11th European IFSA Symposium
1-4 April 2014 in Berlin, Germany

Farming systems facing global challenges:
Capacities and strategies

Proceedings

Thomas Aenis, Andrea Knierim, Maja-Catrin Riecher, Rebecka Ridder, Heike Schobert, Holger Fischer (Eds.)
Content

PREFACE..I

CONTENT..IV

1 INTRODUCTION ..1

Workshop Themes...1

Programme..4

The Arc of History...5
 Keynote: Janice Jiggings, Wageningen University & Research Centre

The converging insecurities of food, water, energy and climate, and their implications for 21st Century farming systems ..6
 Keynote: Andrew Campbell, Charles Darwin University

2 PAPERS .. 7

WORKSHOP THEME 1 INNOVATION, KNOWLEDGE EXCHANGE AND LEARNING
.. 7

Workshop 1.1: Actor-driven or instrument driven: Does it make a difference?9
 Convenors: Jesús Rosales Carreón, Fleur Marchand and Lies Debruyne

Different perspectives on animal health and implications for communication between stakeholders 10
 Susanne Hoischen-Taubner, Alexandra Bielecke and Albert Sundrum

Farmers’ rationality in soil management: which factors influence implementation of sustainable management practices in soil conservation? – A case study in Germany and Austria19
 Magdalena Werner, Horst-Henning Steinmann, Norman Schlatter, Heide Spiegel, Erwin Wauters and Greet Ruysschaert

Using games to support multi-stakeholder decision-making for sustainable development of livestock production...26
 E.M. de Olde and I.J.M. de Boer

Development and evaluation of an on-demand sustainability tool in Flanders40
 Coteur Ine, Marchand Fleur, Debruyne Lies, Blijtebier Jo, Triste Laure and Lauwers Ludwig

Next Generation Decision Support Systems for Farmers: Sustainable Agriculture through Sustainable IT ..51
 Jessica Lindblom, Christina Lundström and Magnus Ljung

Linkage processes between niche and regime: an analysis of Learning and Innovation Networks for Sustainable Agriculture across Europe ..60
 J. Ingram, N. Curry, J. Kirwan, D. Maye and K. Kubinakova

Approaching initiatives stimulating sustainable farming as characteristics of learning practices71
 Laure Triste, Fleur Marchand, Joke Vandenabeele, Lies Debruyne, Ine Coteur and Ludwig Lauwers
Workshop 1.2: Evaluation of policy schemes supporting innovation and advisory services: new concepts, methodologies and case studies ... 83
Convenors: Susanne von Münchhausen, Anna M. Häring, Henrike Rieken, Kristin Davis, Pierre Labarthe, Andrea Knierim, Michael Kügler and Sabine O’Hara

‘Failing’ to implement FAS under diverse extension contexts: a comparative account of Greece and Cyprus ... 85
Alex Koutsouris

Advisory services in the United Kingdom: exploring ‘fit for purpose’ criteria .. 94
Katrin Prager, Rachel Creaney and Altea Lorenzo-Arribas

Evaluating a Co-innovation Policy Initiative in New Zealand .. 113
Jeff Coutts, Neels Botha and James A. Turner

Advisory Services in System of Agricultural Knowledge and Information in Poland 123
Jozef Kania, Krystyna Vinohradnik and Agnieszka Tworzyk

Systemic problems hampering innovation in the New Zealand Agricultural Innovation System 134
James A. Turner, Kelly Rijswijk, Tracy Williams, Laurens Klerkx and Tim Barnard

Farm Innovation through Rural Development Programmes 2014-2020: an evaluation model of the EIP ... 144
Simona Cristiano and Patrizia Proietti

Advisory services within national AKIS – concepts and empirical evidence from selected EU member states ... 157
Knierim, A., Boenning, K., Caggiano, M., Cristóvão, A., Dirimanova, V., Koehnen, T., Labarthe, P. and K. Prager

Analysis of the Role of an Innovation Broker Appointed by an Environmental Innovation Partnership in the Cotton Industry, Queensland, Australia .. 170
Olive Hood, Jeff Coutts, Gus Hamilton and Janice Jiggins

Linking Innovation and Research in Agricultural Knowledge and Innovation Systems 184
Krijn Poppe

How to address up-scaling and sustainability of innovative advisory services: the case of management advice for family farms in Africa .. 194
Guy Faure, Aurélie Toillier and Ismail Moumouni

From the “best fit” to the “big fuss”: the lost opportunities of the Italian advisory services 209
Monica Caggiano and Pierre Labarthe

Workshop 1.3: Innovation Platforms as Drivers of Institutional Change ... 219
Convenors: Janice Jiggins, Ray Ison and Niels Röling

A consultation process for developing an innovation agenda for Regional Water Productivity in Australia: the case of a fledgling innovation platform in research .. 220
Margaret Ayre, Ruth Nettle and Manuela Erazo Bobenrieth

Using Co-innovation to Stimulate Innovation in the New Zealand Agricultural Sector 236
Neels Botha, Laurens Klerkx, Bruce Small and James A. Turner

Two steps forward and one step back: Progress towards innovation platforms for Agricultural Workforce development in Australia .. 244
<table>
<thead>
<tr>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>“Fairebel” fair milk: a multi-level innovation</td>
<td>258</td>
</tr>
<tr>
<td>Marlène Feyereisen and François Mélard</td>
<td></td>
</tr>
<tr>
<td>Learning to change farming and water managing practices in response to challenges of climate and sustainability</td>
<td>266</td>
</tr>
<tr>
<td>Chris Blackmore</td>
<td></td>
</tr>
<tr>
<td>Script or improvisation? Institutional conditions and their local operation</td>
<td>277</td>
</tr>
<tr>
<td>Barbara van Mierlo and Edmond Totin</td>
<td></td>
</tr>
<tr>
<td>Innovation from a discursive perspective: Discourses and accountability in pig farming policies...</td>
<td>288</td>
</tr>
<tr>
<td>Maarten Crivits</td>
<td></td>
</tr>
<tr>
<td>Agricultural Research: From Recommendation Domains to Arenas for interaction. Experiences from West Africa</td>
<td>303</td>
</tr>
<tr>
<td>Röling, N., Jiggins, J., Hounkonnou D. and van Huis, A.</td>
<td></td>
</tr>
<tr>
<td>Programmes, projects and learning inquiries: institutional mediation of innovation in research for development</td>
<td>315</td>
</tr>
<tr>
<td>Innovations for institutional change towards adaptive co-management of human inhabited National Park in Mozambique</td>
<td>328</td>
</tr>
<tr>
<td>Nicia Givá and Nadarajah Sriskandarajah</td>
<td></td>
</tr>
<tr>
<td>Innovation platforms for Institutional change: the case of Pesticide Stewardship Network in the Ethiopian Rift Valley</td>
<td>341</td>
</tr>
<tr>
<td>Tadesse Amera and Nadarajah Sriskandarajah</td>
<td></td>
</tr>
<tr>
<td>Unravelling group dynamics in institutional learning processes</td>
<td>354</td>
</tr>
<tr>
<td>Wiebke Wellbrock and Andrea Knierim</td>
<td></td>
</tr>
<tr>
<td>Insights from the New Zealand experiment in Farmer First Research</td>
<td>361</td>
</tr>
<tr>
<td>Janet Reid and Rob Brazendale</td>
<td></td>
</tr>
<tr>
<td>Agricultural innovation platforms in West Africa: How does strategic institutional entrepreneurship unfold in different value chain contexts?</td>
<td>370</td>
</tr>
<tr>
<td>Annamarie van Paassen, Laurens Klerkx, Samuel Adjei-Nsiah, Richard Adu-Acheampong, Bara Ouologuem and Elisabeth Zannou</td>
<td></td>
</tr>
<tr>
<td>Workshop 1.4: The development of more entrepreneurial farming systems and the move towards a more farm-level approach in innovation and learning</td>
<td>381</td>
</tr>
<tr>
<td>Convenors: Pieter Seuneke, Thomas Lans and Martin Mulder</td>
<td></td>
</tr>
<tr>
<td>Learning to run a business: transforming charcoal production of family farmers in Santa Catarina, Brazil</td>
<td>382</td>
</tr>
<tr>
<td>Alfredo Celso Fantini and Sandro Luis Schlindwein</td>
<td></td>
</tr>
<tr>
<td>Assessing learning regimes leading to sustainable intensification at the farm level: a new perspective for management assistance for family farms</td>
<td>389</td>
</tr>
<tr>
<td>Toillier Aurélie, Baudoin Alice and Chia Eduardo</td>
<td></td>
</tr>
<tr>
<td>Can management advice to small-scale farmers trigger strategic thinking?</td>
<td>400</td>
</tr>
</tbody>
</table>
Doing the Unthinkable: Linking Farmers’ Breadth of View and Adaptive Propensity to the Achievement of Social, Environmental and Economic Outcomes .. 412
Lesley M. Hunt, John R. Fairweather, Chris J. Rosin and Hugh Campbell

