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Abstract 

Sustainable use of land resources is at the core of the bioeconomy, and it is of central 

importance for development in the coming decades. The United Nations Sustainable 

Development Goals reflect this aspect of development both directly and indirectly. Important 

global trends, such as a growing and richer world population, are consistently increasing 

demand for biomass products, leading to tradeoffs among related goals such as “Zero Hunger” 

and “Life on Land.” Regarding land supply for biomass production, there is a need for 

agricultural land and pressure in forest areas. Empirical evidence at regional and global levels 

points to land suitability, local and international markets, and governance as major drivers of 

land supply for the bioeconomy. However, global models lack an economically consistent 

description of the divergence between legal requirements for land use (de jure) and current 

land use trends (de facto) in tropical regions, where these tradeoffs are expected to be higher. 

Our analysis empirically estimates the average marginal effect of the socioeconomic, climatic, 

and governance drivers of land supply in the tropics. We used subnational panel data to 

construct a fractional response model to estimate these effects. Then, we used the 

econometric results to calculate heterogenous individual land supply elasticities to 

commodity prices at the subnational level. Our results support the idea that in forest-

abundant areas, soaring prices reinforce agricultural land expansion. Further, our results 

support previous evidence that the type of governance (conventional or environmental) 

determines the likelihood of a reduction or expansion of agricultural land in the tropics but 

with a very small magnitude compared to other drivers. 
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1. Introduction  

The use of global land resources plays an important role in achieving sustainable development 

pathways. In this regard, agricultural systems are a core aspect of steering land management 

to achieve important targets of the UN Sustainable Development Goals, such as Zero Hunger, 

Climate Action, and Life on Land (Obersteiner et al., 2016). 

Global economic models provide some insights into the factors that affect agricultural 

systems, as well as factors that can simulate different economic and policy mechanisms that 

impact agricultural outcomes and land use allocation. These models contribute to scientific 

knowledge that links global challenges, such as food security, climate change mitigation, and 

biodiversity conservation, to agricultural practices (Golub et al., 2013; Lanz et al., 2018). This 

is done by characterizing different processes that influence the demand and supply of 

agricultural production and the use of land at different locations (Stehfest et al., 2019). One 

important challenge is to improve heterogeneous characterizations of agrifood systems based 

on parameters that reflect mechanisms that transform the system in a tele-connected world 

(Meyfroidt et al., 2013; Hertel et al., 2019). 

One parameter that provides information on the sensitivity of agricultural land expansion is 

the land supply elasticity (Tabeau et al., 2017; Villoria and Liu, 2018). Different estimations of 

land supply elasticities have been done using different indicators that influence the rentability 

of land. Barr et al. (2011) used information on Brazil and the US to determine the elasticities 

of their agricultural sector to investigate the effect of biofuels on cropland expansion. Villoria 

(2019) investigated the effect of total factor productivity as a driver of cropland expansion in 

different regions worldwide. Through a cross-sectional analysis, Villoria and Liu (2018) used 

gridded information to make spatially explicit calculations of the effect of accessibility on 

cropland expansion in the American continent. Tabeau et al. (2017) conducted a literature 

review of different calculations of land supply elasticities to provide information for global 

economic models, assessing the European Union’s economy on the world stage. 

Previous empirical analyses have provided important insights into the drivers of cropland 

expansion. Their added value is used in the present study to update and increase the scope of 

land supply elasticities that are currently available. We used satellite-based land cover 

information to identify agricultural land in different locations. We included pasture areas in 

agricultural land instead of only cropland as they are an important source of land use change 

in agriculture-forest frontiers (Pendrill et al., 2019a). Some analyses are based on the Food 

and Agriculture Organization’s (FAO) survey data, which enable the structuring of information 

for a wide range of countries for empirical analysis. However, these data can underestimate 

the conversion of natural land for agricultural use as they are based on self-reported 

information. With an explosion in the availability of satellite-based spatially explicit 

information for land use cover and different indicators related to drivers of land use change 
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such as climatic variables, we retake the challenge to estimate land supply elasticities for a 

wide range of areas across the globe. We also used panel data structured at the subnational 

level to run our empirical analysis. Further, we expanded the analysis to tropical zones 

worldwide using a single framework. We focus on these regions as there has been land use 

expansion from agricultural activities in these regions (Meyfroidt et al., 2014; Harris et al., 

2017; Curtis et al., 2018; Pendrill et al., 2019b). 

We also tested the effect of governance on land supply. We do this because both conventional 

and environmental governance affect the availability and rentability of land (Hertel, 2011; 

Lambin et al., 2014; Wehkamp et al., 2018). Strong environmental governance leads to a 

virtual scarcity of land, which changes decision-making in the use of land (Angelsen, 2010). 

Governance can also have effects on surrounding jurisdictions. For instance, stringent 

conservation policies (as a reflection of stronger environmental governance) can lead to 

spillover effects, which can have both positive and negative land use change impacts 

(Meyfroidt et al., 2020). Moreover, different types of governance have different effects on 

land use. Regional empirical analyses have revealed that there is a relationship between 

governance and cropland expansion; however, the type of governance indicator determines 

the direction of this relationship (Ceddia et al., 2013). Therefore, we tested the effect of 

conventional and environmental governance indicators in our analysis. We used the effects of 

institutional aspects, i.e., corruption, voice and accountability (V&Acc), and rule of law (RoL), 

on agricultural land as proxies for conventional governance. We also included national 

terrestrial biome protection to represent environmental governance in our transregional 

study. 

The elasticity of land supply is the percentage change in agricultural land after a 1% increase 

in its rentability for agricultural production (Villoria and Liu, 2018). We used this definition as 

the basis of the framework of our analysis. We then conducted a correlated random effects 

model suitable for fractional response variables in a panel data structure such as the share of 

agricultural land in the total land endowment. Our results are similar to those of previous 

analyses that focused on tropical zones. We found that an increment in commodity price is 

positively correlated with increments in the share of land allocated to agricultural use. We did 

not find a systematic positive correlation of conventional governance in tropical regions. We 

found a systematic negative relationship between stronger environmental governance and 

agricultural land expansion, but, on average, this effect was close to zero. Regarding individual 

land supply elasticities for each mesoregion, we found that an increase in agricultural 

commodity prices has a stronger effect in areas with a large proportion of forestland, such as 

the Amazon in South America, the Congo Basin in Central Africa, and forestlands in Southeast 

Asia (particularly Indonesia). The mean value of the elasticities calculated across different 

specifications for a 1% change in the agricultural commodity price index is 0.1% of land supply 

(with a minimum value of 0.01% and a maximum of 0.26%). 
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The remainder of this manuscript is as follows. In the next section, we present our theoretical 

framework on the relationship between land rentability and the expansion of agricultural land, 

as well as our empirical strategy. It is followed by our data processing section. We then present 

our results on the effects of agricultural markets and governance on land supply and the 

resulting individual land supply elasticities across the tropics. The fifth section presents the 

discussion, followed by the concluding section. 
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2.  Theoretical framework and empirical strategy 

2.1 Land supply response to changing economic incentives 

We used the conceptual framework of land supply proposed by Villoria and Liu (2018) as the 

starting point of our analysis. They defined land supply as a functional relationship between 

land converted to cropland and rents accrued from using the land in crop production. We 

expanded their analysis by using agricultural land, including cropland and pastures, as our 

indicator of land supply. The relative size of agricultural land to total land endowment in a unit 

of analysis (𝐿𝑖
𝑠) represents land supply as a function of rents (𝑅𝑖) factored to an individual land 

supply elasticity (𝜀𝑖). 

𝐿𝑖
𝑠 = 𝜀𝑖𝑅𝑖      (1) 

This equation offers a simple conceptual framework that can be operationalized. This can only 

be fully realized if data on output and input prices are available for each observation. As it has 

been pointed out in previous empirical studies, these data are only available for some areas 

of the world, which calls for the use of alternative indicators that affect agricultural rentability 

for global or regional analysis such as the one in the present study (Naidoo and Iwamura, 2007; 

Ceddia et al., 2014; Villoria and Liu, 2018). We denote land rents as a function of 

socioeconomic, biophysical, and governance indicators that influence land rents accrued from 

agricultural activities. We then represent Equation 1 as follows: 

𝐿𝑖
𝑠 = 𝜀𝑖𝑓(𝐵𝑖, 𝑆𝑖, 𝐺𝑖),     (2) 

where three major components affecting the rentability of land are represented—𝐵𝑖, 

denoting biophysical; 𝑆𝑖, denoting socioeconomic; and 𝐺𝑖, denoting governance. Hertel (2011) 

presented a conceptual framework to link different drivers of land supply that are related to 

the three components in Equation 2. For instance, he presented an extended discussion on 

the effects of trade, climate change, and demand for environmental governance on land 

supply. Among these indicators, we focus on the commodity price index, which is related to 

the socioeconomic component of land rents, to capture the effect of agricultural markets on 

agricultural land expansion. We must clarify that we are calculating the elasticity to 

commodity price instead of that of the rentability of land. We expect this elasticity to be 

smaller in magnitude compared with that of land rents when long-run prices for the variable 

inputs of production are not affected by conditions in the agricultural sector (Hertel, 2011). 

