expenditure, number of livestock, number of cow, number of goat, number of poultry, total land, wage earning households, agricultural household, non-agricultural household, age of household head, household size, electricity, distance from road, distance from small market, distance from big market, distance from health center, distance from town. note: *** p<0.01, ** p<0.05, * p<0.1
Summary

• BMDA piped water infrastructure had positive impact on access to improved water and reduced the travelling distance and time spent on collecting drinking water.

• However, we found no improvement in the storage drinking water quality, which was measured by the extent of fecal contamination (E. coli count per 100 ml of water) at the point of use.

• The hygiene status of food utensils also did not show any improvement; food utensils were tested positive for E. coli in both the control and treatment group.

• Access to BMDA water didn’t also improve the hygiene practices among the treated households.
Summary

• The treated households owned larger water containers which implies higher quantity of water used for household purposes. On the other hand, it also implies intermittent supply of water.

• We did not find evidence of immediate health benefits, such as decreased diarrhea incidence of in under-five children.

• Longer-term health impacts of access to piped water were NOT observed in child anthropometrics. Reduction of underweight was shown significant but was not consistent in other matching methods.
Policy implication

• Overall, the BMDA piped water project has been a success because the state supplies water to some marginalized households in rural areas, where water availability is low.

• Access to piped water generated much benefit for water availability and time saving.

• But households payment for potable water didn’t improved their perception of water handling because of lack of information about hygiene practices.

• We recommend that the government should expand the piped water network to other marginalized communities as well as hygiene promotion activities.
Thank you