Innovation and Social Learning in Agricultural Systems. Case Study: Murcia, Spain 420
Maria Rivera, Ana Teresa Herrera and Ignacio de los Ríos

Toward an integrative perspective on learning in innovation initiatives: The case of the Dutch greenhouse sector ... 428
Pieter J. Beers, Anne-Charlotte Hoes and Barbara van Mierlo

Workshop 1.5: Returning to the farming and food systems as they are - Action and phenomenon based learning as prerequisite for transdisciplinarity ... 436
Convenors: Geir Lieblein, Edvin Østergaard and Tor Arvid Breland

Bridging the Gap between Academia and Food System Stakeholders ... 437
Charles Francis, Geir Lieblein, Tor Arvid Breland, Edvin Østergaard, Suzanne Morse and Anna Marie Nicolaysen

Facilitating International Doctoral Education: Agroecology & Capacity Building 447
Lennart Salomonsson, Margarita Cuadra, Charles Francis and Geir Lieblein

Involved PhD research – a case study between agronomy and social sciences.................................... 455
Stephanie Klaedtke, Véronique Chable and Pierre Stassart

Creating Student Confidence for Communication with Farmer Stakeholders 464
Mary Wiedenhoeft, Paul Porter, Robert DeHaan and Charles Francis

Assessing Agroecology Education: Qualitative Analysis of Student Learner Documents 473
Anna Marie Nicolaysen, Tor Arvid Breland, Geir Lieblein, Suzanne Morse and Charles Francis

Engaging researchers with Learning and Innovation Networks for Sustainable Agriculture (LINSAs) ... 481
Anna Augustyn and Gusztav Nemes

Experiential Learning in a Transdisciplinary Setting – Learning from Experiences in Rural Development studies .. 490
Susanne Hofmann-Souki, Juana Cruz Morales, Jany Jarquin, Myriam Paredes Cauca, Ronald Herrera and Maria Rosa Yumbla

Transdisciplinarity as an emergent property in an agricultural research for development project. 504
W.D. Bellotti

MSc Agriculture students working with ex-campus stakeholders: first experiences and challenges 516
Vibeke Langer, Mogens Lund and Mira Arpe Bendevis

Workshop 1.6: Linking scientists and farmers, research and application - methods of on-farm research projects in livestock sciences ... 523
Convenors: Christine Leeb, Christoph Winckler and Katharina Schodl

Economic efficiency of small group housing and aviaries for laying hens in Germany 524
Petra Thobe
Linking researchers, advisers and livestock farmers in a multidisciplinary approach to analysing working conditions on farms
F Kling-Eveillard, Annie Dufour, Sylvie Courmout, Nathalie Hostiou, Sophie Chauvat and Gérard Servière

A deductive approach to animal health planning in organic dairy farming: Method description
Margret Selle, Susanne Hoischen-Taubner and Albert Sundrum

A normative planning device to link economics with practice: the case of up scaling in dairy farming
J. Hamerlinck, J. Buysse, L. Lauwers and J. Van Meensel

Balancing multiple objectives in Southland, New Zealand: Performance of dairy cow wintering systems
D.E. Dalley, J.B. Pinxterhuis, M. Hunter, T Geddes and G. Verkerk

Benefits and challenges of the on-farm implementation of measures aimed at integrating aspects of sustainability into pig fattening
Katharina Schodl, Christine Leeb and Christoph Winckler

Workshop 1.7: Collaborative learning to solve problems and develop innovations in complex systems: focus on methodologies
Convenors: Brigitte Kaufmann, Christian Hülsebusch and Anja Christinck

Collaborative learning for self-driven change in complex situations
M.J. Restrepo, M.A. Lelea, A.Christinck, C. Hülsebusch and B. Kaufmann

Initial diagnosis of local context for agricultural development projects: cognitive maps to conceptualize socio-ecological systems and elicit stakeholders’ viewpoints
Tardivo Caroline, Delmotte Sylvestre, Le Page Christophe, Barbier Jean-Marc and Cittadini Roberto

Agricultural viability in a water-deficit basin: can participatory modelling and design activities trigger collaboration between water management and agriculture stakeholders?
Clément Murgue, Olivier Therond and Delphine Leenhardt

From information giving to mutual scenario definition: Stakeholder participation towards Sustainable Rubber Cultivation in Xishuangbanna, Southwest China
Aenis, Thomas and Wang, Jue

Integration of knowledge in inter- and transdisciplinary research projects: Use of Constellation Analysis in a project of sustainable land use management
Martina Schäfer, Melanie Kröger and Jana Rückert-John

A co-development approach to investigating wintering options on dairy farms in southern New Zealand
D.E. Dalley, J.B. Pinxterhuis, M. Hunter, T Geddes and I Tarbotton

Multi-level joint learning about locally managed innovation funds
Ann Waters-Bayer, Laurens van Veldhuizen and Chesha Wettasinha

Evaluating innovative scenarios to enhance mixed crop-livestock farm sustainability: a partnership methodology based on farmers’ long-term strategies
Ryschawy J, Joannon A and Gibon A

Reflections on and lessons from a deliberative process for water management – a New Zealand case study
Denise Bewsell, Bruce Small, and Kelly Rijswijk
‘Shift happens’: Co-constructing transition pathways towards the regional sustainability of agriculture in Europe ... 680
McKee, A., Holstead K., Sutherland L.A., Pinto-Correia, T. and Guimarães, H.