Equation 2 represents the target function in which its first derivatives of different indicators 

affecting land rent components allow the calculation of elasticity. We consider j indicators on 

a vector of socioeconomic characteristics related to component 𝑆𝑖; thus, if we derive the 

agricultural commodity price index (𝑆𝑗𝑖) and multiply it by relevant values of the ratio of price 

to the share of agricultural land, we obtain individual land supply elasticities to commodity 

price. 
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𝜀𝑗𝑖 =
𝜕�̂�𝑖

𝑠

𝜕𝑆𝑗𝑖
×

𝑆𝑗𝑖

�̂�𝑖
𝑠 = 𝑓′(𝐵𝑖, 𝑆𝑖, 𝐺𝑖) ∗

𝑆𝑗𝑖

�̂�𝑖
𝑠     (3) 

Equation (3) is a standard calculation for elasticities in economic analyses. We assume that 𝜀𝑗𝑖  

is proportional to 𝜀𝑖 to allow spatial heterogeneity of land supply elasticities that are not 

affected by scale (Villoria and Liu, 2018). The first element on the right side of Equation 3, 

𝑓′(⋅), is the first derivative of the functional form of land supply to the commodity price. The 

second element on the right side of Equation 3, �̂�, represents fitted values of land supply in 

an empirical estimation. An important challenge is to determine a functional form of f that 

allows an empirically viable alternative to calculating individual land supply elasticities. We 

present our chosen alternative and the methodological steps of our analysis in the next 

section. 

2.1 Fractional response model apply to land supply 

We are interested in the effect of indicators related to land rentability on the expected 

agricultural land shares in a mesoregion (see the “Data processing” section for an explanation 

of our unit of analysis). Thus, we focus on calculating the sensitivity of agricultural land shares 

to changes in indicators that affect land rentability, i.e., individual land supply elasticities. 

A linear function is one of the approaches that can be used to empirically estimate the effect 

of observed covariates on the outcome of interest. The use of standard linear models to test 

the effect of covariates on a fractional response variable, as in our present analysis, is seen as 

inappropriate in empirical approaches (Papke and Wooldridge, 1996; Loudermilk, 2007; Papke 

and Wooldridge, 2008; Ramalho et al., 2011). First, a linear functional form on the conditional 

mean of the response variable does not account for important nonlinearities inherent in a 

truncated and continuous variable (Papke and Wooldridge, 2008; Bluhm et al., 2018). Further, 

it is a common practice to use linear functional forms on logarithmic transformations of the 

response and covariates to determine elasticities. However, this poses difficulties for corner 

values of the outcome variable (Papke and Wooldridge, 2008). Third, linear models describe 

a misleading behavior of the outcome variable as there is no restriction on the range of values 

obtained from the structural function that relates the outcome with the observable covariates 

and unobservable heterogeneity (Ramalho and Ramalho, 2017). In addition, a linear model 

needs a specification that can disentangle the individual effects from the global (average) 

effect on the sample to determine individual elasticities. One possibility is to include an 

interaction between the relevant covariate (i.e., our focus indicator of land rentability) and 

the individual fixed effects in the model. However, in our analysis, this would increase the 

likelihood of overfitting the model as the ratio of the number of observations to the number 

of predictors becomes smaller (McNeish, 2015). For these reasons, we decide to use the 

nonlinear model for a fractional outcome proposed by Papke and Wooldridge (2008) (P&W 

hereafter). P&W’s model proposed that an outcome variable is continuous but bounded to 

the range of 0 to 1. It is suitable for panel data structures and explicitly models time-constant 



6 
 

unobserved heterogeneity. Furthermore, it is easy to empirically implement in conventional 

statistical programs.1 

2.1.1. Econometric specification 

P&W’s model starts with modeling the expectation of a fractional response variable 𝑦𝑖𝑡 

conditional on a set of K explanatory observed variables 𝐱𝑖𝑡 and an unobserved individual 

effect 𝑐𝑖 for N individuals in T time steps, in which 𝑖 = 1, … , 𝑁 and 𝑡 = 1, … , 𝑇. Following P&W, 

the conditional expectation takes the following form: 

𝐸(𝑦𝑖𝑡|𝐱𝑖𝑡, 𝑐𝑖) = Φ(𝐱𝑖𝑡𝛃 + 𝑐𝑖), for 𝑖 = 1, … , 𝑁; 𝑡 = 1, … , 𝑇,   (4) 

where Φ(∙) represents the standard normal cumulative distribution function, and 𝛃 is a vector 

of K coefficients to be estimated. In this study, the set of covariates includes variables related 

to socioeconomic, biophysical, and governance (details are in the “Data processing” section). 

The term 𝑐𝑖 represents the time-invariant individual unobserved heterogeneity. 

Some useful properties of the normal function that help to derive partial effects and 

elasticities are that it is strictly monotonic, continuously differentiable, and nonadditively 

separable (Ramalho and Ramalho, 2017). In particular, the monotonic property allows the 

elements of 𝛃 to give the direction of the partial effects of each covariate on the outcome 

variable (Papke and Wooldridge, 2008). 

P&W included two additional assumptions to identify 𝛃 and the partial effects of relevant 

covariates. First, conditional on the unobserved heterogeneity, 𝐱𝑖𝑡 in 𝑡 = 1, … , 𝑇 is strictly 

exogenous. This implies that 𝐸(𝑦𝑖𝑡|𝐱𝑖, 𝑐𝑖) = 𝐸(𝑦𝑖𝑡|𝐱𝑖𝑡, 𝑐𝑖) for 𝑡 = 1, … , 𝑇, where 𝐱𝑖 comprises 

the set of covariates in all periods. Second, the distribution of the unobserved heterogeneity 

𝑐𝑖 is assumed to behave as a normal distribution conditional on the set of covariates such that  

𝑐𝑖|(𝐱𝑖1, 𝐱𝑖1, … , 𝐱𝑖𝑇) = Normal(𝛼 + �̅�𝑖𝛅, 𝜎𝑢
2)   (5) 

where �̅�𝑖 ≡ 𝑇−1 ∑ 𝐱𝑖𝑡
𝑇
𝑡=1  represents the time averages of the time-varying covariates in the 

model. We also assume that 𝑢𝑖 ≡  𝑐𝑖 − 𝛼 − �̅�𝑖𝛅. These assumptions imply that 𝑢𝑖  conditional 

on(𝐱𝑖1, 𝐱𝑖1, … , 𝐱𝑖𝑇) is also a normal distribution with a mean of 0 and a conditional variance, 

where 𝜎𝑢
2 = Var(𝑐𝑖|𝐱𝑖). P&W’s model is known as a correlated random effects approach as it 

allows correlation between unobserved effects and covariates using the Chamberlain–

Mundlak strategy (Mundlak, 1978; Chamberlain, 1980; Bluhm et al., 2018). 

Combining the previous assumptions and integrating them into Equation (4), P&W 

demonstrated that both scaled elements of 𝛃 and partial effects are identified as long as the 

                                                      
1 More complex models such as an exponential fractional model could have been used to relate our covariates 
to agricultural shares, but they require complex transformations of the estimations to determine the 
elasticities for each individual observation in the data (see Ramalho and Ramalho (2017) for an example of 
these type of models). Moreover, they are hard to compare with other specifications.  
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covariates have some time variability, and perfect linear relationships do not exist among 

them. This yields a model such that 

𝐸(𝑦𝑖𝑡|𝐱𝑖𝑡, 𝑢𝑖) = Φ(𝛼 + 𝐱𝑖𝑡𝛃 + �̅�𝑖𝛅 + 𝑢𝑖)   (6) 

𝐸(𝑦𝑖𝑡|𝐱𝑖) = 𝐸[Φ(𝛼 + 𝐱𝑖𝑡𝛃 + �̅�𝑖𝛅 + 𝑢𝑖)|𝐱𝑖] = Φ([𝛼 + 𝐱𝑖𝑡𝛃 + �̅�𝑖𝛅]/[𝟏 + 𝜎𝑢
2]𝟏/𝟐) (7) 

𝐸(𝑦𝑖𝑡|𝐱𝑖) ≡ Φ(𝛼𝑢 + 𝐱𝑖𝑡𝛃𝑢 + �̅�𝑖𝛅𝑢)    (8) 

In Equation (8), the parameters to be estimated has a subscript u, which refers to their 

transformation with a common scaling factor ([𝟏 + 𝜎𝑢
2]𝟏/𝟐). 