Re-thinking agricultural practices to improve water quality: two participatory methodologies for collaborative learning ... 690
Chantre Emilia, Prost Lorène, Guichard Laurence and Reau Raymond

From systematization to learning .. 703
Jorge Chavez-Tafur, Teobaldo Pinzas and Teresa Gianella

Changing institutional culture: PM&E in transdisciplinary research for development ... 713
Oleg Nicetic and Elske van de Fliert

Establishing transdisciplinary research and learning environments for rural development – a network and process model ... 721
Susanne Hofmann-Souki, Álvaro Acevedo Osorio, Teresita Camacho Bernal, Wolfgang Bokelmann, Juana Cruz Morales, Mario López and María Rosa Yumbla

Innovative governance and dynamics of cognitive models for agriculture in territorial development – Lessons from a collaborative research program .. 738
André Torre and Frédéric Wallet

Workshop 1.8: Knowledge and innovation brokers: lubricating knowledge development and innovation networks ... 749
Convenors: Eelke Wielinga, Laurens Klerks and Michael Kuegler

Exploring the emerging ‘intermediation’ (facilitation and brokerage) roles in agricultural extension .. 751
Alex Koutsouris

Modeling transdisciplinary cooperation in the agriculture sector for European Innovation Partnerships ... 761
Katharina Diehl and Anita Beblek

Third party roles of brokers in temporary knowledge networks ... 773
Barbara King and Ruth Nettle

Efficient knowledge systems for supporting irrigation technologies in horticulture ... 784
Bettina König

Transition towards low-input cropping systems: characterization of actionable knowledge for technical change ... 794
Toffolini Quentin, Jeuffroy Marie-Hélène and Prost Lorène

Acting as Agricultural Innovation brokerage in Italy: experiences from the Rural Development Programmes 2007-2013 ... 807
Simona Cristiano and Patrizia Proietti

Become a broker: the metamorphosis of an advisor ... 818
Patrizia Proietti and Gianluca Brunori

Concepts for Co-Creating Innovations in the EIP ... 829
Eelke Wielinga
How to strengthen the link between advisors and research in a privatized advisory system? – The case of Brandenburg, Germany
Ulrike Knuth, Andrea Knierim

Government stimulation of operational groups for innovation in agriculture. Understanding the framing of the government support to knowledge exchange network groups in the Netherlands, as an example for Europe
Monica A.M. Commandeur

Workshop 1.9: Farmland (bio-)diversity in the hands and minds of farmers: Farming systems approaches to landscape protection and biodiversity preservation
Convenors: Robert Home, Maiann Suhner, Silvia Tobias

Green belts in the hands and minds of farmers: A socio-agronomical approach to farmers’ practices
Françoise Alavoine-Mornas and Sabine Girard

The Clash between Global Master-plans and Local Contexts: conflicts and contradictions within initiatives for payment of ecosystem services in Brazil and Nepal
Kristina Marquardt, Örjan Bartholdson, Adam Pain, Roberto Porro and Lennart Salomsson

Provision of Public Goods Through Mountain Meadows and Pastures in Aosta Valley (Italy)
Patrizia Borsotto, Sylvie Chaussod and Stefano Trione

Farmer Supported Biodiversity Conservation in Uttarakhand, India
Anna Marie Nicolaysen, Charles Francis and Geir Lieblein

Mountain agriculture at the crossroads, biodiversity, culture, and modernization, conflicting and interacting interests.
Paulina Rytikönen Madeleine Bonow and Patrick Dinnétz.

Toward redesigning the relationship between farming systems and biodiversity conservation
Brédart David, Denayer Dorothée and Mormont Marc

Sustainable landscape management – the view from the grassroots
Katrin Prager

Motivations for implementation of ecological compensation areas on Swiss farms
Robert Home, Oliver Balmer, Ingrid Jahrl, Matthias Stolze and Lukas Pfiffner
WORKSHOP THEME 2: FEEDING THE FUTURE WITH SUSTAINABLE AGRO-FOOD SYSTEMS: ALTERNATIVE PRODUCTION, DISTRIBUTION AND CONSUMPTION VIEWS AND APPROACHES

Workshop 2.1: Healthy growth in value-based chains: From niche to volume with integrity and trust
Convenors: Hilde Bjørkhaug, Handan Giray, Gunn-Turid Kvam and Egon Noe

Dynamics and stability in growth of values based food chains: Understanding organizational evolution in organic food systems
Klaus Brønd Laursen and Egon Noe

Policy goals, research needs and research regarding organic sector in Finland
Helmi Risku-Norja, Minna Mikkola, Jaakko Nuutila

Institutional Adaptive Capacity of Organic Farmer Associations in growing Organic Agrifood Systems
Valentin Fiala, Bernhard Freyer, Rebecca Paxton and Jim Bingen

Conventionalization or diversification? – Development in the Danish organic production sector following market expansion
Martin Thorsøe and Egon Noe

State of the art review - On healthy growth initiatives in the mid-scale values-based chain of organic food
Gunn-Turid Kvam and Hilde Bjørkhaug

The perception of organic values and ways of communicating them in mid-scale values based food chains
Christoph Furtschegger and Markus Schermer

Strategies for medium-sized values-based food chains during growth processes
Muenchhausen, S.v., Schulz, K., Haering, A.M. and Llamas Vacas, R.

Evaluation of agroecology policy schemes in Andalusia driving cooperation initiatives for the mid-scale distribution and consumption
Ramos, Maria and Torremocha, Eva

Workshop 2.2: Transition Issues in Production, Marketing and Consumption for the Agro-Ecological Development of Animal Production
Convenors: Yolanda Mena Guerrero, Francisco de Asís Ruiz Morales and Jean-Paul Dubeuf

The untied qualification processes impacts on the argan territorial productive systems and on the “food social space” changes
Thierry Linck and Hermilio Navarro

Developing small goat holders to face food security, poverty and environmental challenges. Lessons from a comparative analysis in different regions of the world (governance, markets, production systems) for experiencing successful projects
Jean-Paul Dubeuf

How public policies on livestock sectors could support innovations and transitions toward a renewed pastoralism in Corsica. A contribution to a prospective approach on the future of pastoralism
Jean-Paul Dubeuf
Actions to increase the sustainability of sheep production systems in Mediterranean disadvantaged areas: The case of the Lojeña sheep breed .. 1061
F.A. Ruiz, C. Lara, Y. Mena and R. Gutiérrez

Marketing improvement of organic meat and milk in Andalusia through the enhancement of the environmental role of this production model ... 1067

International Finance Institutions hamper transition to higher welfare systems in animal production 1075
Nicolas Entrup

Transition toward systems linking animal genetic resources, low input farming systems and products processed on the farm; development logics of the Bretonne Pie Noir local cattle breed 1085
Lauvie A., Couix N. and Sorba J.M.

Qualifying the Corsican cheeses as pastoral products: Issues for market mediations 1093
Jean Michel Sorba and Melissa Ait Mouloud

Workshop 2.4: The role of Localized Agrifood Systems in a Globalised Europe 1103
Convenors: Andrea Marescotti, Giovanni Belletti, Artur Cristóvão, Dominique Barjolle, François Casabianca and Paulina Rytkönen

The effects of the legal protection Geographical indications: PDO/PGIs in Tuscany 1104
Belletti Giovanni, Brazzini Alessandro and Marescotti Andrea

A crop model as an “intermediary object”: Lessons from a participatory research on the agronomical bases of PGI Corsican Clementine typicity ... 1115
Raphael Belmin, François Casabianca, Jean Marc Meynard

Alternative Food Networks in Piedmont: farmers’ direct sales and urban consumers 1129
Alessandro Corsi, Silvia Novelli and Giacomo Pettenati

The aptitude to promote value creation in GI areas through the adoption of rural development policies .. 1140
Marcello De Rosa, Felice Adinolfi, Luca Bartoli and Silvia Chiappini

Institutionalizing short food supply chains for sustainable resource management: challenging issues 1150
Marie Dervillé and Frederic Wallet

Is “local” enough? New localised food networks in the Swiss dairy industry 1164
Jérémie Forney and Isabel Häberli

Can systems using hyper specialized breeds be considered as localized agrifood systems? The example of the Belgian Texel breed .. 1174
Lauvie Anne and Stassart, P.

Territorial anchorage of French dairy ewes sectors: Historical analysis of interdependence between given localized agrifood systems .. 1182
Millet, Morgane and Casabianca, François

Comparing registration efforts for Protected Geographical Indications in Austria, Colombia and Italy ... 1194
Xiomara F. Quinones R., Elisa Barzini, Giovanni Belletti, Friedrich Leitgeb, Andrea Marescotti, Marianne Penker, Luis F. Samper G. and Silvia Scaramuzzi
Constructing the new rurality– challenges and opportunities of a recent shift in Swedish rural policies .. 1203
Paulina Rytkönen

Defining a set of attributes and indicators to evaluate the multidimensional performance of local to global food value chains: thoughts from Switzerland .. 1214
Schmitt Emilia, Cravero Virginia, Belletti Giovanni, Marescotti Andrea, Brunori Gianluca and Barjolle Dominique

Resilience to Strategies to Loose Strictness of Specification Sheets in GI Consortia .. 1223
Katia L. Sidali and Silvia Scaramuzzi

The Role of Values in Farmers’ Markets; Comparative Case Studies in Minneapolis and Vienna 1233
Milena Klimek, Jim Bingen and Bernhard Freyer

Workshop 2.5: Achieving co-benefits for sustainability and health through alternative agro-food systems 1245
Convenors: Rebecca Paxton, Bernhard Freyer and Milena Klimek

Austrian organic farmers’ perceptions of the relevance of environmental influences for health promotion 1247
Paxton, R., Freyer, B., Leisch, F. and Bingen, J.

Contribution of short food supply chains to sustainability and health 1256
Otto Schmid, Gianluca Brunori, Francesca Galli, Pieter van de Graaf, Alistair Prior and Roberto Ruiz

Workshop 2.6: Integrative and interdisciplinary approaches to the ecologisation of agrifood systems 1263
Convenors: Claire Lamine, Benoît Dedieu and Gianluca Brunori

Technical and commercial change during transition to organic farming: towards a methodological approach based on the scope of the leaps forwards 1264
Caroline Petit and Christine Aubry

Upscaling grassroots innovation for sustainable agriculture: experiences from the Dutch dairy sector 1275
Frans Hermans, Dirk Roep and Laurens Klerkx

An innovation systems model for innovation research in the bio-economy 1286
Jonas Van Lancker, Koen Mondelaers

Towards more sustainable agri-food chains: a new conceptual framework 1301
Marianne Hubeau, Koen Mondelaers, Ine Coteur, Fleur Marchand and Ludwig Lauwers

Practising agroecology: management principles drawn from small farming in Misiones (Argentina) 1314
Girard N., Magda D., Noseda C. and Sarandon S.

TATA-BOX: “Territorial Agroecological Transition in Action”: a tool-Box for designing and implementing a transition to a territorial agroecological system in agriculture 1324
Jacques-Eric Bergez, Michel Duru, Laurent Hazard and Olivier Therond

How to break out the lock-in on crop diversification in France? 1335
Marianne Le Bail, Marie-Benoît Magrini, M’hand Fares, Antoine Messéan, Aude Charlier, François Charrier and Jean-Marc Meynard
Diversifying strategies of agricultural cooperatives towards agro-ecological transition 1347
P. Martin, C. Bouty, A. Barbottin and M. Le Bail

Improving resource efficiency of low-input farming systems through integrative design – two case studies from France ... 1355
Michal Kulak, Thomas Nemecek, Emmanuel Frossard and Gérard Gaillard

An approach for assessing the ecological intensification of livestock systems 1359
Ludmila Couto Gomes, Jean-Yves Pailleux, Benoit Dedieu, Claudete Regina Alcalde and Sylvie Cournut

Integrating crop and livestock activities at territorial level in the watershed of Aveyron river: from current issues to collective innovative solutions ... 1371
Moraine Marc, Grimaldi Juliette, Murgue Clément, Duru Michel and Therond Olivier

Crossing two niches of agroecological innovation: the case of organic farming and conservation agriculture ... 1385
Audrey Vankeerberghen and Pierre M. Stassart

Describing the evolutions, in a territory, of the interactions between livestock farming systems and downstream operators. Proposal for a methodological framework, based on the comparison of 4 territories and 2 types of production: milk and meat ... 1393
M.O. Nozieres, V. Baritaux, S. Cournut, M. Gedouin and S. Madelrieux

The co-production of sustainability by learning networks. The case of reconstruction of knowledge and practices around bread production ... 1405
Rossi Adanella, Dvortsin Leo and Malandrin Vanessa

From genetics to marketing (…and through complex connexions and interdependencies): an integrative approach of the ecologisation of fruit production ... 1417
Claire Lamine, Jean-Marc Audergon, Servane Penvern, Sylvaine Simon and Jean Pluvinage

Workshop 2.7: Sustainability of Dairy Farms – Concepts, Measurements and Empirical Results 1429
Convenors: Ludwig Theuvsen, Birthe Lassen and Monika Zehetmeier

Sustainability of Management-intensive Grazing Dairy Farms versus Conventional Confinement Dairy Farms ... 1430
Dale M. Johnson, James C. Hanson, Raymond R. Weil, Rachel Gilker, Eric Lichtenberg and Kota Minegishi

Strategies for increasing dairy production while controlling environmental footprint on dairy farms in Canterbury, New Zealand ... 1438

Sustainability of living systems within milk production in need of resources and regulation 1446
Albert Sundrum

Evaluating the impact of intensification of dairy production on the sustainability and environmental safety ... 1455
H. Sommer and G. Leithold

Implementation of greenhouse gas mitigation strategies on organic, grazing and conventional dairy farms ... 1462
Victor E. Cabrera and Marion Dutreuil

Carbon footprint and energy consumption of Luxembourgish dairy farms 1473
Rocco Lioy, Tom Dusseldorf, André Meier, Romain Reding and Steve Turmes

XIV
The extent of urban agriculture and its contribution to food security in low income areas: The case of Msunduzi Local Municipality in South Africa ... 1633
M. Mudhara, U. Kolanisi, J. Chitja and K. Naidoo

AFNs in periurban areas: the meeting of food demand and supply as an emergent issue 1645
R. Filippini, E. Marraccini and S. Lardon

School food procurement and Sustainability in northern England and Wales 1655
Mark Stein

Multi-actor organization for urban food systems: short but collaborative supply chains 1663
Redlingshöfer, B., Traversac J.B., Messmer, J.G. and Aubry C.

A meeting point between agricultural producers and consumers: the Italian Solidarity Purchasing Groups case study .. 1672
Borri Ilaria, Borsotto Patrizia and Aguglia Laura

Growing food for self-consumption inside cities: lessons learnt from urban allotment gardens in Paris and Montreal .. 1683
Jeanne Pourias

Workshop 2.9: Greening the CAP ... 1695
Convenors: Monica Commandeur and Flaminia Ventura

Posters: Greening the CAP yourself – Agricultural knowledge exchange networks: Example network 1: “Let’s use half as much herbicides (SMS)”; Example network 2: “Pigs and landscape improvement” ... 1697
Monica A.M. Commandeur

Determining the feeding value and digestibility of the leaf mass of alfalfa (Medicago sativa) and various types of clover ... 1701
H. Sommer and A. Sundrum

CAP vs farmers: which beliefs move incentives .. 1707
Francesco Diotallevi, Flaminia Ventura and Gaetano Martino

Workshop 2.11: Larger fields, faster tractors, GPS, milk robots, automated egg production, … Does this type of agricultural change contribute to lasting prosperity and resilience? 1721
Convenors: Karlheinz Knickel, Ika Darnhofer and Mark Redman