One major advantage of the P&W approach is that it avoids the need to use fixed effects on 

the empirical specification, which can cause an incidental parameters problem when N is large 

and T is small, as in our case (Neyman and Scott, 1948; Lancaster, 2000).2 Moreover, when the 

assumptions described above hold, this approach offers an option to calculate individual 

elasticities without explicitly modeling individual fixed effects. 

2.1.2. Individual elasticities 

From our set of K covariates, we are primarily interested in the effect of an agricultural 

commodity price on land supply (see the “Data processing” section). The aim is to calculate 

individual elasticities of land supply to agricultural prices. The first step is to determine the 

marginal effects from the empirical econometric model for each unit of observation. We used 

an approach similar to the average partial effects proposed for discrete response models 

(Wooldridge, 2007). However, instead of averaging at the cross section, we found the average 

for each 𝑖 in 𝑇 years. We multipled the marginal effect with the ratio of the average value of 

the covariate of interest, that is, agricultural commodity price, and the average fitted value of 

the share of agricultural land per individual observation, �̅�𝑘𝑖 �̅̂�𝑖⁄ . The calculation of each data 

point takes the following form: 

𝜕𝐸(𝑦𝑖𝑡|𝐱𝑖)

𝜕𝑥𝑘𝑖𝑡
= 𝛽𝑘𝑢 × 𝜙(𝛼𝑢 + 𝐱𝑖𝑡𝛃𝑢 + �̅�𝑖𝛅𝑢)   (9) 

from which a time-averaged individual land supply elasticity is computed as follows:  

𝜀𝑖 =
𝜕𝐸(𝑦𝑖|𝐱𝑖)

𝜕𝑥𝑘𝑖
×

�̅�𝑘𝑖

�̅̂�𝑖
= 𝛽𝑘𝑢 ×

∑ 𝜙(𝛼𝑢+𝐱𝑖𝑡𝛃𝑢+�̅�𝑖𝛅𝑢)𝑇
𝑡=1

𝑇
×

�̅�𝑘𝑖

�̅̂�𝑖
   (10) 

where 𝛽𝑘𝑢 is the estimated scaled coefficient related to variable 𝑘, e.g., commodity price; 𝜙(∙) 

is the probability density function; and �̂� is the fitted value of the response variable. The 

symbol “¯” reflects average values for the research period. 

                                                      
2 P&W explained that when the number of observations tends to infinity, the fixed-effects‘ estimators are 
inconsistent. This inconsistency also affects the common slope coefficients (Papke and Wooldridge, 2008).  
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3. Data processing 

We conducted a subnational analysis using a mesoregion as the unit of observation. We refer 

to these mesoregions as agroecological zones (AEZ)-country units. These regions are obtained 

by intersecting spatial information on the Global AEZ (GAEZ) (Fischer et al., 2002) and national 

administrative boundaries for the whole world from the Database of Global Administrative 

Areas.3 We identified 876 AEZ-country regions, from which we selected tropical areas.4 Finally, 

267 mesoregions were identified, as depicted in Fig. 1.5 The fundamental reason for using this 

level of analysis is that mesoregions are the units used in several applications of global 

computable general equilibrium (CGEs) models such as those in the GTAP family (Golub and 

Hertel, 2012; Golub et al., 2013; Stevenson et al., 2013; Plevin et al., 2014).6 Moreover, the 

main objective of this analysis is to provide relevant information that would help to calibrate 

land use change processes in CGE models. 

 

Figure 1: Tropical AEZ-country regions 

Note: Shades of green reflect the different tropical zones considered for data collection. We do not include those 

with a desert climate in the final econometric estimation, i.e., AEZ 1. 

We measured agricultural land, which is the outcome variable in the empirical analysis, as the 

share of the total land in an AEZ-country unit. It is common to use only cropland as a response 

variable to analyze drivers of land supply and calculate its elasticities (Barr et al., 2011; Ceddia 

et al., 2014; Villoria and Liu, 2018). As rapid agricultural expansion is happening in tropical 

                                                      
3 https://gadm.org/index.html 
4 Plevin et al. (2014) offered an overview of types of global AEZ. In the Results section, we elaborate further on 
our decision to focus on these AEZ. In Appendix A2, we present a map with all 876 AEZ-country observations. 
5 We chose these AEZ-country observations as they have also been subject of deforestation in the current century 
(visit https://globalforestwatch.org/ for a spatially explicit assessment on deforestation). 
6 The calculation of elasticities offers information to calibrate land use change in a general equilibrium 
framework.  

https://globalforestwatch.org/
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zones, we decided to add pasture areas to natural forest areas, as previous studies relate it to 

agricultural land expansion (Pendrill et al., 2019a; Fischer et al., 2021; Winkler et al., 2021). 

We used publicly available land cover information at ~300 m pixel resolution from the 

European Space Agency’s Climate Change Initiative for 2004–2015.7 The land cover 

information presents 22 land cover categories consistent at the global level (see Appendix A1), 

from which we identify all pixels with categories related to cropland, pasture, forest, and other 

uses (residual category). We matched these pixels with their corresponding AEZ-country 

region so that we can add them up to obtain the number of km2 of agricultural land per 

mesoregion. Next, we used geometry tools from a geographic information system (GIS) to 

calculate the total area of each region. Finally, we calculated the ratio of agricultural land to 

the total area, resulting in our measure of agricultural land share per region. 

We used a set of covariates that affect the socioeconomic, biophysical, and governance 

components of land rents. Among the set of socioeconomic variables, we mainly focus on the 

agricultural commodity price index. The index considers all commodities classified as primary 

crops, cattle, and milk products by FAO. It is important to note that our commodity price 

indicator includes agricultural commodities (except wood fiber) that are related to 

deforestation in tropical regions (Goldman et al., 2020). All commodities considered are 

presented in Appendix A3. To construct the index, we used national-level information on farm-

gate prices provided by FAOSTAT. We used a methodology similar to FAO’s Laspeyres index 

with the average value of 2004 to 2006 as the base year. Further, we used weights to account 

for the value share of each commodity and downscaled our price index at the mesoregional 

level. The weights used to capture differences at the subnational level reflect the average ratio 

of cropland and pasture to agricultural land in each AEZ country. Finally, we deflated the index 

using an agriculture value-added deflator proposed by FAOSTAT. In the empirical model, we 

used the average value of the previous three years of each cross section to represent rationale 

price expectations (Magrini et al., 2016). A more detailed description of our calculations is 

presented in Appendix A5. 

We included additional indicators that affect the socioeconomic component of land rents. 

Population density (Pop) in each mesoregion is included to capture its potential role in the 

profitability and use of land resources. We employed the spatial estimation of the total 

population available on the WorldPop project.8 This is a global rasterized layer at 100 m 

resolution in which each pixel offers a measure of the population count. We summed up the 

pixel information at the mesoregional level and divided it by the total area. In the empirical 

application, we included its quadratic transformation. We also tested different indicators of 

fertilizer use, namely the average national use of nitrogen, phosphorus (P2O5), and potassium 

                                                      
7 These years are also covered in the GTAP v10A database for 2004, 2007, 2011, and 2014 (Aguiar et al., (2019)). 
The land use cover database is publicly available at http://www.esa-landcover-cci.org/ 
8 WorldPop is a research programme based in the School of Geography and Environment Sciences at the 
University of Southhampton in the UK (https://www.worldpop.org), which generates gridded high-resolution 
data on population distributions.  

https://www.worldpop.org/
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per hectare obtained from FAOSTAT. Due to the high correlation among these indicators, we 

reported the results from the P205 indicator. The ratio of the agricultural sector‘s value-added 

exports and imports (X/M) is included to control for trade effects on agricultural land use. The 

data on this variable are obtained also from FAOSTAT, measured at the national level, and like 

our commodity price index variable, we used the previous three years‘ average in the analysis 

for each cross-sectional point. Unlike the commodity price, we could not downscale the 

fertilizer use and the trade indicators due to a lack of disaggregated sectoral information, so 

they are included at the national level. 