Rice, Smallholder Farms, and Climate Change in Bangladesh: Policy Suggestions for Climate and Social Resilience ... 1723
M. Mizanur Rahman, Bradley Klees and Tasfi Sal-sabil

Development trajectories of mountain dairy farms in the globalization era. Evidence from the Vercors (French Northern Alps) .. 1733
Sophie Madelrieux, Médulline Terrier, Dominique Borg and Laurent Dobremez

Swedish Pig Farming from a Degrowth Perspective .. 1743
Erika Öhlund

Changes and resistance in family farming systems facing the agricultural intensification model in emerging countries. The example of Paraná State in Brazil ... 1754
Dimes Soares Júnior, Philippe Pedelahore, Nathalie Cialdella and Ricardo Ralsich

XVI
Motivation for increased production among Norwegian farmers .. 1762
Magnar Forbord and Jostein Vik

The local landscape attractiveness as the ground for innovative land management: acknowledging new place based interactions for resilient farm systems .. 1772
Teresa Pinto-Correia and Carla Gonzalez

Resilience of family farms: understanding the trade-offs linked to diversification 1778
Ika Darnhofer and Agnes Strauss

Subsistence and semi-subsistence farming in Hungary. From modernisation to ecological and social sustainability .. 1789
Imre Kovách

How ICT is changing the nature of the farm: a research agenda on the economics of big data...... 1802
Krijn Poppe, Sjaak Wolfert and Cor Verdouw

“We manage what we can at pace we can”: small farmers’ development strategies in turbulent context in post-socialist Latvia ... 1814
Talis Tisenkopfs and Sandra Šūmane

What determines the flexibility of farming systems? A case-study of the bovine farming sector in Belgium ... 1828
Erwin Wauters and Frankwin van Winsen

Resilient farmers’ strategies and policy regulations: the quest for modernization on Dutch and Italian dairy farms .. 1836
Paul Swagemakers, Pierluigi Milone, Flaminia Ventura and Xavier Simón Fernández

Assessment of two modern milk farms (low input versus high external input) in Switzerland focused on sustainability and resilience criteria ... 1846
Otto Schmid and Philippe Näf

Farmers’ perception on options for farm development in a situation of limiting nearby surroundings1852

More sheep, more space…but not any tractor! Is farm enlargement (always) damageable regarding sustainability in French Mediterranean mountains? ... 1862
Jacques Lasseur, Lucie Dupre and Julia Sicard

Well-functioning landscapes – on re-coupling agricultural and rural development...................... 1873
Lone Søderkvist Kristensen, Tobias Plieninger, Jørgen Primidahl and Erling Andersen

An attempt to clarify the resilience concept for renewed strategies of agricultural and farm modernization ... 1882
Karl Bruckmeier and Gunilla Olsson
WORKSHOP THEME 3 CLIMATE CHANGE: FARMING SYSTEM APPROACHES TO MITIGATION AND ADAPTATION

Workshop 3.1: Soil management: facilitating on-farm mitigation and adaption
Convenors: Julie Ingramm, Sandra Nauman and Jan Verhagen

Assessing farmers’ intention to adopt soil conservation practices across Europe

Barriers to adopting best management practices aiming at soil fertility and GHG mitigation across dairy farmers in The Netherlands
R. Hijbeek, A.A. Pronk, H. ten Berge, M. van Ittersum, G. Ruysschaert and J. Verhagen

Management practices to enhance soil carbon: using stakeholder consultation to evaluate credibility, salience and legitimacy of information
Julie Ingram and Jane Mills

Achieving improved soil management on-farm – insights from a New Zealand case study
Janet Reid

Soil carbon management for climate change mitigation and adaptation: framing and integrating the issue in the evolving policy environment
Ana Frelih-Larsen, Sandra Naumann and Elizabeth Dooley

Workshop 3.2: Agroforestry research and practice in Europe

Decision-Making Factors for Agrowood Cultivation- A Qualitative Research for Brandenburg/Germany
Sarah Keutmann and Dr. Philipp Grundmann

Assessing ecosystem services in perennial intercropping systems – participatory action research in Swedish modern agroforestry
Johanna Björklund¹, Karin Eksvärd² and Christina Schaffer³

Effect of liming and organic fertilisation on soil organic matter in a silvopastoral system under Populus x canadensis Moench
Mosquera-Losada, M.R., Rigueiro-Rodríguez and A. and Ferreiro-Dominguez, N.

Innovative Alley coppice Systems-mixing timber and bioenergy woody crops: 7 years growth and ecophysiological results in experimental plots in northern Italy, Po Valley
Pierluigi Paris, Sara Bergante, Luca Tosi, Gianfranco Minotta, Massimiliano Biason, Maurizio Ventura and Gianni Facciotto

Workshop 3.3: Designing Cropping Systems for Adaption to Climate Change
Convenors: Thomas Döring, Frank Ellmer, Ralf Bloch and Johann Bachinger

The situation of current crop rotations in Northern Germany: risks and chances for future farming systems
Susanne Stein and Horst-Henning Steinmann
Yield 2050: Risks and opportunities for the German agriculture - A modelling approach 1987
Maximilian Strer, Nikolai Svoboda and Antje Herrmann

Farmer responses to multiple stresses in the face of global change: Assessing five case studies to enhance adaptation... 1996
Giuseppe Feola, Amy M. Lerner, Meha Jain, Marvin J. F.Montefrio and Kimberly A. Nicholas

Agriculture, forest, climate: the road to new adaptation strategies in France (the AF Clim foresight) 2004
Noémie Schaller, Clément Villien, Pierre Claquin and Julien Vert

Support building resilient smallholder farms to climate change: I. Livelihood profile and nutrient management in the Loba province, Burkina Faso... 2013
Alexandre Boundia Thiombiano and Quang Bao Le

Evaluation of maize varieties in a changing climate: on-farm vs. experimental stations 2021
Julian Klepatzki, Thomas F. Döring, Janna Macholdt and Frank Ellmer

4 WORKSHOP SYNOPSIS .. 2030

5 FIELD TRIPS .. 2040
Field Trip 1: Large-scale crop production on sandy soils ... 2040
Field Trip 2: Extensive grasslands on hydromorphic soils.. 2041
Field Trip 3: Agroforestry systems .. 2042
Field Trip 4: Paradise lost? Food supply strategies in the metropolitan region of Berlin now and then ... 2043
Field Trip 5: Urban agriculture in Berlin: From traditional peri-urban farming to self-harvesting and community-gardens .. 2045

6 SHORT EVALUATION OF THE 11TH IFSA SYMPOSIUM 2047

PHOTO GALLERY ... 2051
Support building resilient smallholder farms to climate change: 1. Livelihood profile and nutrient management in the Loba province, Burkina Faso

Alexandre Boundia Thiombiano1,2 and Quang Bao Le3

1 Kwame Nkrumah University of Science and Technology (KNUST), Kumasi, Ghana. Corresponding author. E-mail: boundia@gmail.com

2 West African Science Service Center on Climate Change and Adapted Land Use (WASCAL)

3 Natural and Social Science Interface (NSSI), Institute for Environmental Decisions (IED), Swiss Federal Institute of Technology (ETH-Zurich), Zurich, Switzerland

Abstract: Climate change through increasing aridity disrupts nutrient cycles which are the basis of food production in agro ecosystems. Existing production systems in West Africa fail in maintaining a good enough nutrient cycling at farm level. Adaptation of smallholders to climate change requires rethinking and adjusting their existing production systems in order to improve their nutrient balance and to ensure an efficient provision of food demand. They need to be supported in this way with open decision-making tools (agent-based model) based on nutrient cycling and accounting for feedback loops. Adaptation capacities depend mainly on livelihood assets endowment. Our project in the Loba province, starts by identifying livelihood profiles of smallholders and their link to the actual nutrient management. Three communities of the province were chosen through a cluster analysis using NDVI index, land use map, soil degradation information, and population density. Using soil map, six villages were randomly selected and 360 farms were surveyed. Five farm-types were found: Better-off, cotton-and livestock-based farms (Farm-type I); Better-off, non-farm activities preference farms (Farm-type II); Pro-poor, labourless-and landless farms (Farm-type III); Medium income, labour-rich, marketable food crop oriented and educated farms (Farm-type IV); and Poor, insecure-land tenure, livestock based farms (Farm-type V). Existing fertility management strategies are linked to farm’s wealth, livelihood orientation, land access, labour availability and supporting policies. Better-off farm-types intensify fertilizer use with livelihood orientation and supporting policies while less endowed farm-types (III and V) intensify fertilizer use with land constraint.

Keywords: Climate change, Adaptation, Smallholder agro-ecosystem, Burkina Faso, Agent-based modelling

Introduction

Climate change and its impact on farming activities are a growing issue through the world. Many research activities have been conducted on how farmers can adapt to these changes. A clear outcome of this research is that farmers should reassess their farming practices to be able to adapt to persistent climate change. Modelling is a useful tool for guiding farmers’ decision making. Many models and tools have then been built to serve this purpose (McCown et al., 1995; McCown et al., 1996; De Jager et al., 1998; Van den Bosch et al., 1998; Belcher et al., 2004; Matthews, 2006). However, there still is the need for open nutrient cycle-based models for applying farmers’ system design options of farm structure, accounting for decision making and including feedback loops.
In effect, farm production depends on the performance of the nutrient cycle threatened by climate change. With increasing climate variability farmers must be capable of quick adaptation responses. To be capable of quick adaptation behavior farmers should be continuously adjusting their strategies to maintain good enough nutrient balance. They must consider shifting from one management mode of their farm to another along with the changing environment and available opportunities. Feedback loops existing in a system, here the farm, are key for understanding and evaluating the adaptation capacity of the system. Through the feedback loop system, the human agent perceives the environmental status, reacts to it, transforms the environment with a retroactive effect on the decision-making process in itself and of other agents in a short-term fashion (Le et al., 2012).

Below et al. (2010) highlight that adaptation is highly context sensitive. Beyond the environmental context it requires considering the livelihood assets endowment of farms (land, financial resources, skills, technologies, etc.). A farm might be well endowed in one asset but poor in another and the type of poverty can influence the environment-poverty links (Reardon & Vosti, 1995). With the same logic, the type of asset poverty makes difference in human-environment relationship of two farms, and hence their adaptive capacity. Our study used the household livelihood framework (Sconnes, 1998; DFID, 1999; Sherbinin et al., 2008) to identify smallholder farms types in the Ioba province and to characterize their management of nutrients at farm level. This work is the first step of a research project that is aiming at building an actor-oriented feedback loop system model for guiding the option of West African smallholder’s adaptation to climate change and moreover their transformation into resilient farms in the face of climate change.

Material and methods

Study sites selection and farms sampling
The study zone is the Ioba province located in the Black Volta Basin, South West Burkina Faso. It lies between 10°42'-11°20’N latitude and 02°36'-03°25' W longitude. The province is part of the South-Sudanian climatic zone. The climate is characterized by two seasons: a rainy season from end of April-May to October and a dry season from November to March-April. The wettest months are August and September while the hottest months are March and April. The average rainfall varies between 900 mm and 950 mm. The province experiences rain variability in time and space (MAHRH & GTZ, 2004). Following biophysical and demographical criteria that influence land use and nutrients use, three communities out of eight were selected to form the study area. On the basis of the two main soil types in the study area, two villages (one per main soil type) were randomly selected per community to serve as study sites. Six villages were randomly selected: Pontieba and Loffing in Dano community, Babora and Dibogh in Koper community, and Kolinka and Bekotenga in Ouessa community. Sixty farms were randomly sampled per village. Farms are represented by their household for the survey. For each village, we used the list of households, as exhaustive as possible. Random sampling was performed within STATA software. In total, 360 of the 1,232 households were sampled (29.22% of total households). The data was collected during dry season 2013 (January-February) using a semi-structured questionnaire which gathered socio-demographic data, geographical data, and information on farms’ livelihood.

Method for identifying farm-types
To identify typical farms in the study area, we used a two steps-method: at first a Principal Component Analysis (PCA) and then a K-mean Cluster Analysis (CA). The choice of the entry variables for the Principal Component Analysis (Table 6) was guided by the household sustainable livelihood framework which groups livelihood assets into five main types of capital (Sconnes, 1998 ; DFID, 1999 ; Sherbinin et al., 2008): Physical capital (basic infrastructures, tools,
equipment); Natural capital (natural resources stock: land, water, air, forest resources, etc.); Financial capital (available cash or equivalent: savings, livestock, regular inflow of money such as pension, transfer and remittance, etc.); Human capital (knowledge, skills, labour, and capabilities to pursue and achieve livelihood goals. It allows valuing the other assets); and Social capital (social networks, membership to organizations or groups).

Table 1: Variables considered in Principal Component Analysis (PCA)

<table>
<thead>
<tr>
<th>Variable name</th>
<th>Brief definition</th>
<th>Source*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Human capital</td>
<td></td>
<td></td>
</tr>
<tr>
<td>H Age members</td>
<td>Average age of household members</td>
<td>C</td>
</tr>
<tr>
<td>H Age of the labour</td>
<td>Average age of household labour</td>
<td>C</td>
</tr>
<tr>
<td>H Head education</td>
<td>Number of education years of the household head</td>
<td>C</td>
</tr>
<tr>
<td>H Size</td>
<td>Size of the household</td>
<td>D</td>
</tr>
<tr>
<td>H Labour</td>
<td>Labour amount of the household (workers)</td>
<td>C</td>
</tr>
<tr>
<td>H Dependency</td>
<td>Dependency ratio of the household</td>
<td>C</td>
</tr>
<tr>
<td>Natural capital</td>
<td></td>
<td></td>
</tr>
<tr>
<td>F Holding lands</td>
<td>Total land area (ha) the farm possesses</td>
<td>C</td>
</tr>
<tr>
<td>F Holding per capita</td>
<td>Farm land possession per capita (ha per capita)</td>
<td>C</td>
</tr>
<tr>
<td>F % cereal area</td>
<td>Share of cereals within cultivated lands of the farm (%)</td>
<td>C</td>
</tr>
<tr>
<td>F % cotton area</td>
<td>Share of cotton within cultivated lands of the farm (%)</td>
<td>C</td>
</tr>
<tr>
<td>F % cash crops</td>
<td>Share of cash crops within cultivated lands of the farm (%)</td>
<td>C</td>
</tr>
<tr>
<td>F % owned land</td>
<td>Share of owned lands within cultivated lands of the farm (%)</td>
<td>C</td>
</tr>
<tr>
<td>F % user right land</td>
<td>Share of user right lands within cultivated lands of the farm (%)</td>
<td>C</td>
</tr>
<tr>
<td>Physical capital</td>
<td></td>
<td></td>
</tr>
<tr>
<td>F Transport</td>
<td>Number of transport means (Bicycles, motorbike) of the household</td>
<td>C</td>
</tr>
<tr>
<td>H House equipment</td>
<td>Number of house equipment (Mattress, bed) of the household</td>
<td>C</td>
</tr>
<tr>
<td>F Traction animals</td>
<td>Number of traction animals the farm possesses</td>
<td>D</td>
</tr>
<tr>
<td>Financial capital</td>
<td></td>
<td></td>
</tr>
<tr>
<td>F Gross income</td>
<td>Annual gross income of the farm (CFA)</td>
<td>C</td>
</tr>
<tr>
<td>F Gross income/capita</td>
<td>Annual gross income per capita (CFA per capita)</td>
<td>C</td>
</tr>
<tr>
<td>F % crop income</td>
<td>Share of crop income within gross income (%)</td>
<td>C</td>
</tr>
<tr>
<td>F % livestock income</td>
<td>Share of livestock income within gross income (%)</td>
<td>C</td>
</tr>
<tr>
<td>F % non-farm income</td>
<td>Share of non-farm activities income within gross income (%)</td>
<td>C</td>
</tr>
<tr>
<td>F % transfer income</td>
<td>Share of transfer income (pension, gift) within gross income (%)</td>
<td>C</td>
</tr>
<tr>
<td>F TLU</td>
<td>Tropical Livestock Units of the farm (%)</td>
<td>C</td>
</tr>
<tr>
<td>F TLU/capita</td>
<td>Tropical Livestock Units per capita (TLU per capita)</td>
<td>C</td>
</tr>
<tr>
<td>F TLU/ha</td>
<td>Tropical Livestock Units per unit of cultivated land (TLU ha⁻¹)</td>
<td>C</td>
</tr>
<tr>
<td>Geographical variables</td>
<td></td>
<td></td>
</tr>
<tr>
<td>H Distance paved road</td>
<td>Average distance of the household to paved road (km)</td>
<td>R</td>
</tr>
<tr>
<td>H Distance main town</td>
<td>Average distance of the household to main town (km)</td>
<td>R</td>
</tr>
</tbody>
</table>