We considered two indicators that affect the biophysical component of land rentability—

growing season length (GSL) and rain above 20 mm (R20 mm) measured in days per year. 

These are climate extreme indices disaggregated at 0.25° × 0.25° pixel resolution obtained 

from Mistry (2019). We aggregated these indicators at the mesoregion level by calculating the 

yearly average of pixels in a unit of observation. 

Conventional and environmental governance indicators are also part of the covariates that 

account for the governance component. As conventional indicators, we tested the World 

Bank’s national perception indicators on corruption, RoL, and V&Acc. V&Acc denotes the 

degree to which citizens can participate in their government’s decisions, freedom of 

expression, freedom of association, and free media; control of corruption reflects the extent 

to which public officials use their power for private gain and when a state is overcome by elites 

and private interests; RoL indicates the ability to enforce contracts and the security of 

property rights (Kaufmann et al., 2011). As a proxy for environmental governance, we employ 

a terrestrial biome protection index (TBN), which is part of the environmental performance 

index prepared by the YALE Center for Environmental Law and Policy.9 The TBN reflects the 

size of protected area per biome type within national boundaries weighted by the prevalence 

of each biome in a country. This indicator evaluates a country's achievement in reaching Aichi 

Target 11, i.e., 17% protection for all biomes within its borders (Wendling et al., 2020).10 

                                                      
9 This index uses information on 32 performance indicators across 11 categories related to environmental health 
and ecosystem’s vitality. Air quality, sanitation and drinking water, heavy metals, and waste management are 
categories that represent environmental health. Biodiversity and habitat, ecosystem services, fisheries, water 
resources, climate change, pollution emissions, and agriculture are related to the ecosystems’ vitality 
(https://epi.yale.edu/). 
10 The Aichi Targets were established by the UN Convention of Biological Diversity in 2011. They provided the 
international community a framework to address the challenge of biodiversity loss. 

https://epi.yale.edu/
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4. Results 

4.1 Land supply and forests 

Figure 2.A depicts the share of agricultural land (our indicator of land supply) to the total land 

endowment in each mesoregion in 2015. In temperate AEZs, i.e., zones 7–12 (see Appendix 

A2), we observed a high concentration of regions with an agricultural land share above 0.5. 

Areas in Central and Eastern Europe, the West of North America, and Asia primarily hold 

higher shares of their land for agricultural use. Such a pattern hints at the relatively small room 

to expand land supply for agriculture in these areas. In the tropical zones (AEZs 1–6), there are 

areas whose share ranges from 50% to 100%, such as India or the south of the Sahel region. 

However, this spatial pattern seems sparse and with less extension as compared with 

temperate zones. Figure 2.B depicts forest shares per AEZ-country region. Here the pattern 

from the agricultural share is reversed. We find that besides regions with a high land 

endowment (e.g., those in Russia or Canada), the share of forest cover is relatively smaller 

compared with agricultural land shares in temperate zones (darker gray hues depict a higher 

share). Larger forest land shares are observed and concentrated in the tropical zones, e.g., the 

Amazon, Congolian, and Indonesia’s rainforests. As previous analyses have pointed out, these 

maps hint that tropical areas of the world with abundant forest areas can increase the use of 

land as a means to increase agricultural production if incentives to do so are in place, i.e., 

higher rentability of agricultural land. 

As our definition of land supply implies a change in land use and forest is in competition with 

agricultural production for land, the remainder of this section focuses on subnational regions 

in the tropical zones. 

A) 
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B) 

 
Figure 2: Land shares 

Note: A) and B) represent shares of land use endowment within each AEZ-country observation in 2015. 

The upper and lower rows of Figure 3 depict the size of land allocated to agricultural use and 

forest in the tropics from 2004 to 2015, respectively. We observed that the movement in the 

levels of these two land use indicators is divided into two different periods. First, from 2005 

to 2009, agricultural land and forest increased simultaneously, suggesting less competition 

between these land uses. Agricultural land increased by 0.11%, while forest areas in the 

tropics recovered 0.04% of the territory in the same period. This development may be related 

to some of the effects of conservation policies on reducing forest loss in Brazil in the mid-

2000s (Arima et al., 2014; Nepstad et al., 2014; Gibbs et al., 2015). However, the effects of 

conservation policies were fading away in the second decade of the 21st Century due to a 

continuous weakening in environmental governance in the South American country since 

2012 (Silva Junior et al., 2021). Second, from 2009 to 2015, the annual allocation of these two 

land uses moved in opposite directions, reinforcing the idea of competition in our sample 

(Curtis et al., 2018; Goldman et al., 2020). For instance, from 2009 to 2012, agricultural land 

expanded by 0.25%, while forests lost 0.28% of their territory. Finally, the total change from 

2004 to 2015 was 0.33% and -0.24% for agricultural land and forests, respectively. 
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Figure 3: Agricultural land and forest in the tropics 

Note: Each line depicts the total size of land in each use within the tropical AEZs analyzed in the study. 

4.2 Drivers of land supply 

In this section, we present our results of the fractional response model explained in Section 

2.2. We estimated nine models for the three governance and fertilizer use indicators. We only 

reported the results of one of the fertilizer indicators (P205) because the main results did not 

change across specifications. Therefore, the specifications reported are similar, except for the 

variable representing conventional governance. The rest of the results are available upon 

request. We did not include all the governance indicators  in one estimation as they are highly 

correlated among themselves (see A6). The econometric results of the fractional response 

models are presented in A7. The scaled coefficients presented in the table only give 

information on the quality of the relationship between each covariate and our dependent 

variable—agricultural land share (Wooldridge, 2007; Papke and Wooldridge, 2008). 

Therefore, we perform a normal transformation of the linear relationships to obtain the 

average marginal effects for tropical AEZ. The results are reported in Figure 4. In the figure, 

the different points represent the average marginal value estimated, and the length of the 
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lines denotes confidence intervals at the 95% level. Models (1) to (3) denote a different 

specification, depending on the conventional governance indicator used, that is, V&Acc (red), 

corruption (green), and RoL (blue). 

We observed that the commodity price index is positively related to land supply, with an 

average marginal effect ranging from 0.021% to 0.024% across the different specifications. 

We used this result to calculate individual elasticities for each AEZ-country unit, which are 

presented in the next section. Regarding the other socioeconomic indicators, we found that 

the effect of population density is positively correlated with land supply and negatively 

correlated in its quadratic form. This suggests that although increases in population density 

pushed for land expansion, as the population continued to increase, it reached an inflection 

point. The value-added ratio of agricultural exports to imports reveals a negative relation with 

land supply, although it is not statistically significant across the different specifications. Based 

on the available information, we could not find systematic evidence that when products are 

more costly in a country compared with international markets, the demand for land supply 

reduces. Moreover, we did not find a systematic relationship between the fertilizer indicator 

and land supply. This can be due to the low disaggregation in the fertilizer information that 

we used, which can blur its effect on land supply. Similarly, our bundle of indicators to account 

for the biophysical component of land rents indicate a small magnitude of scaled coefficients, 

where only the effect of the growing season period is statistically significant across 

specifications. The aggregation of these variables might lose some of the richness that spatial 

variation at the pixel level might capture. Improvements in conventional governance across 

all specifications and indicators have a positive relationship with increments in land supply, 

but we did not find statistically significant results. The coefficients related to terrestrial biome 

protection suggest a negative relationship with land supply, but, on average, the marginal 

effect is close to zero. This variable seems also highly significant across different specifications. 
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Figure 4: Average marginal effects 

Note: The figure depicts the average marginal effects for each of our covariates tested as drivers of land supply. 
Models (1) to (3) represent the different specifications using different conventional governance indicators, which 
are V&Acc (red), corruption (green), and RoL (blue). 