D = Direct extracted from the questionnaire; *C* = Compound information calculated based on information coded in the questionnaire; *R* = Extracted from map reading.

Analysing farm-type soil fertility management

Soil fertility management strategies in use by farms are the result of decision making, given their knowledge and the information their perceived from their environment (within farm, neighbourhood, etc.). Analysis of this management is done through descriptive statistics of data collected during the surveys.
Results and discussions

Livelihood based typology of the farms
The scores of principal components (10) with Eigen value greater than or equal to one were used to run the K-mean cluster analysis with the Knee method as decision method for the number of clusters. Five optimal classes were found. The livelihood dimension structure shown by the radar diagram constructed using standardized variables (Fehler! Verweisquelle konnte nicht gefunden werden.) and the composition of the income helped to characterize the identified farm-types.

Farm-type I: Better-off, cotton-and livestock-based farms. They represent around 31% of study sample. They have highest revenue (109,577 FCFA per capita), and are most endowed in land resources (0.98 ha per capita). Cotton usually requires having enough land; the bigger the cropped area, the higher the profitability of cotton production (PAFASP and CAPES, 2011). Livestock forms the biggest share within annual gross income (nearly 54 %). In the study area and Burkina Faso in general, cotton is regarded as the main non-food cash crop, and livestock is a form of capitalization of financial resources drawn from cotton. Cotton revenue is partly reinvested in livestock that can be sold out and the money used in case of food shortage.

Farm-type II: Better-off, non-farm activities preference farms. They form 30 % of the study sample. They are also among high revenue farms, but have lower gross income per capita compared to the farm-type I (107,343 FCFA per capita). They have the lowest dependency ratio among the five farm-types (0.22) and their head are more educated than those of the farm-type I (1.83 against 1.12 years of classic education for farm-type I). Their main resource is non-farm activities (trade, salary, pension, etc.) which are providing up to 77.32% of annual gross income.

Farm-type III: Pro-poor, labourless-and landless farms. This group represents 21% of the study sample. Its farms have the lowest revenue per capita: 78,236 FCFA per capita. There are characterized by highest dependency ratio (0.84), lowest available labour (4 workers) and lowest land resources (0.72 ha per capita). Livestock forms biggest share within annual gross income.

Farm-type IV: Medium income, labour-rich, marketable food crop oriented and educated farms. This group forms 9% of study sample. Members of this farm-type present medium income compared to the others (101,529 FCFA per capita). They are the most endowed in labour (11 workers in average), have the most educated heads (3.52 years of classic education). A big proportion of their cropping land is allocated to marketable food crops production. These farms appear as farms with most diversified activities and income sources. Contrary to other farm-types, none of their income sources is forming half of annual gross income on its own: livestock forms 44.44 %, the non-farm activities almost 34 % and transfers up to nearly 6 %.

Farm-type V: Poor, insecure-land tenure, livestock based farms, representing 8% of study sample. Their average annual revenue per capita is 86,413 FCA. They are characterized by insecure land tenure for they have in general only user-rights on the lands they are exploiting. The land holding is evaluated to 0.78 ha per capita. The share of livestock within annual gross income is 58.52 %. Their livelihood strategy is built on livestock which mainly exploits common lands for pastures and does not require having necessarily own lands.
The livelihood-based typology we found is supported by previous studies. Tittonel et al. (2005) found an alike typology in western Kenya: two wealthy classes relying on cash crops and non-farm activities, two diversified middle class farms and one landless poorest farms class. In the Ioba province, but for a different study area comprising three villages, Gleisberg-Geiser (2012) came out with a less detailed typology: she found three farm-types: Diversified farms, Cash-crops oriented farms and Non-farm oriented farms. Our study is thus bringing more insight and precision in the structure of smallholder farms typology of the Ioba province.

Soil fertility management by farm-types

This section is looking at practices and measures farms use in managing their soil fertility: use of mineral fertilizer and conservation agriculture practices (organic fertilization, soil and water conservation technologies).
Mineral fertilization

The fertilizer use intensity expresses the total amount of fertilizer (in Kilograms) used at farm level divided by the total rainfed cropped area (in hectares) of the farm. Table 2 shows average amount of NPK and NPK+Urea used per unit of cropped land. Farm-types I and IV are farms with highest fertilizer use intensities.

Their financial endowment allows them to purchase fertilizer. For farm-type I, comprising biggest cotton producers, there is also the indirect effect of cotton production. In effect it is known that farmers usually divert fertilizer provided by cotton companies (through a credit system) for cropping cotton to cultivate other crops (PAFASP and CAPES 2011). Even though they are better-off farms, farm-type II has lowest fertilizer use intensity (10.28 kg ha\(^{-1}\) for NPK and 14.86 kg ha\(^{-1}\) for NPK+Urea). This is because of their preference for non-farm activities; in investing they give low priority to agricultural activities. Pro-poor farms (farm-type III) perform better than Poor (farm-type V) and even have fertilizer use intensity close to Farm-type IV. Landless and labourless, they compensate by intensifying fertilizer use; while farm-type V, better endowed in labour can rely on this labour to crop comparatively biggest areas and on manure use from their livestock.