4.3 Individual land supply elasticities 

We used the results in column (2) in Table A7.1 in the Appendix to calculate individual land 

supply elasticities, as explained in our empirical strategy. We presented the results of this 

analysis in a spatial format in Figure 5,11 and the range of individual elasticities is from 0.017 

to 0.257. It is important to clarify that the land supply elasticities depicted are measures (i.e., 

specific to each unit of observation) of the sensitivity of agricultural land expansion to 

agricultural prices. They measure the percentage change in land supply expansion when there 

is a 1% change in prices. Therefore, we expect a different size of agricultural area (in absolute 

terms) to expand depending on the AEZ-country observation. For instance, the AEZ-5 in Brazil 

and Madagascar has a similar elasticity of approximately 0.17 for some of our specifications. 

This represents an expansion (compare to 2015 levels) of nearly 60 km2 in Madagascar 

                                                      
11 A table with the individual elasticities calculated for all specifications are presented in A8. 
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compared with approximately 2,190 km2 in Brazil per percentage increments in average yearly 

prices. 

We found higher mean (0.12) and maximum (0.25) values in the AEZ 6, which comprises 

rainforests such as the Amazon rainforest, the Congolian rainforest, and those in Indonesia. 

Our estimations suggest a higher likelihood of agricultural land expansion in areas with vast 

forest endowments. This is not surprising as these areas also host business-oriented 

agricultural production linked to deforestation risks. 

In contrast, lower values were found in highly populated areas with relatively little land 

available to expand agriculture, such as some mesoregions in China, Bangladesh, India, or 

Nigeria (with no more than 0.05 elasticity magnitudes). Small values were also found in areas 

with a less developed agricultural sector, such as Guyana, Jamaica, and the Dominican 

Republic. 

A) 

 
B) 
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C)  

 
Figure 5. Individual land supply elasticities in the tropics  
Note: The elasticities depicted in A), B), and C) are calculated using the coefficients estimated in column (2) of 

Table A7.1. The shades of blue represent individual land supply elasticities to changes in the agricultural 

commodity price index during the research period. Green areas are tropical mesoregions for which we did not 

have information to test our model implementation. Brown areas are mesoregions in desert areas not considered 

in our estimation. Greater sensitivity (i.e., higher elasticities in darker hues) is located in areas where the 

extensive margin of agricultural production can be activated due to relatively abundant land resources, e.g., 

Brazil and Indonesia. The tabular format of the elasticities is presented in A8. 

In Africa, land use change from forest to agriculture happens more prominently due to small-

scale shifting cultivation (Curtis et al. 2019). Unfortunately, we do not have access to 

information on all the covariates tested in the model to calculate individual elasticities for 

important forested countries located in the Congo Basin, such as the Democratic Republic of 

the Congo, Angola, and Zambia (depicted with green fill in Figure 5). However, we measured 

elasticities for other countries within this basin, such as the Republic of Congo (0.157 and 

0.141 in AEZ 5 and 6, respectively) and Tanzania (from 0.117 to 0.134 across AEZs 3 to 6) in 

Central Africa. The country with the highest individual elasticities in Africa is Madagascar (from 

0.125 to 0.171), which has been subject to high levels of deforestation in the past two decades. 

The calculated individual elasticities suggest different flexibility of agricultural systems across 

the tropics. We found smaller elasticity values across Africa in comparison with South America 

or Southeast Asia. The maximum value found in Africa is 0.17% and up to 0.21% in Southeast 

Asia. As agribusiness requires more capital, it can only be more flexible to changes in factors 

of production if there are more investments in fertilizer use or land use conversion. In Africa, 

agricultural systems are mostly characterized by small-scale production, while those in South 

America or Southeast Asia are large-scale export-oriented systems. Our results reveal this 

pattern across the mesoregions analyzed. 
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5. Discussion 

Our empirical analysis to investigate drivers of land supply and calculate individual land supply 

elasticities across the tropics led to two major sets of results. One set of results suggests that 

agricultural commodity prices have a positive relationship with land supply expansion; 

however, this effect is not homogenous across the tropics. We found that areas with large 

forest shares have a higher likelihood to allocate more agricultural land for production when 

prices soar. This result is particularly strong in areas where agribusiness targeting the 

international market is prominent, such as Brazil and Indonesia. In areas where shifting 

cultivation is common, the distribution in the sensitivity of land supply to changes in 

agricultural prices varies such as Central Africa. In densely populated areas with large shares 

of agricultural land, we found small to almost null magnitudes of land supply elasticities, which 

emphasizes the little flexibility of these agricultural systems to expand agricultural land. 

Comparing our individual elasticities with previous analyses, we found similar or smaller 

magnitudes of land supply elasticities. For instance, Barr et al. (2011) calculated land supply 

elasticities for Brazil and found that they range from 0.66 to 0.89. When they included pasture, 

they obtained values ranging from 0.20 to 0.24 for Brazil, similar to our values ranging from 

0.14 to 0.20. Villoria and Liu (2018) found lower magnitudes of land supply elasticities for their 

analysis of the Americas than the ones we calculated in our study. Compared with the land 

supply elasticities reported in Appendix B in the study by Tabeau et al. (2017), we found some 

strong similarities for some elasticities reported at the national level, such as those in Brazil 

(0.120) and Mexico (0.103), but there were high discrepancies with some of them, such as 

those in Indonesia (0.602) or Viet Nam (0.917). Some of the deviations in the results of various 

analyses are due to differences in the research period, indicators used, and scope of analysis. 

These studies used data from the 1990s and early 2000s to draw their estimations, while we 

used information from 2004 to 2015 in our calculations. We also used agricultural land instead 

of only cropland as the outcome variable. Moreover, we used a commodity price index while 

others approximated the effect of land rents through cost-to-market accessibility or derived 

land rentability. A major strength of our analysis is that it uses a unified framework applied to 

a panel data structure to estimate elasticities in global tropical zones. 

The second set of results pertains to the role of governance in changes in land supply. Our 

econometric estimations reveal a systematic negative relationship between stronger 

environmental governance and agricultural land expansion. We also observed that 

conventional indicators of governance are positively related to land supply. RoL seems to have 

a stronger effect on land supply increments among these conventional indicators. However, 

the systematic effect of conventional governance on land supply is not conclusive based on 

the statistical significance of the parameters calculated. These results are similar to those 

found by Ceddia et al. (2014) for tropical South America. They also used agricultural land as a 

measurement of land supply in their analysis. Our results indicate that not all the effects are 
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endemic to South America but go beyond other areas of the tropics, especially the effect of 

environmental governance, which is a proxy for terrestrial biome protection. 

Our results should be interpreted with care because of the following reasons. First, we 

calculated land supply elasticities of commodity prices instead of land rents. Commodity prices 

are just a single factor. Various variables of production have different levels of scarcity due to 

factors such as accessibility to markets, competition of chemicals for other industries and 

purposes, and higher competition in agricultural systems for factors of production. There are 

different levels of factor scarcity around the globe just like how there is production 

specialization for different agricultural commodities and land suitability characteristics in 

different locations. Therefore, future analysis should include subnational information that can 

capture variation in different variable factors of production. 

We also included governance indicators at the national level, which might underestimate or 

overestimate the effect of governance in subnational observations. Excluding the magnitude 

of the effect, our results suggest that environmental governance has a virtual land scarcity 

effect that reduces land conversion for agriculture in the tropics. This result is similar to 

subnational studies investigating the effect of environmental governance on agricultural 

deforestation at the subnational level in regions in South America and Indonesia. 

Future studies on the drivers of land supply and respective elasticities can benefit from new 

sources of information combined with a framework similar to the one implemented in this 

analysis. Using satellite-based information to detect land use change processes and estimate 

additional socioeconomic factors (e.g., accessibility to markets) can improve currently 

available models. This information can also allow a higher disaggregation of the unit of analysis 

to capture heterogeneous effects. A Bayesian framework can be used to extend the 

estimations made in this analysis as it can be compared to a fractional response model, which 

is similar to the one we implemented (Kessler and Munkin, 2015). 
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6. Conclusion 

In this study, we calculated land supply elasticities and investigated potential drivers of land 

supply in tropical AEZ. This study calculates land supply elasticities for tropical areas, treating 

markets and governance as important drivers of agricultural land expansion. The relevance of 

tropical areas is that they are regions that are prone to engage in the extensive margin of 

agricultural production, and they possess large forest shares. This study focuses on the effect 

of commodity prices and stronger governance on the expansion of agricultural land allocation. 

Consistent with previous analyses, we found that areas with larger forest shares and higher 

commodity prices are more prone to engage in agricultural land expansion. Our results also 

suggest that stronger environmental governance halts the use of the extensive margin of 

production. The positive effect of improvements in conventional governance on land supply 

is inconclusive in our analysis. 