Table 2: Mineral fertilizer use intensity (kg ha\(^{-1}\))

<table>
<thead>
<tr>
<th>Farm-type</th>
<th>Fertilizer</th>
<th>n</th>
<th>(\bar{X})</th>
<th>(\sigma_X)</th>
<th>S.e. (\bar{X})</th>
<th>(X_{\text{Min}})</th>
<th>(X_{\text{Max}})</th>
<th>95% CI</th>
<th>Lower bound</th>
<th>Upper bound</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>NPK</td>
<td>103</td>
<td>21.21</td>
<td>2.38</td>
<td>24.14</td>
<td>0.00</td>
<td>150.00</td>
<td>16.49</td>
<td>25.93</td>
<td></td>
</tr>
<tr>
<td>I</td>
<td>NPK+Urea</td>
<td>103</td>
<td>28.96</td>
<td>3.23</td>
<td>32.82</td>
<td>0.00</td>
<td>200.00</td>
<td>22.54</td>
<td>35.37</td>
<td></td>
</tr>
<tr>
<td>II</td>
<td>NPK</td>
<td>100</td>
<td>10.28</td>
<td>1.37</td>
<td>13.69</td>
<td>0.00</td>
<td>55.17</td>
<td>7.56</td>
<td>13.00</td>
<td></td>
</tr>
<tr>
<td>II</td>
<td>NPK+Urea</td>
<td>100</td>
<td>14.86</td>
<td>1.96</td>
<td>19.58</td>
<td>0.00</td>
<td>89.66</td>
<td>10.97</td>
<td>18.74</td>
<td></td>
</tr>
<tr>
<td>III</td>
<td>NPK</td>
<td>70</td>
<td>15.91</td>
<td>2.55</td>
<td>21.35</td>
<td>0.00</td>
<td>100.00</td>
<td>10.82</td>
<td>21.00</td>
<td></td>
</tr>
<tr>
<td>III</td>
<td>NPK+Urea</td>
<td>70</td>
<td>24.59</td>
<td>4.04</td>
<td>33.83</td>
<td>0.00</td>
<td>200.00</td>
<td>16.52</td>
<td>32.65</td>
<td></td>
</tr>
<tr>
<td>IV</td>
<td>NPK</td>
<td>28</td>
<td>16.74</td>
<td>2.64</td>
<td>13.98</td>
<td>0.00</td>
<td>60.00</td>
<td>11.32</td>
<td>22.17</td>
<td></td>
</tr>
<tr>
<td>IV</td>
<td>NPK+Urea</td>
<td>28</td>
<td>25.41</td>
<td>3.88</td>
<td>20.54</td>
<td>0.00</td>
<td>80.00</td>
<td>17.45</td>
<td>33.37</td>
<td></td>
</tr>
<tr>
<td>V</td>
<td>NPK</td>
<td>27</td>
<td>13.93</td>
<td>3.68</td>
<td>19.10</td>
<td>0.00</td>
<td>69.23</td>
<td>6.37</td>
<td>21.48</td>
<td></td>
</tr>
<tr>
<td>V</td>
<td>NPK+Urea</td>
<td>27</td>
<td>20.04</td>
<td>5.07</td>
<td>26.35</td>
<td>0.00</td>
<td>92.31</td>
<td>9.62</td>
<td>30.46</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>NPK</td>
<td>328</td>
<td>15.77</td>
<td>1.10</td>
<td>19.97</td>
<td>0.00</td>
<td>150.00</td>
<td>13.60</td>
<td>17.94</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>NPK+Urea</td>
<td>328</td>
<td>22.69</td>
<td>1.58</td>
<td>28.58</td>
<td>0.00</td>
<td>200.00</td>
<td>19.58</td>
<td>25.79</td>
<td></td>
</tr>
</tbody>
</table>

Note:
\(n\): group size (i.e., number of households for each group)
\(\bar{X}\): Mean value of variable \(X\);
\(\sigma_X\): Standard deviation of the mean,
S.e. \(\bar{X}\): Standard error of the mean;
\(X_{\text{Min}}\): minimal value of variable \(X\),
\(X_{\text{Max}}\): maximal value of variable \(X\); CI: Confidence interval

Conservation agriculture

We looked at main conservation agriculture practices in the study area as shown in Table: (i) the recycling of crop residues consisting of re-using crop residues either through composting or ploughing techniques that bury crop residues on the plots; (ii) use of animal dung gathered from the farm’s enclosures or from outside farm; (iii) use of stone bunds. Farm-type I, IV and II are those recycling the most their crop residues through composting mainly, with 26.67 %, 24.14 % and 23.53 % of their members using this practice respectively. Beside the fact that composting requires a training to acquire good practices, it also requires having enough labour at disposal to gather crop residues and manure to the compost pit, water the pit and take care of the compost (turning over the compost). If the fact that farm-type IV is better endowed in labour, can explain
the high use of composting, farm-types I and II either have good financial resources to hire the labour needed for digging or are big biological cotton producers. In effect, these biological cotton producers benefit from a particular technical assistance of cotton producers union (UNPCB) as to how to perform a good composting.

Farm-types IV and III (Poor and Pro-poor) have the highest proportion of farmers using animal dung with 39.29 % and 33.80 % respectively. This practice is relatively less demanding in labour compared to composting. This also obeys to a strategy from these two poorly endowed farm-types: with less access to chemical fertilizer and low labour endowment, these farmers are resorting to animal dung use to provide their land with nutrients. As for stone bunds, apart from farm-type III (labourless) which present the lowest proportion of farms using the technology (25.35 %), all the others farm-types have at least 32 % of their members using stone bunds to preserve and improve soil fertility. Farm-type IV has the highest proportion (51.72 %) of farmers using this technology.

Table 3: Use of conservation agriculture practices by farm-types (%)

<table>
<thead>
<tr>
<th>Farm-type</th>
<th>Recycling crop residues</th>
<th>Using manure</th>
<th>Using stone bunds</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>26.67</td>
<td>25.71</td>
<td>37.14</td>
</tr>
<tr>
<td>II</td>
<td>23.53</td>
<td>26.47</td>
<td>32.35</td>
</tr>
<tr>
<td>III</td>
<td>19.72</td>
<td>33.80</td>
<td>25.35</td>
</tr>
<tr>
<td>IV</td>
<td>24.14</td>
<td>17.24</td>
<td>51.72</td>
</tr>
<tr>
<td>V</td>
<td>21.43</td>
<td>39.29</td>
<td>42.86</td>
</tr>
<tr>
<td>Total</td>
<td>23.60</td>
<td>28.06</td>
<td>34.93</td>
</tr>
</tbody>
</table>

Conclusion

On the basis of livelihood assets endowment, the study found in the study area five typical farms: two better-off farm-types, one is cotton and livestock based, and the second is non-farm preference; a medium farm-type labour-rich and marketable food crop oriented; a poor, insecure-land tenure, livestock based farm-type; and finally a pro-poor, labourless-and landless farm-type. Soil fertility management characterization of these five farm-types showed there is a correlation between the livelihood profile and fertility management options in use by farms. Wealth, livelihood strategy, land access, labour availability and existing policies are factors determining nutrient management strategies.

- Better-off farm-types intensify fertilizer use with livelihood orientation and supporting policy. Better-off cotton-and livestock based farm-type (farm-type I) has best performance in chemical fertilizer use and recycling crop residues. The so called conventional cotton producers are maximizing on chemical fertilizer use while biological cotton producers focus on compost use. Better-off non-farm preference farm-type (farm-type II) is less incline to investing in chemical fertilizer use and seems to be turned on use of manure and stone bunds.

- Medium income, labour-rich, marketable food crop oriented and educated farms (Farm-type IV) that we consider as most diversified farms are also diversifying their sources of nutrient input. They have relatively good fertilizer use intensity and the highest proportion of farms recycling crop residue after farm-type I. 51% of them use stone bunds.

- Least endowed farm-types (III and V) intensify fertilizer use with land constraint. The Pro-poor farm-type, landless and labourless (farm-type III) focus on intensification of mineral fertilizer while Poor, insecure-land tenure, livestock based farm-type (farm-type V) intensifies less and has a bigger proportion of farmers using manure.
References