Our results provide estimations of land supply elasticities for a wide range of the world using 

a single framework. The use of secondary open data sources in our study would facilitate its 

implementation for similar applications and improvements. New data sources are released 

each year, which can be easily incorporated into our framework. A major improvement for 

future research is to increase the spatial resolution of the estimations to capture localized 

heterogeneous effects of different drivers of land supply using a panel data structure to 

account for unobserved heterogeneity. An additional direction for future research is to expand 

the scope of analysis to include temperate regions and information on the forestry sector, 

which was not included in this analysis to construct our commodity price index. 

The challenge to better characterize heterogeneous agricultural systems in the tropics and 

other AEZ is latent in global studies that investigate the impact of different shocks in the global 

economic system. Land supply is a crucial aspect to calibrate these global models. A good 

understanding of the sensitivity of land supply to different socioeconomic, biophysical, and 

governance indicators is key for shaping agricultural and conservation policies and is an 

important avenue for research. Such efforts will help society in the quest to find solutions for 

an agricultural system that provides essential commodities to society, allows livelihoods to 

thrive, and, while doing so, preserves natural ecosystems. 
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A1. Land cover aggregation 

Aggregated 
Classes 

Code in 
Raster 

Pixel Categories 

No Data 0 No Data 

Agriculture 

10 Rainfed cropland 

11 Rainfed cropland 

12 Rainfed cropland 

20 Irrigated cropland 

30 Mosaic cropland/vegetation 

40 Mosaic cropland/vegetation 

110 Mosaic herbaceous/tree and shrub 

130 Grassland 

Forest 

50 Tree cover, broadleaved, evergreen 

60 Tree cover, broadleaved, deciduous 

61 Tree cover, broadleaved, deciduous 

62 Tree cover, broadleaved, deciduous 

70 Tree cover, needleleaved, evergreen 

71 Tree cover, needleleaved, evergreen 

72 Tree cover, needleleaved, evergreen 

80 Tree cover, needleleaved, deciduous 

81 Tree cover, needleleaved, deciduous 

82 Tree cover, needleleaved, deciduous 

90 Tree cover, mixed leaf type 

100 Mosaic tree and shrub / herbaceous cover 

160 Tree cover, flooded, fresh or brakish water 

170 Tree cover, flooded, saline water 

Other Land Uses 

140 Lichens and mosses 

150 Sparse vegetation 

151 Sparse vegetation 

152 Sparse vegetation 

153 Sparse vegetation 

200 Bare areas 

120 Shrubland 

121 Shrubland 

122 Shrubland 

220 Snow 

190 Urban 

210 Water 

180 Shrub or herbaceous cover, flooded, fresh-saline or brakish water 

Note: These are the codes from the ESA-CCI-LC from which we obtained the dependent variable. The sum of all 

pixels in the land cover data within an AEZ country classified as agriculture in the table constitute the total land 

devoted to agriculture. We divided this information with the total area of the region (calculated using GIS tools) 

to obtain our agricultural land use share per unit of each year observation. 
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A2. Global AEZ-country regions 

 
Figure A.2.1 Global AEZ-country observations 
Note: The map depicts the intersection of GAEZ and the national boundaries of the world. Adapted from Fischer 

et al. (2002) and Plevin et al. (2014). 
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A3. Agricultural commodities considered 

FAO id Commodity  FAO id Commodity 

800 Agave fibers nes  656 Coffee, green 

221 Almonds, with shell  195 Cow peas, dry 

711 Anise, badian, fennel, coriander  554 Cranberries 

515 Apples  397 Cucumbers and gherkins 

526 Apricots  550 Currants 

226 Areca nuts  577 Dates 

366 Artichokes  399 Eggplants (aubergines) 

367 Asparagus  821 Fiber crops nes 

572 Avocados  569 Figs 

203 Bambara beans  773 Flax fiber and tow 

486 Bananas  94 Fonio 

44 Barley  512 Fruit, citrus nes 

782 Bastfibres, other  619 Fruit, fresh nes 

176 Beans, dry  541 Fruit, stone nes 

414 Beans, green  603 Fruit, tropical fresh nes 

558 Berries nes  406 Garlic 

552 Blueberries  720 Ginger 

216 Brazil nuts, with shell  507 Grapefruit (inc. pomelos) 

181 Broad beans, horse beans, dry  560 Grapes 

89 Buckwheat  242 Groundnuts, with shell 

358 Cabbages and other brassicas  839 Gums, natural 

101 Canary seed  225 Hazelnuts, with shell 

461 Carobs  777 Hemp tow waste 

426 Carrots and turnips  336 Hempseed 

217 Cashew nuts, with shell  677 Hops 

591 Cashewapple  277 Jojoba seed 

125 Cassava  780 Jute 

265 Castor oil seed  310 Kapok fruit 

393 Cauliflowers and broccoli  263 Karite nuts (sheanuts) 

531 Cherries  592 Kiwi fruit 

530 Cherries, sour  224 Kola nuts 

220 Chestnut  407 Leeks, other alliaceous vegetables 

191 Chick peas  497 Lemons and limes 

459 Chicory roots  201 Lentils 

689 Chillies and peppers, dry  372 Lettuce and chicory 

401 Chillies and peppers, green  333 Linseed 

698 Cloves  210 Lupins 

661 Cocoa, beans  56 Maize 

249 Coconuts  446 Maize, green 
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FAO id Commodity  FAO id Commodity 

571 Mangoes, mangosteens, guavas  296 Poppy seed 

809 Manila fiber (abaca)  116 Potatoes 

947 Meat, buffalo  394 Pumpkins, squash and gourds 

1127 Meat, camel  754 Pyrethrum, dried 

867 Meat, cattle  523 Quinces 

1017 Meat, goat  92 Quinoa 

977 Meat, sheep  788 Ramie 

568 Melons, other (inc.cantaloupes)  270 Rapeseed 

299 Melonseed  547 Raspberries 

951 Milk, whole fresh buffalo  27 Rice, paddy 

1130 Milk, whole fresh camel  836 Rubber, natural 

882 Milk, whole fresh cow  71 Rye 

1020 Milk, whole fresh goat  280 Safflower seed 

982 Milk, whole fresh sheep  328 Seed cotton 

79 Millet  289 Sesame seed 

449 Mushrooms and truffles  789 Sisal 

292 Mustard seed  83 Sorghum 

702 Nutmeg, mace and cardamoms  236 Soybeans 

75 Oats  373 Spinach 

254 Oil palm fruit  544 Strawberries 

339 Oilseeds nes  423 String beans 

430 Okra  157 Sugar beet 

260 Olives  156 Sugar cane 

403 Onions, dry  267 Sunflower seed 

402 Onions, shallots, green  122 Sweet potatoes 

490 Oranges  305 Tallowtree seed 

600 Papayas  495 Tangerines, mandarins, clementines, satsumas 

534 Peaches and nectarines  136 Taro (cocoyam) 

521 Pears  667 Tea 

187 Peas, dry  826 Tobacco, unmanufactured 

417 Peas, green  388 Tomatoes 

687 Pepper (piper spp.)  97 Triticale 

748 Peppermint  275 Tung nuts 

587 Persimmons  692 Vanilla 

197 Pigeon peas  463 Vegetables, fresh nes 

574 Pineapples  420 Vegetables, leguminous nes 

223 Pistachios  205 Vetches 

489 Plantains and others  222 Walnuts, with shell 

536 Plums and sloes  567 Watermelons 

     15 Wheat 

     137 Yams 

     135 Yautia (cocoyam) 

  



31 
 

A4. Data summary statistics 

Statistic N Mean St. Dev. Min Pctl(25) Pctl(75) Max 

Agricultural land share 4,272 0.352 0.251 0.000 0.137 0.523 0.971 

Commodity price index‡ 3,034 1.602 0.580 0.626 1.279 1.787 6.293 

Population density (#/km2) 4,272 104.369 280.702 0.000 13.438 99.178 4,587.878 

Fertilizer use index 3,548 170.790 492.189 0.000 87.951 140.527 8,917.735 

Growing Season Length (days/year) 4,224 365.247 0.433 360.688 365.000 365.497 366.000 

Rain above 20 mm (days/year) 4,224 140.774 57.862 0.675 97.395 180.229 307.242 

Ratio agricultural exports to Imports‡ 4,111 0.984 0.697 0.014 0.545 1.268 10.306 

Rule of Law index 3,870 −0.570 0.731 −2.606 −1.042 −0.279 1.923 

Corruption index 3,870 −0.507 0.716 −1.869 −0.996 −0.255 2.326 

Voice and Accountability index 3,870 −0.365 0.787 −2.233 −0.994 0.156 1.507 

Terrestrial Biome Protection index 4,208 64.274 30.487 0.000 35.891 91.801 100.000 

Note: ‡Statistics for the variable transformed as 3-years-rolling-average  
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A5. Commodity price index at the subnational level  

We used the FAOSTAT database to obtain information on individual commodity prices to 

create our index. We then utilized the available land cover information within each AEZ-

country region to obtain an index at the subnational level. The agricultural commodities 

included are related to three aggregated groups identified by FAO—primary crops, meat, and 

milk products (see A3).  

Our starting point is to obtain subindices that account for the importance of each commodity 

in the agricultural sector. For this, we calculated weights, 𝜔𝑖𝑎𝑡, representing each 

commodity’s (i) importance in the total value of agricultural production (𝑉𝑎𝑡). This calculation 

is done separately for each aggregated group of products (a), i.e., plant- and animal-based 

commodities. All the weights for plant-based products sum to unity, and the same result is 

obtained for animal-based products. For each commodity, we multiplied the weights with the 

ratio of current prices to the price of our base year (i.e., average of 2004 to 2006). We then 

summed all prices to obtain two subindices for each commodity group a. These steps are 

represented in Equations A5.1 to A5.4.  

𝑉𝑎𝑡 = ∑ 𝑉𝑖𝑎𝑡
𝑁
𝑖=1       (A5.1) 

𝜔𝑖𝑎𝑡 =
𝑉𝑖𝑎𝑡

𝑉𝑎𝑡
, 𝑎𝑛𝑑 ∑ 𝜔𝑖𝑎𝑡

𝑁
𝑖=1 = 1     (A.5.2) 

𝑤𝑃𝑖𝑎𝑡 =
𝑃𝑖𝑎𝑡

𝑃𝑖𝑎𝑏
∗ 𝜔𝑖𝑎𝑡      (A5.3) 

𝑤𝑃𝑎𝑡 = ∑ 𝑤𝑃𝑖𝑎𝑡
𝑁
𝑖=1       (A5.4) 

Our next set of steps involves the calculation of the price index at the subnational level. For 

this, we used weights that reflect the period-average share of cropland and pasture to 

agricultural land allocated in each mesoregion. We multiplied the cropland weight by the 

subindex of plant-based commodities and the pasture weight by the subindex of animal-based 

commodities. We then summed both and multiplied by 100 to obtain our index for agricultural 

commodities. We summarize these steps in Equations A5.5 to A5.7 as follows: 

𝐴𝑔𝑟𝐿𝑎𝑛𝑑̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅
𝑖 =

∑ 𝐴𝑔𝑟𝐿𝑎𝑛𝑑𝑖𝑡
𝑁
𝑡=1

𝑇
;  𝑃𝑎𝑠𝑡𝑢𝑟𝑒̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅

𝑖 =
∑ 𝑃𝑎𝑠𝑡𝑢𝑟𝑒𝑖𝑡

𝑁
𝑡=1

𝑇
; 𝐶𝑟𝑜𝑝𝑙𝑎𝑛𝑑̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅

𝑖 =
∑ 𝐶𝑟𝑜𝑝𝑙𝑎𝑛𝑑𝑖𝑡

𝑁
𝑡=1

𝑇

 (A5.5) 

 

𝑤𝑐 = 𝐶𝑟𝑜𝑝𝑙𝑎𝑛𝑑̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅/𝐴𝑔𝑟𝐿𝑎𝑛𝑑̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ; 𝑤𝑃 = 𝑃𝑎𝑠𝑡𝑢𝑟𝑒̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅/𝐴𝑔𝑟𝐿𝑎𝑛𝑑̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅    (A5.6) 

 

𝑃𝑡 = ((𝑤𝑐 ∗ 𝑤𝑃𝑐𝑡) + (𝑤𝑝 ∗ 𝑤𝑃𝑝𝑡)) ∗ 100    (A5.7) 
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Finally, we convert the subnational agricultural price index to real terms by dividing it with the 

agricultural deflator in the FAOSTAT database. 

𝑅𝑒𝑎𝑙𝑃𝑡 =
𝑃𝑡

𝐴𝑔𝑟𝐷𝑒𝑓𝑙𝑡
 

Our final price index, 𝑅𝑒𝑎𝑙𝑃𝑡, is then used to calculate a three-year average for each year (t), 

from t-1 to t-3. This is the final variable used in the econometric analysis, and it was used to 

calculate the land supply elasticities reported in the main text. 
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A6. Correlation matrix 

 
Figure A6.1. Upper diagonal correlation matrix  
Note: Correlation matrix of the covariates used in the econometric analysis. The numbers represent the 
correlation coefficient, where stronger correlations are depicted with bolder colors. 
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A7. Econometric models 

Table A7.1. Fractional response models  

 Dependent variable: 

 Agricultural land share 
 (1) (2) (3) 

Commodity price  0.062a 0.069a 0.066a 
 (0.017) (0.018) (0.019) 

Pop 0.248a 0.223a 0.235a 
 (0.082) (0.080) (0.087) 

Pop2 −0.013a −0.012a −0.013a 
 (0.004) (0.004) (0.004) 

Fertilizer use 0.022 −0.015 0.015 
 (0.062) (0.063) (0.061) 

GSL 0.016c 0.015c 0.017c 
 (0.009) (0.009) (0.009) 

R20 mm −0.0003 −0.0002 −0.0002 
 (0.0002) (0.0002) (0.0002) 

X/M −0.009 −0.014 −0.011 
 (0.010) (0.011) (0.011) 

V&Acc 0.014   

 (0.043)   

Corr  0.005  

  (0.044)  

RoL   0.039 
   (0.048) 

TBN −0.002b −0.002b −0.002b 
 (0.001) (0.001) (0.001) 

Time Effects Yes Yes Yes 

Regressor’s period mean* Yes Yes Yes 

Observations 2100 2100 2100 

Note: Columns 1–3 represent different estimations using V&Acc, corruption, and RoL as conventional governance 
indicators, respectively. a Significant at the 1% level. b Significant at the 5% level. c Significant at the 10% level. 
∗The P&W (2008) model includes this set of covariates to control for unobserved heterogeneity. Robust standard 
errors clustered at the country level are presented in parentheses. 
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A8. Individual elasticities 

Table A8.1. AEZ-country elasticities  

AEZ code 
Country Mod. V&Acc Mod. Corr Mod. RoL 

3 Argentina 0.151 0.168 0.160 
4 Argentina 0.153 0.171 0.162 
5 Argentina 0.157 0.174 0.166 
6 Argentina 0.157 0.175 0.166 
2 Australia 0.102 0.135 0.115 
3 Australia 0.109 0.143 0.123 
4 Australia 0.124 0.163 0.140 

5 Australia 0.121 0.159 0.137 
4 Bangladesh 0.047 0.048 0.049 
5 Bangladesh 0.072 0.077 0.076 
5 Belize 0.097 0.101 0.098 
6 Belize 0.101 0.105 0.102 
3 Bolivia 0.119 0.130 0.124 
4 Bolivia 0.127 0.140 0.134 
5 Bolivia 0.134 0.147 0.141 
6 Bolivia 0.140 0.153 0.147 
2 Brazil 0.142 0.154 0.149 
3 Brazil 0.147 0.159 0.154 
4 Brazil 0.155 0.169 0.163 

5 Brazil 0.169 0.183 0.178 
6 Brazil 0.183 0.199 0.193 
6 Brunei 0.113 0.147 0.136 
2 Burkina Faso 0.074 0.087 0.080 
3 Burkina Faso 0.075 0.088 0.081 
4 Burkina Faso 0.089 0.104 0.097 
4 Burundi 0.089 0.096 0.095 
5 Burundi 0.077 0.083 0.083 
4 Cambodia 0.095 0.101 0.102 
5 Cambodia 0.087 0.093 0.094 
2 Cameroon 0.064 0.069 0.069 
3 Cameroon 0.062 0.067 0.067 

4 Cameroon 0.088 0.095 0.095 
5 Cameroon 0.093 0.100 0.100 
6 Cameroon 0.089 0.095 0.096 
4 China 0.013 0.017 0.014 
5 China 0.084 0.094 0.094 
6 China 0.073 0.083 0.083 

 Note: The table presents the calculated individual elasticities using the different specifications presented in Table 
A7.1. These specifications vary depending on the conventional governance indicator employed. The acronyms are 
defined as follows: V&Acc=voice and accountability; Corr=corruption; RoL=rule of law. 
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Table A8.1. AEZ-country elasticities (continue) 

AEZ code Country  Mod. V&Acc Mod. Corr Mod. RoL 

2 Colombia  0.107 0.117 0.112 
3 Colombia  0.081 0.089 0.084 
4 Colombia  0.075 0.084 0.078 
5 Colombia  0.129 0.142 0.136 
6 Colombia  0.149 0.164 0.158 
5 Costa Rica  0.120 0.139 0.128 
6 Costa Rica  0.121 0.140 0.128 
3 Côte d'Ivoire  0.112 0.127 0.123 
4 Côte d'Ivoire  0.116 0.133 0.128 
5 Côte d'Ivoire  0.112 0.127 0.123 

6 Côte d'Ivoire  0.101 0.116 0.112 

3 
Dominican 
Republic 

 
0.088 0.091 0.090 

4 
Dominican 
Republic 

 
0.086 0.089 0.088 

5 
Dominican 
Republic 

 
0.062 0.064 0.063 

6 
Dominican 
Republic 

 
0.062 0.064 0.063 

2 Ecuador  0.116 0.126 0.121 
3 Ecuador  0.074 0.080 0.076 
4 Ecuador  0.114 0.123 0.119 

5 Ecuador  0.132 0.142 0.138 
6 Ecuador  0.158 0.171 0.166 
6 Egypt  0.093 0.104 0.105 
4 El Salvador  0.053 0.058 0.053 
2 Ethiopia  0.083 0.100 0.095 

3 Ethiopia  0.084 0.101 0.096 
4 Ethiopia  0.093 0.112 0.107 
5 Ethiopia  0.086 0.104 0.099 
5 Fiji  0.088 0.102 0.096 
6 Fiji  0.080 0.094 0.087 
3 Gambia  0.048 0.057 0.055 
3 Ghana  0.090 0.104 0.097 

4 Ghana  0.097 0.111 0.104 
5 Ghana  0.095 0.109 0.102 
6 Ghana  0.088 0.101 0.094 
3 Guinea  0.094 0.104 0.101 
4 Guinea  0.097 0.107 0.104 
5 Guinea  0.106 0.117 0.114 
5 Guyana  0.065 0.069 0.068 
6 Guyana  0.036 0.038 0.038 

 

 



38 
 

Table A8.1. AEZ-country elasticities (continue) 

AEZ code 
Country Mod. V&Acc Mod. Corr Mod. RoL 

4 Honduras 0.088 0.093 0.092 
5 Honduras 0.089 0.094 0.093 
6 Honduras 0.101 0.107 0.106 
2 India 0.054 0.055 0.055 
3 India 0.056 0.058 0.057 
4 India 0.048 0.051 0.050 
5 India 0.059 0.062 0.061 
3 Indonesia 0.139 0.151 0.148 
4 Indonesia 0.160 0.173 0.170 

5 Indonesia 0.089 0.099 0.095 
6 Indonesia 0.169 0.183 0.180 
3 Jamaica 0.052 0.057 0.052 
4 Jamaica 0.077 0.083 0.078 
2 Kenya 0.102 0.105 0.106 
3 Kenya 0.107 0.110 0.112 
4 Kenya 0.096 0.098 0.099 
5 Kenya 0.072 0.074 0.074 
6 Kenya 0.083 0.085 0.086 
2 Madagascar 0.108 0.125 0.117 
3 Madagascar 0.139 0.162 0.151 
4 Madagascar 0.147 0.171 0.160 

5 Madagascar 0.148 0.171 0.160 
6 Madagascar 0.136 0.157 0.148 
3 Malawi 0.094 0.106 0.107 
4 Malawi 0.103 0.116 0.117 
6 Malaysia 0.168 0.211 0.199 

2 Mali 0.068 0.072 0.071 
3 Mali 0.067 0.071 0.070 
4 Mali 0.070 0.074 0.073 
2 Mexico 0.065 0.071 0.066 
3 Mexico 0.079 0.086 0.082 
4 Mexico 0.084 0.091 0.087 
5 Mexico 0.090 0.097 0.093 

6 Mexico 0.081 0.089 0.084 
6 Morocco 0.064 0.074 0.071 
2 Mozambique 0.085 0.093 0.091 
3 Mozambique 0.086 0.093 0.091 
4 Mozambique 0.087 0.095 0.092 
5 Mozambique 0.084 0.091 0.089 
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Table A8.1. AEZ-country elasticities (continue) 

AEZ code 
Country Mod. V&Acc Mod. Corr Mod. RoL 

2 Namibia 0.095 0.113 0.104 
3 Namibia 0.096 0.115 0.105 
4 Nicaragua 0.079 0.086 0.084 
5 Nicaragua 0.100 0.110 0.107 
6 Nicaragua 0.113 0.123 0.121 
2 Niger 0.064 0.069 0.067 
3 Niger 0.077 0.084 0.082 
2 Nigeria 0.052 0.054 0.055 
3 Nigeria 0.058 0.061 0.061 

4 Nigeria 0.067 0.070 0.071 
5 Nigeria 0.044 0.047 0.047 
6 Nigeria 0.047 0.050 0.050 
5 Panama 0.122 0.132 0.128 
6 Panama 0.119 0.128 0.125 
2 Paraguay 0.138 0.140 0.145 
3 Paraguay 0.140 0.142 0.146 
4 Paraguay 0.145 0.148 0.152 
5 Paraguay 0.148 0.151 0.155 
6 Paraguay 0.139 0.141 0.146 
2 Peru 0.109 0.121 0.114 
3 Peru 0.111 0.124 0.115 

4 Peru 0.140 0.155 0.148 
5 Peru 0.144 0.160 0.152 
6 Peru 0.133 0.149 0.140 
4 Philippines 0.062 0.068 0.065 
5 Philippines 0.060 0.066 0.064 

6 Philippines 0.084 0.090 0.088 

5 
Republic of 

Congo 0.142 0.157 0.156 

6 
Republic of 

Congo 0.128 0.141 0.140 
2 Senegal 0.060 0.069 0.065 
3 Senegal 0.077 0.087 0.083 

2 South Africa 0.091 0.104 0.096 
3 South Africa 0.084 0.097 0.089 
4 South Africa 0.086 0.098 0.090 
5 South Africa 0.076 0.087 0.080 
3 Sri Lanka 0.086 0.101 0.097 
4 Sri Lanka 0.093 0.109 0.106 
5 Sri Lanka 0.092 0.109 0.105 
6 Sri Lanka 0.055 0.068 0.064 

 

 

 



40 
 

Table A8.1. AEZ-country elasticities (continue) 

AEZ code 
Country 

 
Mod. V&Acc Mod. Corr Mod. RoL 

6 Suriname  0.128 0.141 0.134 
3 Tanzania  0.107 0.119 0.117 
4 Tanzania  0.107 0.119 0.117 
5 Tanzania  0.105 0.117 0.116 
6 Tanzania  0.120 0.134 0.132 
4 Thailand  0.093 0.110 0.106 
5 Thailand  0.113 0.131 0.127 
6 Thailand  0.112 0.130 0.126 
3 Togo  0.067 0.076 0.075 

4 Togo  0.074 0.083 0.082 
5 Togo  0.081 0.091 0.090 

6 
Trinidad and 

Tobago 
 

0.094 0.110 0.100 
4 United States  0.102 0.130 0.115 

5 United States  0.045 0.067 0.053 
2 Venezuela  0.153 0.168 0.156 
3 Venezuela  0.131 0.146 0.134 
4 Venezuela  0.181 0.198 0.186 
5 Venezuela  0.190 0.208 0.195 
6 Venezuela  0.234 0.257 0.243 
4 Vietnam  0.055 0.064 0.063 

5 Vietnam  0.072 0.081 0.082 
6 Vietnam  0.099 0.110 0.111 
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A9. Commodity price index in the period of study 

 

Figure A9.1. Commodity price indexes 
Note: The graph depicts the yearly average values for the agricultural commodity price (dark brown) 

used in the study, and each is composed of commodities related to deforestation (green) in the tropics 

(Goldman et al., 2020). 


